ABSTRACT

Commercial cloud offerings let users allocate compute resources on demand, charging based on reserved time intervals. While this gives great flexibility to elastic high-throughput applications, users lack guidance for assembling instance pools from different cloud instance types, in order to meet given constraints, both with respect to completion time and the monetary budget for a computation. BaTS, our budget-constrained scheduler uses tiny statistical samples of task executions in order to predict completion times (and associated costs) for given bags of tasks [13], for a small set of solutions that either favor fast execution or low computation budget. However, BaTS’s estimator can not handle variably-priced spot instances appropriately. In this work, we present a new prediction module for BaTS that quickly computes accurate approximations to the Pareto set of mixed on-demand and spot instance pools, based on a genetic algorithm (GA). This new approach allows BaTS to react to changing spot instance prices at runtime by re-configuring the instance pool according to the user’s runtime and budget constraints. Simulator-based results show that the GA can approximate the Pareto sets for machine configurations in about 30 seconds time, without noticeable loss of quality when compared to an offline computation of an exact solution that takes in the order of 40 to 60 minutes to compute.

1. INTRODUCTION

In high-throughput computing, parameter sweep or bag-of-tasks applications are as dominant as computationally demanding. An ideal match for these demands can be seen in commercial cloud offerings, like Amazon’s EC2 [5, 6], where computers can be allocated (“rented”) for given time intervals. The various commercial offerings differ not only in price, but also in the types of machines that can be allocated. While all machine types are described in terms of CPU clock frequency and memory size, it is not clear at which machine type can execute a given user application faster than others, let alone predicting which machine type can yield the best price-performance ratio. The problem of allocating the right number of machines, of the right type, for the right time frame, strongly depends on the application program, and is left to the user.

This problem is addressed by BaTS, our budget-constrained scheduler for bags of tasks [13]. BaTS requires no a-priori information about task completion times. In a small, initial sampling phase, BaTS learns properties of the bag’s runtime distribution for each considered cloud offering. BaTS provides the user with a list of makespan/cost options (with different combinations of machines) to choose from, ranging from the cheapest to the fastest offer.

Our current implementation, however, provides only a small and fixed list of possible makespan/cost options, namely the cheapest option, the cheapest plus 10% and plus 20% of budget, as well as the fastest option, and the fastest minus 10% and minus 20% of budget. This set of options might contain duplicates or obviously unattractive schedules. Instead, the Pareto set of options should be presented to the user as those are dominating all other possible machine configurations. Another drawback of BaTS’s current makespan/cost prediction module is that it uses a bounded-knapsack solver tailored for typical price ranges of on-demand instance types, which renders it unfit to deal with the combined price range of spot and on-demand instances.

In this paper, we overcome these deficiencies of our previous BaTS implementation. We have implemented a genetic algorithm that computes approximations to the Pareto set of makespan/cost options (based on their underlying instance pool configurations). This genetic algorithm allows BaTS to quickly (within seconds) compute a set of Pareto-optimal configurations, and hence is able to quickly react to changing spot instance prices.

We have evaluated the quality of the Pareto sets identified by our genetic algorithm using our BaTS simulator [14] that we have extended by price history logs from Amazon’s spot market. We compare our solutions to offline computations of the exact Pareto sets, both in terms of quality and of computational effort needed. Our results show that the GA can approximate the Pareto sets for machine configurations in about 30 seconds time, without noticeable loss of quality when compared to an offline computation of an exact solution that takes in the order of 40 minutes to compute.

This paper is structured as follows. Sec. 2 describes the BaTS scheduler and discusses related work. Sec. 3 presents

1BaTS is implementing the Task Farming Service of the ConPaaS platform, available from www.conpaas.eu
our new genetic algorithm for approximating Pareto sets. We evaluate its performance in Sec. 4. Conclusions are drawn in Sec. 5.

2. BACKGROUND AND RELATED WORK

Before we present our new genetic algorithm for predicting makespan/cost combinations of instance pools, we briefly summarize the basics of our BaTS scheduler, consider Pareto optimality, and discuss related work.

2.1 The BaTS Scheduler

BaTS is scheduling large bags of tasks onto multiple cloud platforms. The individual tasks are scheduled in a self-scheduling manner onto the allocated machines. An initial sampling phase computes a list of budget estimates providing the user with flexible control over budget and makespan. The execution phase allocates a number of machines from different clouds, and adapts the allocation regularly by acquiring and/or releasing machines in order to minimize the overall makespan while respecting the given budget limitation.

Figure 1 sketches BaTS’ overall system architecture. BaTS itself runs on a master machine, where the bag of tasks is available. Figure 1(left) sketches the sampling phase, where BaTS learns the bag’s stochastic properties and uses linear regression to translate task completion times across clouds [13]. In the sampling phase, all available machine types are tested; it is sufficient to sample a machine type only once, either under on-demand or under spot allocation: the machine type is the same, independent of the billing scheme.

BaTS generates a list of budget estimates accordingly, reflecting execution speed and profitability (price/performance ratio). The user is then asked to select one of the budgets (e.g., faster or cheaper) corresponding to a desired schedule. The user’s choice then determines the machines allocated by BaTS for the execution phase, shown in Figure 1(right). Here, BaTS allocates machines from various clouds and lets the scheduler dispatch the tasks to the cloud machines. Feedback, both about task completion times and cloud utilization, is used to reconfigure the clouds periodically, as needed.

In this work, we improve on the existing budget/makespan estimation module, that is based on a bounded-knapsack solver, which provides only solutions of limited usefulness while being computationally demanding, also by the amount of memory needed to investigate the problem space. As our goal is to exploit combinations of on-demand and spot market instances, we need a new estimation module that can quickly handle the large problem space created by the spot instance prices that are both fluctuating and are an order of magnitude lower than the corresponding on-demand prices of the respective instance types.

It is worth mentioning that our very general task model does not allow any hard budget guarantees for the execution of the entire bag. Since BaTS has no a-priori information about the individual execution time of each task, we cannot guarantee that a certain budget will be definitely sufficient. The case might always occur that one or more outlier tasks, with exceptionally high completion time, might be scheduled only towards the end of the overall execution. In [14], we presented an optimization for the tail phase execution that reduces the severity of this problem.

2.2 Pareto dominance, Pareto optimality and Pareto fronts

Formal definitions [7] of Pareto dominance, optimality and fronts are legion. Intuitively, a problem that requires optimizing multiple objectives has several aspects: first, the input variables representing the available types of resources and their respective ranges. Secondly, the objectives, which are (possibly conflicting) functions of these variables. Thirdly, the feasibility space, that is the range of possible values for each objective function, given the ranges of the input variables.

The optimization takes place in the feasibility space, finding the best possible combinations of objective values, which will be mapped back to the corresponding combination of values of input variables (called a solution). The tough problem is deciding which are the best possible combinations, that is the best points in the feasibility space. Here, Pareto introduced the concept of dominance, which simply states that if a given solution S_1 outperforms another solution S_2 for at least one objective function, while it performs equally well for the remaining objective functions, then S_1 dominates S_2 (is strictly better). Based on this, a Pareto optimal solution is a non-dominated one (no other solution is strictly better). The set of all non-dominated solutions corresponds to a set of points in the feasibility space, called a Pareto front or Pareto set.

The goal of our work is to compute the set of Pareto-optimal instance pools for a given bag of tasks, within the limitations on the numbers of available instances per type given by the cloud provider. Because computing the precise
Pareto set is computationally challenging, we present a genetic algorithm that can quickly compute an approximation to the precise Pareto set.

2.3 Related Work

High-throughput computing systems are legion, dating back to Condor [10]. Our own previous work on BaTS [13] and the work in [11] focus on executing bags of tasks in a high-throughput manner on cloud platforms, while keeping both execution makespan and monetary cost under control. Here, we extend BaTS by a means to quickly estimate the Pareto front of instance configurations, extending the applicability of BaTS to spot market instances and combinations of on-demand and spot instances.

The ExPERT framework [2] constructs the Pareto-frontier of scheduling strategies from which it selects the one that best fulfills a user-provided utility function. Unlike Expert, we focus on the makespan of the execution as a whole, and we compute the Pareto front of machine (cloud instance) combinations on which BaTS executes the tasks of a bag in a self-scheduling manner.

There are many genetic algorithms investigating resource selection and job scheduling. Our work has been inspired by [15], where the authors build a genetic algorithm to approximate the Pareto frontier of schedules for jobs and data transfers in grid environments. Their method does not scale well with the number of jobs to be executed, as their gene encoding has one entry per job in each chromosome. Instead, we only encode the numbers of instances per instance type within our chromosomes, which is independent of the actual number of tasks, and hence scales to the execution of large bags.

3. GENETIC ALGORITHM

We start from a typical genetic algorithm structure (Algorithm 1): iterate over a number of generations (populations) until the algorithm converges according to a termination condition. In each iteration, new individuals are randomly generated or created through recombination and mutation. The new individuals together with an elite of the current population form an intermediate population. A second selection step chooses among the extended (intermediate) population those individuals that will become part of the new population, that is the generation of the next iteration. During the selection process, a fitness function is used to rank individuals. The result of the algorithm is the estimated Pareto front.

3.1 Chromosome and gene encodings

In genetic algorithms, a population contains a number of chromosomes (individuals), and each chromosome consists of an (equal) number of genes. Their mapping to the real-world problem widely varies from domain to domain.

In our approach, a chromosome represents a configuration of machines from different types. A gene encodes the number of machines of a certain type (including zero) and is represented as an integer. Thus, a chromosome is represented as an integer array. Table 1 shows an example of a chromosome encoding for a valid machine configuration given a pool of the following Amazon EC2 instance types: t1.micro, m1.small, m1.medium in both pricing policies: on-demand [5] and spot [6]. Therefore, we get a total of 6 genes.

We have chosen this type of representation because it is more suitable for our problem than the traditional binary representation of a chromosome. By having integers as genes it is easier to compute the makespan and cost of a schedule, as well as to check the validity of the chromosome with respect to certain constraints. Each machine type has a limit on the number of machines the user can acquire. Another constraint is the limit on the overall number of machines.

3.2 Fitness function

In order to estimate the Pareto front, we need to find those individuals in the population that are closest to the Pareto front, that is the individuals which minimize both our objective functions: cost and makespan. To estimate their closeness to the Pareto front (given that it is a-priori unknown), we use a fitness function, where intuitively the larger its value, the better the individual. The fitness value of a chromosome is (re-)computed for each iteration.

Our objective functions incur different ranges of values: we deal with time versus money. In order to handle this, we split the search space, by predefined numbers for both the cost and the makespan ranges. This results in a grid structure layout of the search space, each chromosome belonging to a cell. The numbers used for splitting determine the accuracy of the fitness function in discriminating between chromosomes and help in handling overfitting and underfitting. Our fitness function considers closeness indicators that are normalized with respect to the value ranges. That is, we use

Algorithm 1 Genetic Algorithm to Estimate Pareto Fronts

Input: machine types

Output: estimated Pareto front

1: population [POPULATION_SIZE]
2: for fixed number of iterations do
3: while population array is not full do
4: add random valid chromosome to population
5: end while
6: for all chrm C in population do
7: \[\text{fitness} \leftarrow \text{computeFitness}(C) \]
8: end for
9: population \leftarrow selectNewPopulation(population)
10: end for
11: buildParetoFront(population)
12: if Pareto front size < threshold then
13: go once to line 2
14: end if
15: return the biggest Pareto front found

Algorithm 2 computeFitness

Input: chromosome C

Output: fitness value

1: maxCost \leftarrow maximum cost found in population
2: minCost \leftarrow minimum cost found in population
3: diffCost \leftarrow maxCost - minCost
4: maxMsp \leftarrow max makespan in population
5: minMsp \leftarrow min makespan in population
6: diffMsp \leftarrow maxMsp - minMsp
7: \[\text{clCost} \leftarrow \frac{\text{cost} - \text{min cost}}{\text{diffCost}} \] · 100
8: \[\text{clMsp} \leftarrow \frac{\text{makespan} - \text{min makespan}}{\text{diffMsp}} \] · 100
9: \[\text{fitness} \leftarrow \text{Max}(\text{clCost}, \text{clMsp}) \]
10: \[\text{fitness} \leftarrow \text{Max}(\text{clCost} + 1, \text{clMsp} + 1) \]
11: return Max(clCost, clMsp) · clCost · clMsp
Algorithm 3 selectNewPopulation

Input: population
Output: new population
1: sort population decreasing by fitness
2: // elitism
3: add top p_e % of population to intermediate population
4: // crossover
5: for i = 0 to top p_c % of the population do
6: choose different parents: P1 and P2
7: // by using roulette wheel selection,
8: // to create two children: C1 and C2
9: (C1, C2) ← recombination(P1, P2)
10: add C1 and C2 to intermediate population
11: end for
12: sort intermediate population increasing by cost
13: move top p_m % to the new population
14: sort intermediate population increasing by makespan
15: move top p_m % to the new population
16: sort intermediate population increasing by msp+cost
17: move top p_m % to the new population
18: return new population

Algorithm 4 recombination

Input: chromosomes P1, P2
Output: chromosomes C1, C2
1: for all gene g in the chrm P1 do
2: maxM ← maximum number of machines for this gene
3: diff ← |P1g − P2g|
4: mg ← min(P1g, P2g)
5: Mg ← max(P1g, P2g)
6: // a>0
7: mNoMachines ← max(0, mg - a · diff)
8: MNoMachines ← min(maxM, Mg + a · diff)
9: C1g ← rand(mNoMachines, MNoMachines)
10: C2g ← rand(mNoMachines, MNoMachines)
11: // mutation
12: flip a bit in C1g, C2g with probability p_f
13: end for
14: return C1, C2

Algorithm 5 Algorithm for Building Pareto Fronts from GA Population: buildParetoFront

Input: population Pop
Output: estimated Pareto front
1: sort Pop increasing by makespan
2: i ← 1
3: add Pop[i] to the Pareto front
4: find smallest j > i such that the Pop[j].cost < Pop[i].cost
5: if no j is found then
6: return
7: else
8: i ← j
9: continue from line 3
10: end if

<table>
<thead>
<tr>
<th>gene1</th>
<th>gene2</th>
<th>gene3</th>
<th>gene4</th>
<th>gene5</th>
<th>gene6</th>
</tr>
</thead>
<tbody>
<tr>
<td>micro</td>
<td>small</td>
<td>medium</td>
<td>spot.micro</td>
<td>spot.small</td>
<td>spot.medium</td>
</tr>
<tr>
<td>39</td>
<td>28</td>
<td>15</td>
<td>50</td>
<td>65</td>
<td>20</td>
</tr>
</tbody>
</table>

Table 1: Example of a chromosome containing genes for six machine types.

Our population selection is done in two main steps. First, we build the intermediate population (lines 1–11 in Algorithm 3). Next, we select the best chromosomes by cost, makespan and their sum (lines 12–17 in Algorithm 3).

We initialize the intermediate population with the top p_e (%) fittest chromosomes of the current population, a technique known as elitism in genetic algorithms.

Next, we extract a number of pairs equal to a percentage p_c of the population. Each individual is selected based on roulette wheel selection (fitness proportional selection [1]). From each pair we obtain two children using a blend crossover (BLX-a Crossover [8]), as shown in Algorithm 4, lines 1–10. We choose this crossover technique as it proved to give the lowest number of invalid children chromosomes. For instance, when using the two point crossover operation, adapted to our chromosome type, more than half of the children were invalid. BLX-a is the best approach because it generates a controllable amount of values within the bounds of the parent genes, which already respect all the constraints. Therefore, the probability of building an invalid child may be easily adjusted.

We are also interested in children that lie just outside the parents gene range, but within the allowed number of machines per type. Such children increase the diversity of the population and may be the key to a finding better performing machine configurations.

We ensure all created children are valid by properly addressing all corner cases (e.g. equal parents genes). A numerical example of the BLX-a crossover is shown in Figure 2. Here, parent 1 contains 10 machines of a certain type M, while parent 2 has 38 machines of the same type. Assuming a = 0.3 and according to line 8 in Algorithm 4, the pool of genes for their children will consist of all integers between 2 and 40, from which we choose randomly.

We apply the mutation operation on each new child gene with a certain probability, p_f. The mutation consists of flipping a random bit in the integer representing the gene (Algorithm 4 line 12).

The second selection step takes as input the intermediate
population and returns the next generation. This step is an optimization of the classical genetic algorithm and has the purpose of selecting, based on their cost and budget objectives, the top machine configurations for the next population (ensuring quality). A small percentage \((100-p)\%\) of the chromosomes with the lowest fitness in the intermediate population is always left behind, in order to make room for new randomly generated individuals (ensuring diversity). As a consequence, we make sure that the algorithm explores the state space.

3.4 Pareto Front

From the population resulted after the genetic algorithm’s iterations, we build the Pareto front, using Algorithm 5. The number of schedules in the set is lower than the one of the schedules found in the real Pareto front. More about the size of the estimated Pareto Front compared to the real Pareto front in the Section 4.5.

We use a simple heuristic to control the size of the estimated Pareto front (line 12 in Algorithm 1): if the size is below a certain (fixed) threshold, we re-execute the genetic algorithm with the same number of iterations. In any case, we take the Pareto front with the maximum number of elements. This situation has a very low probability of happening, decreasing as the size of the population grows.

4. Evaluation

Our algorithm approximates the Pareto front by constructing a set of (locally) Pareto-optimal solutions. Given the nature of a genetic algorithm, we cannot guarantee that we generate the entire feasible space of the optimization problem, and therefore the Pareto optimal solutions obtained by our approach may be dominated by solutions outside the considered feasible subspace. Another consequence of using a feasible subspace is a (possibly) incomplete Pareto front. We addressed these limitations with a set of heuristics applied during the recombination, mutation and selection steps, next to a tailored termination condition. Therefore, we evaluate our genetic algorithm for Pareto set approximation with respect to both its optimality and its size by comparison to the corresponding real Pareto set.

Next, we evaluate the runtime performance of the genetic algorithm compared to the exhaustive search used to compute the real Pareto set offline. We analyze these aspects on several workloads that have been found representative for real-world bag-of-tasks applications [14].

4.1 Simulated mixes of cloud instances

We simulate two different types of instance mixes, inspired by behavior of Amazon EC2, which are relevant for real-world scenarios:

(a) An equal limit on all instance types, where the user has access to a pool of in total 100 cloud instances with an upper bound of 20 for each instance type, referred to as 20-100;

(b) Different limits for on-demand instance types versus spot-instances, where the user has access to a pool of maximum 100 cloud instances with an upper bound of 40 for each on-demand instance type and 60 for each spot instance type, referred to as 40-60-100.

Each on-demand instance type has an associated price and (simulated) execution speed. For each on-demand instance type we simulate a corresponding spot instance type, with the same characteristics, but a different (bidding) price. In total, we use six instance types:

- **t1.micro** - executes tasks according to their generated runtime and costs $0.020 per hour;
- **m1.small** - executes tasks twice as fast as "t1.micro" and costs $0.065 per hour;
- **m1.medium** - executes tasks three times as fast as "t1.small" and costs $0.130 per hour;
- **spot t1.micro** - same speed as "t1.micro" and costs $0.003 per hour;
- **spot m1.small** - same speed as "m1.small" and costs $0.007 per hour;
- **spot m1.medium** - same speed as "m1.medium" and costs $0.013 per hour;

4.2 Workloads

We evaluate our genetic algorithm on three different kinds of workloads, modeled after real bags of tasks, using a normal distribution, a Levy-truncated distribution, and a mixture of distributions. Each workload contains 1000 tasks, with runtimes generated according to the respective distribution type.

Normal distribution has been identified as relevant for bag-of-tasks workloads by research conducted in [9]. Accordingly, we have generated a workload following the normal distribution \(N(15, \sigma^2)\), \(\sigma = \sqrt{5}\) (in minutes, see Fig. 3), abbreviated as NDB (“normal distribution bag”).

Research based on large traces [12] shows that some bags of tasks have a skewed distribution, bounded by some maximum value. To model such bags, we generate workloads according to a truncated Levy distribution with a scaling factor \(\tau\) of 12 minutes and a maximum value \(b\) of 45 minutes, as shown in Fig. 3, abbreviated as LTB (“Levy-truncated distribution bag”).

Another real application was provided by The First International Data Analysis Challenge for Finding Supernovae (DACH) [3]. The task runtimes depicted in Fig. 3 were obtained by running the entire workload on a reference machine. We model this workload as a mixture of distributions generating workloads of which task runtimes exhibit a root-mean square deviation from the real workload of less than 5%. We refer to the corresponding workload as a multi-modal distribution bag, abbreviated as MDB (“multi-modal distribution bag”).
4.3 Generation of Real Pareto Front

To evaluate the estimated Pareto fronts resulted from our genetic algorithm, we have implemented an exhaustive-search algorithm to generate the real (precise) Pareto front. This algorithm explores the state (feasibility) space using an optimized backtracking approach.

We start building the Pareto front with the first two generated schedules and progressively extend and improve the set. We reduce the state space by pruning the tree which has as a root an invalid machine configuration. Newly generated machine configurations are added to the Pareto front if they are better than any of those already in the Pareto set. In this way, we avoid keeping in memory all the state space and build the Pareto front by iterating it.

4.4 Genetic Algorithm parameters

We use two different population sizes (POPULATION_SIZE): 1000 (1k) and 2000 (2k). The percentage of population selected by elitism (p_e) is set to 20%. When performing the crossover operation, we extract a number of pairs equal to a percentage, p_c, set to 40%, from the population. The percentages of the intermediate population selected by cost (p_c) or by makespan (p_m) are set to 20%. The percentage of the intermediate population selected by a function of cost and makespan (p_{mc}) is set to 50%. For each gene, the probability of mutation, p_f, is 1/15000.

4.5 Experimental Results

First, we evaluate the quality of the estimated Pareto set (PS) from an optimality perspective, that is how close are our Pareto optimal solutions to the real ones. We perform two sets of experiments, one for each mix of cloud resources. We estimate the Pareto set for an instance of each workload type and we also compute the respective real Pareto set. Moreover, we evaluate the impact of the workload type on the accuracy of the estimated Pareto front. To that end, we executed our genetic algorithm with two different population sizes for the same instance of each workload type: 1000 (1k) and 2000 (2k).

All the results are presented in a log-log scale in Figures 4 (NDB), 5 (MDB) and 6 (LTB). The figures show our algorithm follows very closely the real Pareto front in every scenario. The main advantage of using a larger population is that our Pareto optimal points become sufficiently scattered across the real Pareto front, providing a proper range of relevant choices for the user.

Figure 3: Distribution types used for workloads generation: normal distribution (NDB) with an expectation of 15 min., Levy-truncated (LTB) with an upper bound of 45 min. and a real-world multi-modal distribution (DACH).

Figure 4: NDB bag, real Pareto set (PS) versus estimated Pareto set for pool mixes of type 20-100 and 40-60-100, when using two different population sizes: 1000 (1k) and 2000 (2k).

Figure 5: MDB bag, real Pareto set (PS) versus estimated Pareto set for pool mixes of type 20-100 and 40-60-100, when using two different population sizes: 1000 (1k) and 2000 (2k).

Next, we evaluate the quality of the estimated PS with respect to the length of the real Pareto front, obtained via an exhaustive (offline) approach. In Table 2 we summarize the results obtained by running each algorithm on ten different bag instances of each workload type in scenario 20-100. The genetic algorithm used a population of 2000 (2k). We repeated the experiment for scenario 40-60-100 and summarized the results in Table 3. Though the real Pareto front
is richer in quantity, we have already shown in Figures 4, 5 and 6 that our estimated Pareto front is similar in quality, providing a sufficient number of Pareto optimal solutions.

Table 2: Size of real and estimated Pareto sets on a mix of type 20-100, population size 2k

<table>
<thead>
<tr>
<th>Bag Type</th>
<th>Exhaustive Search</th>
<th>Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB</td>
<td>124.6</td>
<td>28.7</td>
</tr>
<tr>
<td>MDB</td>
<td>157.7</td>
<td>35.5</td>
</tr>
<tr>
<td>LTB</td>
<td>121.8</td>
<td>26.3</td>
</tr>
</tbody>
</table>

Table 3: Size of real and estimated Pareto sets on a mix of type 40-60-100, population size 2k

<table>
<thead>
<tr>
<th>Bag Type</th>
<th>Exhaustive Search</th>
<th>Genetic Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NDB</td>
<td>188.0</td>
<td>42.7</td>
</tr>
<tr>
<td>MDB</td>
<td>247.9</td>
<td>31.5</td>
</tr>
<tr>
<td>LTB</td>
<td>193.3</td>
<td>39.5</td>
</tr>
</tbody>
</table>

We use the same set of experiments to evaluate the runtime performance of our algorithm against the exhaustive (offline) approach. All experiments were performed on DAS4 [4] standard compute nodes (dual-xeon 2.4 GHz CPU configuration and 24GB memory). The corresponding results are collected in Tables 4 and 5. As the problem size increases, our results show that the genetic algorithm categorically outperforms the exhaustive-search approach, reducing the time-to-solution from 40–60 minutes to about 30 seconds, which enables online reconfiguration of instance pools, for example in case of spot price changes.

5. CONCLUSIONS

In previous work, we have demonstrated the efficacy of our BaTS scheduler for large bags of tasks on multiple cloud environments [13, 14]. Without any a-priori knowledge of task runtimes, BaTS uses a tiny sample of tasks for estimating the price-performance ratios of the available types of cloud instances, for the given bag. Based on these ratios, BaTS computes a set of estimated makespan-cost alternatives for executing the bag, based on different instance pools that are composed of the available instance types. The user can then select one of these alternatives, expressing his or her preference for either cost efficiency or execution speed. During the bulk execution of the bag, BaTS then monitors the execution and adjusts, if necessary, the selected instance pool. This approach works pretty well, even though there are no hard guarantees (only stochastic properties) that the execution schedule will stick to the estimated limits [14].

In this work, we overcome one weakness of BaTS, that is the quality of the presented makespan-cost alternatives. We replace the original, static set of alternatives by an approximation to the set of Pareto-optimal solutions, yielding a (mostly) complete set of useful instance type combinations. As this computation is very demanding, both in terms of computation complexity and memory requirements, we have implemented a genetic algorithm that computes an approximation to the precise Pareto set.

Our experiments show that computing the precise Pareto set takes in the order of 40 to 60 minutes on a regular compute node, which is only useful for offline computations. Our GA, however, approximates the exact Pareto set in about 30 seconds, which allows for quick re-configuration of instance pools at runtime, for example when using spot market instances that face fluctuations of their hourly prices (and hence price-performance ratios).

We have evaluated the quality of our GA-based approach using the simulator introduced in [14]. Based on bags with three different task runtime distributions (normal, heavy tailed, and a multi-modal mixture of distributions), we have shown that our GA computes approximations that deviate only marginally from the precise Pareto sets, and does so within seconds, enabling its use for fast and efficient reconfigurations at runtime.

We are currently integrating our GA-based approach into the BaTS implementation that is part of the ConPaaS platform, enabling the use of spot market instances, next to providing a large choice of Pareto-optimal solutions. Nec-
ecessary for this integration is further research into bidding strategies for spot instances that provide a trade-off between cost-efficiency and availability probabilities of the instances. Our new and fast GA-based estimator will enable such computations at runtime.

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme under grant agreement FP7-ICT-257438 (Contrail).

6. REFERENCES

