Search Space Analysis of Evolvable Robot Morphologies

Abstract

We present a study on morphological traits of evolved modular robots. We note that the evolutionary search space –the set of obtainable morphologies– depends on the given representation and reproduction operators and we propose a framework to assess morphological traits in this search space regardless of a specific environment and/or task. To this end, we present eight quantifiable morphological descriptors and a generic novelty search algorithm to produce a diverse set of morphologies for any given representation. With this machinery, we perform a comparison between a direct encoding and a generative encoding. The results demonstrate that our framework permits to find a very diverse set of bodies, allowing a morphological diversity investigation. Furthermore, the analysis showed that despite the high levels of diversity, a bias to certain traits in the population was detected. Surprisingly, the two encoding methods showed no significant difference in the diversity levels of the evolved morphologies or their morphological traits.

Want to know more?

Click here

Leave a Reply

Your email address will not be published. Required fields are marked *