
Communication Architectures for
Parallel-Programming Systems

Raoul A.F. Bhoedjang

Advanced School for Computing and Imaging

This work was carried out in graduate school ASCI.
ASCI dissertation series number 52.

Copyright c 2000 Raoul A.F. Bhoedjang.

VRIJE UNIVERSITEIT

Communication Architectures for

Parallel-Programming Systems

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der exacte wetenschappen/

wiskunde en informatica
op dinsdag 6 juni 2000 om 15.45 uur

in het hoofdgebouw van de universiteit,
De Boelelaan 1105

door

Raoul Angelo Félicien Bhoedjang

geboren te ’s-Gravenhage

Promotoren: prof.dr.ir. H.E. Bal
prof.dr. A.S. Tanenbaum

Preface

Personal Acknowledgements

First and foremost, I am grateful to my thesis supervisors, Henri Bal and Andy
Tanenbaum, for creating an outstanding research environment. I thank them both
for their confidence in me and my work.

I am very grateful to all members, past and present, of Henri’s Orca team:
Saniya Ben Hassen, Rutger Hofman, Ceriel Jacobs, Thilo Kielmann, Koen Langen-
doen, Jason Maassen, Rob van Nieuwpoort, Aske Plaat, John Romein, Tim Rühl,
Ronald Veldema, Kees Verstoep, and Greg Wilson.

Henri does a great job running this team and working with him has been a great
pleasure. His ability to get a job done, his punctuality, and his infinite reading
capacity are greatly appreciated — by me, but by many others as well. Above all,
Henri is a very nice person.

Tim Rühl has been a wonderful friend and colleague throughout my years at
the VU and I owe him greatly. We have spent countless hours hacking away at
various projects, meanwhile discussing research and personal matters. Only a few
of our pet projects made it into papers, but the papers that we worked on together
are the best that I have (co-)authored.

I would like to thank John Romein for his work on Multigame (see Chapter 8),
for teaching me about parallel game-tree searching, for his expert advice on com-
puter hardware, for keeping the DAS cluster in good shape, and for generously
donating peanuts when I needed them.

Koen Langendoen is the living proof of the rather disturbing observation that
there is no significant correlation between a programmer’s coding style and the
correctness of his code. Koen is a great hacker and taught me a thing or two about
persistence. I want to thank him for his work on Orca, Panda, a few other projects,
and for his work as a member of my thesis committee.

The Orca group is blessed with the support of three highly competent research
programmers: Rutger Hofman, Ceriel Jacobs, and Kees Verstoep. All three have
contributed directly to the work described in this thesis.

I wish to thank Rutger for his work on Panda 4.0, for reviewing papers, for

i

ii Preface

many useful discussions about communication protocols, and for lots of good
espresso. I also apologize for all the boring microbenchmarks he performed so
willingly.

There are computer programmers and there are artists. Ceriel, no doubt, be-
longs to the artists. I want to thank him for his fine work on Orca and Panda and
for reviewing several of my papers.

Kees’s work has been instrumental in completing the comparison of LFC im-
plementations described in Chapter 8. During my typing diet, he performed a
tremendous amount of work on these implementations. Not only did he write
three of the five LFC implementations described in this thesis, but he also put
many hours into measuring and analyzing the performance of various applica-
tions. Meanwhile, he debugged Myrinet hardware and kept the DAS cluster alive.
Finally, Kees reviewed some of my papers and provided many useful comments
on this thesis. It has been a great pleasure to work with him.

With a 128-node cluster of computers in your backyard, it is easy to forget
about your desktop machine : : : until you cannot reach your home directory. For-
tunately, such moments have been scarce. Many thanks to the department’s system
administrators for keeping everything up and running. I am especially grateful to
Ruud Wiggers, for quota of various kinds and great service.

I wish to thank Matty Huntjens for starting my graduate career by recommend-
ing me to Henri Bal. I greatly appreciate the way he works with the department’s
undergraduate students; the department is lucky to have such people.

I ate many dinners at the University’s ’restaurant.’ I will refrain from com-
menting on the food, but I did enjoy the company of Rutger Hofman, Philip Hom-
burg, Ceriel Jacobs, and others.

My thesis committee — prof. dr. Zwaenepoel, prof. dr. Kaashoek, dr.
Langendoen, dr. Epema, and dr. van Steen — went through some hard times;
my move to Cornell rather reduced my pages-per-day rate. I would like to thank
them all for reading my thesis and for their suggestions for improvement. I am
particularly grateful to Frans Kaashoek whose comments and suggestions consid-
erably improved the quality of this thesis.

I would also like to thank Frans for his hospitality during some of my visits
to the US. I especially enjoyed my two-month visit to his research group at MIT.
On that same occasion, Robbert van Renesse invited me to Cornell, my current
employer. He too, has been most hospitable on many occasions, and I would like
to thank him for it.

The Netherlands Organization for Scientific Research (N.W.O.) supported part
of my work financially through Henri Bal’s Pionier grant.

Many of the important things I know, my parents taught me. I am sure my
father would have loved to attend my thesis defense. My mother has been a great
example of strength in difficult times.

Preface iii

Finally, I wish to thank Daphne for sharing her life with me. Most statements
concerning two theses in one household are true. I am glad we survived.

Per-Chapter Contributions

The following paragraphs summarize the contributions made by others to the pa-
pers and software that each chapter of this thesis is based on. I would like to thank
all for the time and effort they have invested.

Chapter 2’s survey is based on an article co-authored by Tim Rühl and Henri
Bal [18].

Tim Rühl and I designed and implemented the LFC communication system
described in Chapters 3, 4, and 5. John Romein ported LFC to Linux. LFC is
described in two papers co-authored by Tim Rühl and Henri Bal; it is also one of
the systems classified in the survey mentioned above.

Panda 4.0, described in Chapter 6, was designed by Rutger Hofman, Tim Rühl,
and me. Rutger Hofman implemented Panda 4.0 on LFC from scratch, except for
the threads package, OpenThreads, which was developed by Koen Langendoen.
Earlier versions of Panda are described in two conference publications [19, 124].
The comparison of upcall models is based on an article by Koen Langendoen, me,
and Henri Bal [88]. Panda’s dynamic switching between polling and interrupts
is described in a conference paper by Koen Langendoen, John Romein, me, and
Henri Bal [89].

Chapter 7 discusses the implementation of four parallel-programming sys-
tems: Orca, Manta, CRL, and MPICH. Orca and Manta were both developed
in the computer systems group at the Vrije Universiteit; CRL and MPICH were
developed elsewhere.

Koen Langendoen and I implemented the continuation-based version of the
Orca runtime system on top of Panda 2.0. The use of continuations in the runtime
system is described in a paper co-authored by Koen Langendoen [14]. Ceriel Ja-
cobs wrote the Orca compiler and ported the runtime system to Panda 3.0. Rutger
Hofman ported the continuation-based runtime system to Panda 4.0. An exten-
sive description and performance evaluation of the Orca system on Panda 3.0 are
given in a journal paper by Henri Bal, me, Rutger Hofman, Ceriel Jacobs, Koen
Langendoen, Tim Rühl, and Frans Kaashoek [9].

Manta was developed by Jason Maassen, Rob van Nieuwpoort, and Ronald
Veldema. Their work is described in a conference paper [99]. Rob helped me
with the Manta performance measurements presented in Section 7.2.

CRL was developed at MIT by Kirk Johnson [73, 74]; I ported CRL to LFC. It
could not have been much easier, because CRL is a really nice piece of software.

MPICH [61] is being developed jointly by Argonne National Laboratories and

iv Preface

Mississippi State University. Rutger Hofman ported MPICH to Panda 4.0.
The comparison of different LFC implementations described in Chapter 8 was

done in cooperation with Kees Verstoep, Tim Rühl, and Rutger Hofman. Tim
and I implemented the NrxImc and HrxHmc versions of LFC. Kees implemented
IrxImc, IrxHmc, and NrxHmc and performed many of the measurements presented in
Chapter 8. Rutger helped out with various Panda-related issues.

The parallel applications analyzed in Chapter 8 were developed by many per-
sons. The Puzzle application and the parallel-programming system that it runs
on, Multigame [122], were written by John Romein. Awari was developed by
Victor Allis, Henri Bal, Hans Staalman, and Elwin de Waal. The linear equation
solver (LEQ) was developed by Koen Langendoen. The MPI applications were
written by Rutger Hofman (QR and ASP) and Thilo Kielmann (SOR). The CRL
applications Barnes-Hut (Barnes), Fast Fourier Transform (FFT), and radix sort
(radix) are all based on shared-memory programs from the SPLASH-2 suite [153].
Barnes-Hut was adapted for CRL by Kirk Johnson, FFT by Aske Plaat, and radix
by me.

Contents

1 Introduction 1
1.1 Parallel-Programming Systems 2
1.2 Communication architectures for parallel-programming systems 5
1.3 Problems 6

1.3.1 Data-Transfer Mismatches 7
1.3.2 Control-Transfer Mismatches 8
1.3.3 Design Alternatives for User-Level Communication

Architectures 9
1.4 Contributions 9
1.5 Implementation 10

1.5.1 LFC Implementations 10
1.5.2 Panda 12
1.5.3 Parallel-Programming Systems 12

1.6 Experimental Environment 14
1.6.1 Cluster Position 14
1.6.2 Hardware Details 14

1.7 Thesis Outline 17

2 Network Interface Protocols 19
2.1 A Basic Network Interface Protocol 20
2.2 Data Transfers 23

2.2.1 From Host to Network Interface 23
2.2.2 From Network Interface to Network Interface 25
2.2.3 From Network Interface to Host 26

2.3 Address Translation 26
2.4 Protection 29
2.5 Control Transfers 30
2.6 Reliability 31
2.7 Multicast 33
2.8 Classification of User-Level Communication Systems 34
2.9 Summary 36

v

vi Contents

3 The LFC User-Level Communication System 37
3.1 Programming Interface 37

3.1.1 Addressing 38
3.1.2 Packets 38
3.1.3 Sending Packets 40
3.1.4 Receiving Packets 41
3.1.5 Synchronization 42
3.1.6 Statistics 43

3.2 Key Implementation Assumptions 43
3.3 Implementation Overview 44

3.3.1 Myrinet 44
3.3.2 Operating System Extensions 44
3.3.3 Library 46
3.3.4 NI Control Program 46

3.4 Packet Anatomy 48
3.5 Data Transfer 50
3.6 Host Receive Buffer Management 53
3.7 Message Detection and Handler Invocation 54
3.8 Fetch-and-Add 56
3.9 Limitations 56

3.9.1 Functional Limitations 56
3.9.2 Security Violations 58

3.10 Related Work 59
3.11 Summary 60

4 Core Protocols for Intelligent Network Interfaces 61
4.1 UCAST: Reliable Point-to-Point Communication 62

4.1.1 Protocol Data Structures 62
4.1.2 Sender-Side Protocol 64
4.1.3 Receiver-Side Protocol 65

4.2 MCAST: Reliable Multicast Communication 67
4.2.1 Multicast Forwarding 67
4.2.2 Multicast Tree Topology 68
4.2.3 Protocol Data Structures 68
4.2.4 Sender-Side Protocol 69
4.2.5 Receiver-Side Protocol 70
4.2.6 Deadlock 71

4.3 RECOV: Deadlock Detection and Recovery 73
4.3.1 Deadlock Detection 73
4.3.2 Deadlock Recovery 74
4.3.3 Protocol Data Structures 75

Contents vii

4.3.4 Sender-Side Protocol 77
4.3.5 Receiver-Side Protocol 78

4.4 INTR: Control Transfer 82
4.5 Related Work 83

4.5.1 Reliability 83
4.5.2 Interrupt Management 84
4.5.3 Multicast 85
4.5.4 FM/MC 86

4.6 Summary 88

5 The Performance of LFC 89
5.1 Unicast Performance 89

5.1.1 Latency and Throughput 89
5.1.2 LogGP Parameters 91
5.1.3 Interrupt Overhead 92

5.2 Fetch-and-Add Performance 93
5.3 Multicast Performance 94

5.3.1 Performance of the Basic Multicast Protocol 94
5.3.2 Impact of Deadlock Recovery and Multicast Tree Shape 98

5.4 Summary 101

6 Panda 103
6.1 Overview 104

6.1.1 Functionality 104
6.1.2 Structure 106
6.1.3 Panda’s Main Abstractions 109

6.2 Integrating Multithreading and Communication 113
6.2.1 Multithread-Safe Access to LFC 113
6.2.2 Transparently Switching between Interrupts and Polling 115
6.2.3 An Efficient Upcall Implementation 120

6.3 Stream Messages 130
6.4 Totally-Ordered Broadcasting 133
6.5 Performance 133

6.5.1 Performance of the Message-Passing Module 134
6.5.2 Performance of the Broadcast Module 136
6.5.3 Other Performance Issues 137

6.6 Related Work 138
6.6.1 Portable Message-Passing Libraries 138
6.6.2 Polling and Interrupts 139
6.6.3 Upcall Models 140
6.6.4 Stream Messages 141

viii Contents

6.6.5 Totally-Ordered Broadcast 141
6.7 Summary 142

7 Parallel-Programming Systems 145
7.1 Orca 145

7.1.1 Programming Model 146
7.1.2 Implementation Overview 148
7.1.3 Efficient Operation Transfer 151
7.1.4 Efficient Implementation of Guarded Operations 155
7.1.5 Performance 158

7.2 Manta 162
7.2.1 Programming Model 163
7.2.2 Implementation 163
7.2.3 Performance 165

7.3 The C Region Library 166
7.3.1 Programming Model 166
7.3.2 Implementation 167
7.3.3 Performance 170

7.4 MPI — The Message Passing Interface 171
7.4.1 Implementation 171
7.4.2 Performance 172

7.5 Related Work 175
7.5.1 Operation Transfer 175
7.5.2 Operation Execution 176

7.6 Summary 177

8 Multilevel Performance Evaluation 181
8.1 Implementation Overview 182

8.1.1 The Implementations 182
8.1.2 Commonalities 183

8.2 Reliable Point-to-Point Communication 186
8.2.1 The No-Retransmission Protocol (Nrx) 186
8.2.2 The Retransmitting Protocols (Hrx and Irx) 186
8.2.3 Latency Measurements 187
8.2.4 Window Size and Receive Buffer Space 188
8.2.5 Send Buffer Space 190
8.2.6 Protocol Comparison 193

8.3 Reliable Multicast 193
8.3.1 Host-Level versus Interface-Level Packet Forwarding 194
8.3.2 Acknowledgement Schemes 195
8.3.3 Deadlock Issues 195

Contents ix

8.3.4 Latency and Throughput Measurements 196
8.4 Parallel-Programming Systems 197

8.4.1 Communication Style 198
8.4.2 Performance Issues 200

8.5 Application Performance 201
8.5.1 Performance Results 201
8.5.2 All-pairs Shortest Paths (ASP) 204
8.5.3 Awari 204
8.5.4 Barnes-Hut 206
8.5.5 Fast Fourier Transform (FFT) 207
8.5.6 The Linear Equation Solver (LEQ) 207
8.5.7 Puzzle 208
8.5.8 QR Factorization 208
8.5.9 Radix Sort 209
8.5.10 Successive Overrelaxation (SOR) 209

8.6 Classification 210
8.7 Related Work 211

8.7.1 Reliability 211
8.7.2 Multicast 213
8.7.3 NI Protocol Studies 213

8.8 Summary 214

9 Summary and Conclusions 217
9.1 LFC and NI Protocols 217
9.2 Panda 219
9.3 Parallel-Programming Systems 220
9.4 Performance Impact of Design Decisions 221
9.5 Conclusions 222
9.6 Limitations and Open Issues 223

A Deadlock issues 241
A.1 Deadlock-Free Multicasting in LFC 241
A.2 Overlapping Multicast Groups 243

B Abbreviations 245

Samenvatting 247

Curriculum Vitae 253

List of Figures

1.1 Communication layers studied in this thesis. 6
1.2 Structure of this thesis. 11
1.3 Myrinet switch topology. 15
1.4 Switches and cluster nodes. 15
1.5 Cluster node architecture. 16

2.1 Operation of the basic protocol. 20
2.2 Host-to-NI throughput using different data transfer mechanisms. 24
2.3 Design decisions for reliability. 31
2.4 Repeated send versus a tree-based multicast. 33

3.1 LFC’s packet format. 48
3.2 LFC’s data transfer path. 50
3.3 LFC’s send path and data structures. 51
3.4 Two ways to transfer the payload and status flag of a network packet. 52
3.5 LFC’s receive data structures. 53

4.1 Protocol data structures for UCAST. 63
4.2 Sender side of the UCAST protocol. 64
4.3 Receiver side of the UCAST protocol. 66
4.4 Host-level and interface-level multicast forwarding. 67
4.5 Protocol data structures for MCAST. 69
4.6 Sender-side protocol for MCAST. 70
4.7 Receive procedure for the multicast protocol. 71
4.8 MCAST deadlock scenario. 72
4.9 A binary tree. 72
4.10 Subtree covered by the deadlock recovery algorithm. 75
4.11 Deadlock recovery data structures. 76
4.12 Multicast forwarding in the deadlock recovery protocol. 77
4.13 Packet transmission in the deadlock recovery protocol. 79
4.14 Receive procedure for the deadlock recovery protocol. 80
4.15 Packet release procedure for the deadlock recovery protocol. 81

xi

xii List of Figures

4.16 Timeout handling in INTR. 84
4.17 LFC’s and FM/MC’s buffering strategies. 86

5.1 LFC’s unicast latency. 90
5.2 LFC’s unicast throughput. 91
5.3 Fetch-and-add latencies under contention. 94
5.4 LFC’s broadcast latency. 95
5.5 LFC’s broadcast throughput. 96
5.6 Tree used to determine multicast gap. 97
5.7 LFC’s broadcast gap. 97
5.8 Impact of deadlock recovery on broadcast throughput. 98
5.9 Impact of tree topology on broadcast throughput. 100
5.10 Impact of deadlock recovery on all-to-all throughput. 100

6.1 Different broadcast delivery orders. 105
6.2 Panda modules: functionality and dependencies. 107
6.3 Two Panda header stacks. 111
6.4 Recursive invocation of an LFC routine. 114
6.5 RPC example. 118
6.6 Simple remote read with active messages. 121
6.7 Message handler with locking. 124
6.8 Three different upcall models. 125
6.9 Message handler with blocking. 126
6.10 Fast thread switch to an upcall thread. 130
6.11 Application-to-application streaming with Panda’s stream messages.131
6.12 Panda’s message-header formats. 131
6.13 Receiver-side organization of Panda’s stream messages. 132
6.14 Panda’s message-passing latency. 134
6.15 Panda’s message-passing throughput. 135
6.16 Panda’s broadcast latency. 136
6.17 Panda’s broadcast throughput. 137

7.1 Definition of an Orca object type. 147
7.2 Orca process creation. 147
7.3 The structure of the Orca shared object system. 148
7.4 Decision process for executing an Orca operation. 150
7.5 Orca definition of an array of records. 151
7.6 Specialized marshaling code generated by the Orca compiler. 153
7.7 Data transfer paths in Orca. 154
7.8 Orca with popup threads. 155
7.9 Orca with single-threaded upcalls. 157

List of Figures xiii

7.10 The continuations interface. 157
7.11 Roundtrip latencies for Orca, Panda, and LFC. 159
7.12 Roundtrip throughput for Orca, Panda, and LFC. 160
7.13 Broadcast latency for Orca, Panda, and LFC. 161
7.14 Broadcast throughput for Orca, Panda, and LFC. 161
7.15 Roundtrip latencies for Manta, Orca, Panda, and LFC. 165
7.16 Roundtrip throughput for Manta, Orca, Panda, and LFC. 166
7.17 CRL read and write miss transactions. 168
7.18 Write miss latency. 170
7.19 Write miss throughput. 171
7.20 MPI unicast latency. 173
7.21 MPI unicast throughput. 174
7.22 MPI broadcast latency. 174
7.23 MPI broadcast throughput. 175

8.1 LFC unicast latency. 188
8.2 Peak throughput for different window sizes. 189
8.3 LFC unicast throughput. 191
8.4 Host-level and interface-level multicast forwarding. 194
8.5 LFC multicast latency. 196
8.6 LFC multicast throughput. 197
8.7 Application-level impact of efficient broadcast support. 199
8.8 Data and packet rates of NrxImc on 64 nodes. 203
8.9 Normalized application execution times. 205
8.10 Classification of communication systems for Myrinet. 212

A.1 A biomial spanning tree. 243
A.2 Multicast trees for overlapping multicast groups. 244

List of Tables

1.1 Classification of parallel-programming systems. 4
1.2 Communication characteristics of parallel-programming systems. 13

2.1 Throughputs on a Pentium Pro/Myrinet cluster. 27
2.2 Summary of design choices in existing communication systems. 35

3.1 LFC’s user interfac. 39
3.2 Resources used by the NI control program. 46
3.3 LFC’s packet tags. 49

5.1 Values of the LogGP parameters for LFC. 93
5.2 Deadlock recovery statistics. 101

6.1 Send and receive interfaces of Panda’s system module. 112
6.2 Classification of upcall models. 121

7.1 A comparison of Orca and Manta. 162
7.2 PPS performance summary 179

8.1 Five versions of LFC’s reliability and multicast protocols. 183
8.2 Division of work in the LFC implementations. 184
8.3 Parameters used by the protocols. 185
8.4 LogP parameter values (in microseconds) for a 16-byte message. 188
8.5 Fetch-and-add latencies. 189
8.6 Application characteristics and timings. 202
8.7 Classification of applications. 210

xv

Chapter 1

Introduction

This thesis is about communication support for parallel-programming systems.
A parallel-programming system (PPS) is a system that aids programmers who
wish to exploit multiple processors to solve a single, computationally intensive
problem. PPSs come in many flavors, depending on the programming paradigm
they provide and the type of hardware they run on. This thesis concentrates on
PPSs for clusters of computers. By a cluster we mean a collection of off-the-
shelf computers interconnected by an off-the-shelf network. Clusters are easy
to build, easy to extend, scale to large numbers of processors, and are relatively
inexpensive.

The performance of a PPS depends critically on efficient communication mech-
anisms. At present, user-level communication systems offer the best communica-
tion performance. Such systems bypass the operating system on all critical com-
munication paths so that user programs can benefit from the high performance of
modern network technology. This thesis concentrates on the interactions between
PPSs and user-level communication systems. We focus on three questions:

1. Which mechanisms should a user-level communication system provide?

2. How should parallel-programming systems use the mechanisms provided?

3. How should these mechanisms be implemented?

The relevance of these questions follows from the following observations.
First, the functionality provided by user-level communication systems varies con-
siderably (see Chapter 2). Systems differ in the types of data transfer primitives
they offer (point-to-point message, multicast message, or remote-memory access),
the way incoming data is detected (polling or interrupts), and the way incoming
data is handled (explicit receive, upcall, or popup thread).

1

2 Introduction

Second, most user-level communication systems provide low-level interfaces
that often do not match the needs of the developers of a PPS. This is not a prob-
lem as long as higher-level abstractions can be layered efficiently on top of those
interfaces. Unfortunately, many systems ignore this issue (see Section 1.3).

Third, where systems do provide similar functionality, they implement it in
different ways (see Chapter 2). Many systems, for example, use a programmable
network interface (NI) to execute part of the communication protocol. However,
systems differ greatly in the type and amount of work that they off-load to the
NI. Some systems minimize the amount of work performed on the NI —on the
account that the NI processor is much slower than the host processor— while
others run a complete reliability protocol on the NI.

This chapter proceeds as follows. Section 1.1 discusses PPSs in more detail
and explains which types of PPSs we address exactly. Section 1.2 discusses user-
level architectures and introduces the different layers of communication software
we study. Section 1.3 introduces the specific problems that this thesis addresses.
Section 1.4 states our contributions towards solving these problems. Section 1.5
discusses the software components in which we have implemented our ideas. Sec-
tion 1.6 describes the environment in which we developed and evaluated our so-
lutions. Finally, Section 1.7 describes the structure of the thesis.

1.1 Parallel-Programming Systems

The use of parallelism in and between computers is by now the rule rather than
the exception. Within a modern processor, we find a pipelined CPU with multi-
ple functional units, nonblocking caches, and write buffers. Surprisingly, this in-
traprocessor parallelism is largely hidden from the programmer by instruction set
architectures that provide a more or less sequential programming model. Where
parallelism does become visible (e.g., in VLIW architectures), compilers hide it
once more from most application programmers. This way, application program-
mers have enjoyed advances in computer architecture without having to change
the way they write their programs.

Programmers who want to exploit parallelism between processors have not
been so fortunate. In specific application domains, or for specific types of pro-
grams, compilers can automatically detect and exploit parallelism of a sufficiently
large grain to employ multiple computers efficiently. In most cases, however, pro-
grammers must guide compilers by means of annotations or write an explicitly
parallel program. Unfortunately, writing efficient parallel programs is notoriously
difficult. At the algorithmic level, programmers must find a compromise between
locality and load balance. To achieve both, nontrivial techniques such as data
replication, data migration, work stealing, load balancing, etc., may have to be

1.1 Parallel-Programming Systems 3

employed. At a lower level, programmers must deal with race conditions, mes-
sage interrupts, message ordering, and memory consistency.

To simplify the programmer’s task, many parallel-programming systems have
been developed, each of which implements its own programming model. The
most important programming models are:

� Shared memory

� Message passing

� Data-parallel programming

� Shared objects

In the shared-memory model, multiple threads share an address space and
communicate by writing and reading shared-memory locations. Threads synchro-
nize by means of atomic memory operations and higher-level primitives built upon
these atomic operations (e.g., locks and condition variables). Multiprocessors di-
rectly support this programming model in hardware.

In the message-passing model, processes communicate by exchanging mes-
sages. Implementations of this model (e.g., PVM [137] and MPI [53]) usually
provide several flavors of send and receive methods which differ, for example, in
when the sender may continue and how the receiver selects the next message to
receive.

In the shared-memory and message-passing models, the programmer has to
deal with multiple threads or processes. A data-parallel program has only one
thread of control and in many ways resembles a sequential program. For effi-
ciency, however, the programmer provides annotations that indicate which loops
can be executed in parallel and how data must be distributed.

In the shared-object model [7], processes can share data, provided that this
data is encapsulated in an object. The data is accessed by invoking methods of the
object’s class. While this model is not as widely used in practice as the previous
models, it has received a fair amount of attention in the parallel-programming
research community.

Parallel-programming models used to be identified with a specific type of par-
allel hardware. Today, most vendors of parallel hardware support multiple pro-
gramming models. The shared-memory model, for example, is a more natural
match to a multiprocessor than the message-passing model, yet multiprocessor
vendors also provide implementations of message-passing standards such as MPI.

At present, two types of hardware dominate both the commercial market place
and parallel-programming research in academia: multiprocessors and workstation
clusters. In a multiprocessor, the hardware implements a single, shared memory

4 Introduction

Programming model Multiprocessor Cluster implementations
implementations

Shared memory Pthreads [110] Shasta [125], Tempest [119],
TreadMarks [78]

Message passing MPI [53, 140] MPI [53, 61], PVM [137]
Data-parallel OpenMP [42] HPF [81]
Shared objects Java [60] Orca [7, 9], CRL [74],

Java/RMI [99]

Table 1.1. Classification of parallel-programming systems.

that can be accessed by all processors through memory access instructions. In
a workstation cluster, each processor has its own memory. Access to another
processor’s memory is not transparent and can only be achieved by some form of
explicit message passing.

All four programming models mentioned above have been implemented on
both types of hardware (see Table 1.1). Implementations on cluster hardware
tend to be more complex than multiprocessor implementations because efficient
state sharing is more difficult on a cluster than on a multiprocessor. This thesis
addresses only communication support for clusters. On clusters, models such
as the shared-object model can be implemented only by software that hides the
hardware’s distributed nature.

All PPSs discussed in this thesis (except Multigame [122], which we discuss
only briefly) require the programmer to write a parallel program. With some
systems, however, this is easier than with others. The Orca shared-object sys-
tem [7, 9], for example, is language-based. Programmers therefore need not write
any code to marshal objects or parameters of operations because this code is either
generated by the compiler or hidden in the language runtime system. In a library-
based system such as MPI, in contrast, programmers must either write their own
marshaling code or create type descriptors.

At a higher level, consider locality and load balancing. Distributed shared
memory systems like CRL [74] and Orca replicate data transparently to optimize
read accesses, thus improving locality. Systems such as Cilk [55] and Multigame
use a work-stealing runtime system that automatically balances the load among
all processors. An MPI programmer who wishes to replicate a data item must
do so explicitly, without any help from the system to keep the replicas consis-
tent. Similarly, MPI programmers have to implement their own load balancing
schemes.

The conveniences of high-level programming systems do not come for free. In
a recent study [97], for example, Lu et al. show that parallel applications written

1.2 Communication architectures for parallel-programming systems 5

for the TreadMarks [78] distributed shared-memory system (DSM) send more
data and more messages than equivalent message-passing programs. The reasons
are that TreadMarks cannot combine data transfer and synchronization in a single
message transfer, cannot transfer data from multiple memory pages in a single
message, and suffers from false sharing and diff accumulation. (Diff accumulation
is specific to the consistency protocol used by TreadMarks. The result of diff
accumulation is that processors communicate to obtain old versions of shared data
that have already been overwritten by newer versions.)

Orca provides a second example. Although Orca’s shared-object program-
ming model is closer to message passing than TreadMarks’s shared-memory model,
Orca programs also send more messages than is strictly needed. The current im-
plementation of Orca [9], for example, broadcasts operations on a replicated ob-
ject to all processors, even if the object is replicated on only a few processors.
Also, operations on nonreplicated objects are always executed by means of remote
procedure calls. Each such operation results in a request and a reply message, even
if no reply is needed.

These examples illustrate that, with high-level PPSs, application programmers
no longer control the implementation of high-level functions and must rely on
generic implementations. This results in increased message rates and increased
message sizes. In addition, high-level PPSs add message-processing overheads
in the form of marshaling and message-handler dispatch. Consequently, efficient
communication support is of prime importance to these systems.

1.2 Communication architectures for
parallel-programming systems

To achieve efficient communication, we need both efficient hardware and efficient
software. While high-bandwidth, low-latency, and scalable network hardware is
still expensive, such hardware is available and can be used readily outside super-
computer cabinets. Examples of such hardware include GigaNet [130], Memory
Channel [57], and Myrinet [27]. On these systems, network bandwidth is mea-
sured in Gigabits per second and network latency in microseconds. Most of these
networks have low bit-error rates. Finally, network interfaces have become more
flexible and are sometimes programmable.

In many ways, software is the main obstacle on the road to efficient commu-
nication. Software overhead comes in many forms: system calls, copying, inter-
rupts, thread switches, etc. Part of the software problem has been solved by the
introduction of user-level communication architectures which give user processes
direct access to the network. In most user-level communication systems, users

6 Introduction

Communication libraries

Network interface protocols

PPS-specific
(compiler and/or runtime system)Parallel applications

Communication software

Network hardware

Fig. 1.1. Communication layers studied in this thesis.

must initialize communication segments and channels by means of system calls.
After this initialization phase, however, kernel mediation is no longer needed, or
needed only in exceptional cases.

Communication support for a PPS can be divided into three layers of software
(see Figure 1.1). At the bottom, above the network hardware, we find network
interface protocols. These protocols perform two functions: they control the net-
work device and implement a low-level communication abstraction that is used by
all higher layers.

Since NI protocols are often low-level, most (but not all) PPSs use a commu-
nication library that implements message abstractions and higher-level communi-
cation primitives (e.g., remote procedure call).

The top layer implements a PPS’s programming model. In general, this layer
consists of a compiler and a runtime system. Not all PPSs are based on a pro-
gramming language, however, so not all PPSs use a compiler. In principle, PPSs
based on a programming language do not need a runtime system: a compiler can
generate all code that needs to be executed. In practice, though, PPSs always use
some runtime support.

Since communication events frequently cut through all these layers, applica-
tion-level performance is determined by the way these layers cooperate. In partic-
ular, high performance at one layer is of no use if this layer offers an inconvenient
interface to higher layers. Our goal in this thesis is to find mechanisms and inter-
faces that work well at all layers.

1.3 Problems

This thesis addresses three problems:

1. The data transfer methods provided by user-level communication systems
often do not match the needs of PPSs.

2. The control transfer methods provided by user-level communication sys-
tems do not match the needs of PPSs.

1.3 Problems 7

3. Design alternatives for reliable point-to-point and multicast implementa-
tions for modern networks are poorly understood.

1.3.1 Data-Transfer Mismatches

Achieving efficient data transfer at all layers in a PPS is hard. A data transfer
problem that has received much attention is the high cost of memory copies that
take place as data travels from one layer to another. Since redundant memory
copies decrease application-to-application throughput (see Chapter 2), much user-
level communication work has focused on avoiding unnecessary copies [13, 24,
32, 49]. Most solutions involve the use of DMA transfers between the user’s
address space and the NI. Unfortunately, these solutions cannot always be used
effectively by PPSs.

At the sending side, some systems (e.g., U-Net [147] and Hamlyn [32]) can
transfer data efficiently (using DMA) when it is stored in a special send segment
in the sender’s host memory. For a specific application it may be feasible to store
the data that needs to be communicated (in a certain period of time) in a send
segment. A PPS, however, would have to do this for all applications. If this is not
possible, senders must first copy their data into the send segment. With this extra
copy, the advantage of a low-level high-speed data transfer mechanism is lost.

To improve performance at the receiving side, several systems (e.g., Hamlyn
and SHRIMP [24]) offer an interface that allows a sender to specify a destination
address in a receiver’s address space. This allows the communication system to
move incoming data directly from the NI to its destination address. A message-
passing system, on the other hand, would first copy the data to some network
buffer and would later, when the receiver specifies a destination address, copy the
data to its final destination. This may appear inefficient, but in many cases the
sender simply does not know the destination address of the data that needs to be
sent. In such cases, higher layers (e.g., PPSs) are forced to negotiate a destina-
tion address before the actual data transfer takes place. Such a negotiation may
introduce up to two extra messages per data transfer and is therefore expensive for
small data transfers. (Alternatively, the sender can transfer the data to a default
buffer with a known address and have the receiver copy the data from that buffer.
Such a scheme can be extended so that the receiver can post a destination buffer
that replaces the default buffer [49]. If the destination buffer is posted in time, no
extra copy is needed.)

The need to avoid copying should be balanced against the cost of manag-
ing asynchronous data transfer mechanisms and negotiating destination addresses.
Also, not all communication overhead results from a lack of bandwidth. In their
study of split-C applications [102], Martin et al. found that applications are sensi-
tive to send and receive overhead, but tolerate lower bandwidths fairly well.

8 Introduction

A data transfer problem that has received less attention, but that is important
in many PPSs, is the efficient transfer of data from a single sender to multiple
receivers. Most existing user-level communication systems focus on high-speed
data transfers from a single sender to a single receiver and do not support multicast
or support it poorly. This is unfortunate, because multicast plays an important role
in many PPSs.

MPICH [61], a widely used implementation MPI, for example, uses multi-
cast in its implementation of collective communication operations (e.g., reduce,
gather, scatter). Collective communication operations are used in many parallel
algorithms. Efficient multicast primitives have also proved their value in the im-
plementation of DSMs such as Orca [9, 75] and Brazos [131], which use multicast
to update replicated data.

The lack of efficient multicast primitives in user-level communication systems
forces PPSs (or underlying communication libraries) to implement their own mul-
ticast on top of point-to-point primitives. This is frequently inefficient. Naive im-
plementations let the sender send a single message to each receiver, which turns
the sender into a serial bottleneck. Smarter implementations are based on span-
ning trees. In these implementations, the sender transmits a message to a few
nodes (its children) which then forward the message to their children, and so on
until all nodes have been reached. This strategy allows the message to travel be-
tween different sender-receiver pairs in parallel.

Even a tree-based multicast can be inefficient if it is layered on point-to-point
primitives. At the forwarding nodes, data travels up from the NI to the host. If the
host does not poll, forwarding will either be delayed or the data will be delivered
by means of an expensive interrupt. To forward the data, the host has to reinject
the data into the network. This data transfer is unnecessary, because the data was
already present on the NI.

1.3.2 Control-Transfer Mismatches

Control transfer has two components: detecting incoming messages and executing
handlers for incoming messages. Most user-level communication systems allow
their clients to poll for incoming messages, because receiving a message through
polling is much more efficient than receiving it through an interrupt. The problem
for a PPS is to decide when to poll, especially if the processing of incoming mes-
sages is not always tied to an explicit receive call by the application. Again, for
a specific application this need not be a hard problem, but getting it right for all
applications is difficult.

In DSMs, for example, processes do not interact with each other directly, but
only through shared data items. When a process accesses a shared data item that
is stored remotely, it typically sends an access request to the remote processor.

1.4 Contributions 9

The remote processor must respond to the request, even if none of its processes
are accessing the data item. If the remote processor is not polling the network
when the request arrives, the reply will be delayed. This can be solved by using
interrupts, but these are expensive.

Once a message has been detected, it needs to be handled. An interesting
problem is in which execution context messages should be handled. Allocating a
thread to each message is conceptually clean, but potentially expensive, both in
time and space. Moreover, dispatching messages to multiple threads can cause
messages to be processed in a different order than they were received. Sometimes
this is necessary; at other times, it should be avoided. Executing application code
and message handlers in the same thread gives good performance, but can lead to
deadlock when message handlers block.

1.3.3 Design Alternatives for User-Level Communication
Architectures

The low-level communication protocols of user-level architectures differ substan-
tially from traditional protocols such as TCP/IP. For example, many protocols
now use the NI to implement reliability [37, 49], multicast [16, 56, 146], network
mapping [100], performance monitoring [93, 103], and address translations and
(remote) memory access [13, 24, 32, 51, 83, 126]. Current user-level communica-
tion systems make different design decisions in these areas. Specifically, different
systems divide similar protocol tasks between the host and the NI in different
ways. In some systems, for example, the NI is responsible for implementing reli-
able communication. In other systems, this task is left to the host processor.

The impact of different design choices on the performance of PPSs and ap-
plications has hardly been investigated. Such an investigation is difficult, because
existing architectures implement different functionality and provide different pro-
gramming interfaces. Moreover, many studies use only low-level microbench-
marks that ignore performance at higher layers [5].

1.4 Contributions

The main contributions of this thesis towards solving the problems presented in
the previous section are as follows:

1. We show that a small set of simple, low-level communication mechanisms
can be employed effectively to obtain efficient PPS implementations that do
not suffer from the data and control-transfer mismatches described in the

10 Introduction

previous section. Some of these communication mechanisms rely on NI
support (see below).

2. We have designed and implemented a new, efficient, and reliable multicast
algorithm that uses the NI instead of the host to forward multicast traffic.

3. To gain insight in the tradeoffs involved in choosing between different NI
protocol implementations, we have implemented a single user-level com-
munication interface in multiple ways. These implementations differ in
whether the host or the NI is responsible for reliability and multicast for-
warding. Using these implementations, we have systematically investigated
the impact of different design choices on the performance of higher level
systems (one communication library and multiple PPSs) and applications.

The communication mechanisms mentioned have been implemented in a new,
user-level communication system called LFC. LFC and its mechanisms are sum-
marized in Section 1.5 and described in detail in Chapters 3 to 5. On top of LFC
we have implemented a communication library, Panda, that

� provides an efficient (stream) message abstraction

� transparently switches between using polling and interrupts to detect incom-
ing messages

� implements an efficient totally-ordered broadcast primitive

Using LFC and Panda we have implemented and ported various PPSs (see Sec-
tion 1.5). We describe how we modified some of these PPSs to benefit from LFC’s
and Panda’s communication support.

1.5 Implementation

We have implemented our solutions in various communication systems (see Fig-
ure 1.2). These systems cover all communication layers shown in Figure 1.1: NI
protocol, communication library, and PPS. The following section introduces the
individual systems, layer by layer, bottom-up.

1.5.1 LFC Implementations

We have developed a new NI protocol called LFC [17, 18]. LFC provides reliable
point-to-point and multicast communication and runs on Myrinet [27], a modern,
switched, high-speed network.

1.5 Implementation 11

Orca
(Ch. 7)

MPI
(Ch. 7)

Multigame
(Ch. 8)

CRL
(Ch. 7)

Parallel applications (Ch. 8)

Panda (Ch. 6)

LFC (Chs. 3-5)

Myrinet (Ch. 1)

Parallel Java
(Ch. 7)

Fig. 1.2. Structure of this thesis.

LFC has a low-level, packet-based interface. By exposing network packets,
LFC allows its clients to avoid most redundant memory copies. Packets can be
received through polling or interrupts and clients can dynamically switch between
the two. LFC delivers incoming packets by means of upcalls, as in Active Mes-
sages [148].

We have implemented LFC’s point-to-point and multicast primitives in five
different ways. The implementations differ in their reliability assumptions and
in how they divide protocol work between the NI and the host. Chapters 3 to 5
describe the most aggressive of these implementations in detail. This implemen-
tation exploits Myrinet’s programmable NI to implement the following:

1. Reliable point-to-point communication.

2. An efficient, reliable multicast primitive.

3. A mechanism to reduce interrupt overhead (a polling watchdog).

4. A fetch-and-add primitive for global synchronization.

This implementation achieves reliable point-to-point communication by means
of an NI-level flow control protocol that assumes that the network hardware is
reliable. A simple extension of this flow control protocol allows us to implement
an efficient, reliable, NI-level multicast. In this multicast implementation, packets
need not travel to the host and back before they are forwarded. Instead, the NI
recognizes multicast packets and forwards them to children in the multicast tree
without host intervention.

The implementation described above performs much protocol work on the
programmable NI and assumes that the network hardware does not drop or cor-
rupt network packets. Our other implementations, described in Chapter 8, differ
mainly in where and how they implement reliability and multicast forwarding.
Our most conservative implementation, for example, assumes unreliable hardware

12 Introduction

and implements both reliability (including retransmission) and multicast forward-
ing on the host.

LFC has been used to implement or port several systems, including CRL [74],
Fast Sockets [120], Parallel Java [99], MPICH [61], Multigame [122], Orca [9],
Panda [19, 124], and TreadMarks [78]. Several of these systems are described in
this thesis; they are introduced in the sections below.

1.5.2 Panda

Panda is a portable communication library that provides threads, messages, reli-
able message passing, Remote Procedure Call (RPC), and totally-ordered group
communication. Using Panda, we have implemented various PPSs (see below).

To implement its abstractions efficiently, Panda exploits LFC’s packet-based
interface and its efficient multicast, fetch-and-add, and interrupt-management prim-
itives. Panda uses LFC’s packet interface to implement an efficient message ab-
straction which allows end-to-end pipelining of message data and which allows
applications to delay message processing without copying message data. All in-
coming messages are handled by a single, dedicated thread, which solves part of
the blocking-upcall problem. To automatically switch between polling and in-
terrupts, Panda integrates thread management and communication such that the
network is automatically polled when all threads are idle. Finally, Panda uses
LFC’s NI-level multicast and synchronization primitives to implement an efficient
totally-ordered multicast primitive.

1.5.3 Parallel-Programming Systems

In this thesis, we use five PPSs to test our ideas: Orca, CRL, MPI, Manta, and
Multigame.

Orca is a DSM system based on the notion of user-defined shared objects.
Jointly, the Orca compiler and runtime system automatically replicate and migrate
shared objects to improve locality. To perform operations on shared objects, Orca
uses Panda’s threads, RPC, and totally-ordered group communication.

Like Orca, CRL is a DSM system. CRL processes share chunks of memory
which they can map into their address space. Applications must bracket their
accesses to these regions by library calls so that the CRL runtime system can keep
the shared regions in a consistent state. Unlike Orca, which updates replicated
shared objects, CRL uses invalidation to maintain region-level coherence.

MPI is a message-passing standard. Parallel applications are often developed
directly on top of MPI, but MPI is also used as a compiler target. Our imple-
mentation of MPI is based on MPICH [61] and Panda. MPICH is a portable and

1.5 Implementation 13

PPS Communication patterns Message detection # contexts
Orca Roundtrip + broadcast Polling + interrupts 1
CRL Roundtrip Polling + interrupts 0
MPI One-way + broadcast Polling 0
Manta Roundtrip Polling + interrupts � 1
Multigame One-way Polling 0

Table 1.2. Communication characteristics of parallel-programming systems.

widely used public-domain implementation of MPI that is being developed jointly
by Argonne National Laboratories and Mississippi State University.

Manta is a PPS that allows Java [60] threads to communicate by invoking
methods on shared objects, as in Orca. Superficially, Manta has simpler commu-
nication requirements than Orca, because Manta does not replicate shared objects
and therefore requires only RPC-style communication. In reality, however, sev-
eral features of Java that are not present in Orca —specifically, garbage collection
and condition synchronization at arbitrary program points— lead to more complex
interactions with the communication system.

Multigame is a declarative parallel game-playing system. Given the rules of
a board game and a board evaluation function, Multigame automatically searches
for good moves, using one of several search strategies (e.g., IDA* or alpha-beta).
During a search, processors push search jobs to each other (using one-way mes-
sages). A job consists of (recursively) evaluating a board position. To avoid re-
searching positions, positions are cached in a distributed hash table.

Not only do these PPSs cover a range of programming models, they also have
different communication requirements. Table 1.2 summarizes the main communi-
cation characteristics of all five PPSs. (A more detailed discussion of these charac-
teristics appears in Chapters 7 and 8.) The second column lists the most common
type of communication pattern used in each PPS. The third column shows how
each PPS detects incoming messages. All DSMs (Orca, CRL, and Manta) use a
combination of polling and interrupts. The fourth column shows how many inde-
pendent message-handler contexts can be active in each PPS. In CRL, MPI, and
Multigame, all incoming messages are processed by handlers that run in the same
context as the main computation (i.e., as procedure calls), so there are no indepen-
dent handler contexts. In Orca, all handlers are run by a dedicated thread. Finally,
Manta creates a new thread for each incoming message.

14 Introduction

1.6 Experimental Environment

For most of the experiments described in this thesis, we use a cluster that consists
of 128 computers, which are interconnected by a Myrinet [27] network. Before
describing the hardware in detail, we first position our cluster architecture.

1.6.1 Cluster Position

The cluster used in this thesis is a compromise between a traditional supercom-
puter and LAN technology. Unlike a traditional supercomputer, the NI connects to
the host’s I/O bus and is therefore far away from the host processor. This is a typi-
cal organization for commodity hardware, but aggressive supercomputer architec-
tures integrate the NI more tightly with the host system by placing it on the mem-
ory bus or integrating it with the cache controller. These architectures allow for
very low network access latencies and simpler protection schemes [24, 85, 108].
In this thesis, however, we focus on architectures that use off-the-shelf hardware
and rely on advanced software techniques to achieve efficient user-level network
access. This type of architecture (i.e., with the NI residing on the host’s I/O bus)
is now also found in several commercial parallel machines (e.g., the IBM SP/2).

The cluster’s network, Myrinet, is not as widely used as the ubiquitous Eth-
ernet LAN. As a parallel-processing platform, however, Myrinet is used in many
places, both in academia and industry.

Myrinet’s NI contains a programmable, custom RISC processor and fast SRAM
memory. The network consists of high-bandwidth links and switches; network
packets are cut-through-routed through these links and switches. These features
make Myrinet (and similar products) much more expensive than Ethernet, the tra-
ditional bus-based LAN technology. While Ethernet can be switched to obtain
high bandwidth, most Ethernet NIs are not programmable.

Our main reason for using Myrinet is that its programmable NI enables ex-
perimentation with different protocols, mechanisms, and interfaces. This type of
experimentation is not specific to Myrinet and has also been performed with other
programmable NIs [34, 147]. The main problem is often the vendors’ reluctance
to release information that allows other parties to program their NIs. Myricom,
the company that develops and sells Myrinet, does provide the documentation and
tools that enable customers to program the NI.

1.6.2 Hardware Details

Each cluster node contains a single Siemens-Nixdorf D983 motherboard, an Intel
440FX PCI chipset, and an Intel Pentium Pro [70] processor. The nodes are con-
nected via 32 8-port Myrinet switches, which are organized in a three-dimensional

1.6 Experimental Environment 15

Fig. 1.3. Myrinet switch topology.

Cluster node

switch

Network interface

Fig. 1.4. Switches and cluster nodes. Each node has its own network interface
which connects to a crossbar switch. Switches connect to network interfaces and
other switches.

grid topology. Figure 1.3 shows the switch topology. Figure 1.4 shows one verti-
cal plane of the switch topology. Each switch connects to 4 cluster nodes and to
neighboring switches. (Figure 1.4 shows only the connections to switches in the
same vertical plane.) The cluster nodes can also communicate through a FastEth-
ernet network (not shown in Figures 1.3 and 1.4). FastEthernet is used for process
startup, file transfers, and terminal traffic.

The architecture of a single cluster node is illustrated in Figure 1.5. Each
node contains a single Pentium Pro processor and 128 Mbyte of DRAM. The
Pentium Pro is a 200 MHz, three-way superscalar processor. It has two on-chip
first-level caches: an 8 Kbyte, 2-way set-associative data cache and an 8 Kbyte,
4-way set-associative instruction cache. In addition, a unified, 256 KByte, 4-way
set-associative second-level cache is packaged along with the processor core. The
cache line size is 32 bytes. The processor-memory bus is 64 bits wide and clocked
at 66 MHz. The I/O bus is a 33 MHz, 32-bit PCI bus. The Myrinet NI is attached
to the I/O bus.

16 Introduction

Host CPU

Host bus

PCI bus

Network

Host memory

Cache

Bridge

DMA engines
Network interface

DMA

DMA
mem.
NI

DMA
host
To/from Send

Recv

CPU

Fig. 1.5. Cluster node architecture.

To obtain accurate timings in our performance measurements, we use the Pen-
tium Pro’s 64-bit timestamp counter [71]. The timestamp counter is a clock with
clock cycle (5 ns) resolution. A simple pseudo device driver makes this clock
available to unprivileged users. The counter can be read (from user space) us-
ing a single instruction, so the use of this fine-grain clock imposes little overhead
(approximately 0.17 µs).

Myrinet is a high-speed, switched LAN technology [27]. Switched technolo-
gies scale well to a large number of hosts, because bandwidth increases as more
hosts and switches are added to the network. Unlike Ethernet, Myrinet provides
no hardware support for multicast. General-purpose multicasting for wormhole-
routed networks is a complex problem and an area of active research [136, 135].

Unlike traditional NIs, Myrinet’s NI is programmable; it contains a custom
processor which can be programmed in C or assembly. The processor, a 33 MHz
LANai4.1, is controlled by the LANai control program. The processor is effec-
tively an order of magnitude slower than the 200 MHz, superscalar host processor.

The NI is equipped with 1 Mbyte of SRAM memory which holds both the
code and the data for the control program. The currently available Myrinet NIs
require that all network packets be staged through this memory, both at the sending
and the receiving side. SRAM is fast, but expensive, so the amount of memory
is relatively small. Other networks allow data to be transferred directly between
host memory and the network (e.g., using memory-mapped FIFOs or DMA).

The NI contains three DMA engines. The host DMA engine transfers data

1.7 Thesis Outline 17

between host memory and NI memory. Host memory buffers that are accessed
by this DMA engine should be pinned (i.e., marked unswappable) to prevent the
operating system from paging these pages to disk during a DMA transfer. The
send DMA engine transfers packets from NI memory to the outgoing network
link; the receive DMA engine transfers incoming packets from the network link to
NI memory. The DMA engines can run in parallel, but the NI’s memory allows
at most two memory accesses per cycle, one to or from the PCI bus and one to or
from the NI processor, the send DMA engine, or the receive DMA engine.

Myrinet NIs connect to each other via 8-port crossbar switches and high-
speed links (1.28 Gbit/s in each direction). The Myrinet hardware uses routing
and switching techniques similar to those used in massively parallel processors
(MPPs) such as the Thinking Machines CM-5, the Cray T3D and T3E, and the
Intel Paragon. Network packets are cut-through-routed from a source to a desti-
nation network interface. Each packet starts with a sequence of routing bytes, one
byte per switch on the path from source to destination. Each switch consumes
one routing byte and uses the byte’s value to decide on which output port the
packet must be forwarded. Myrinet implements a hardware flow control protocol
between pairs of communicating NIs which makes packet loss very unlikely. If
all senders on the network agree on a deadlock-free routing scheme and the NIs’
control programs remove incoming packets in a timely manner, then the network
can be considered reliable (see also Section 3.9 and Chapter 8).

While in transit, a packet may become blocked, either because part of the
path it follows is occupied by another packet, or because the destination NI fails
to drain the network. In the first case, Myrinet will kill the packet if it remains
blocked for more than 50 milliseconds. In the second case, the Myrinet hardware
sends a reset signal to the destination NI after a timeout interval has elapsed. The
length of this interval can be set in software. Both measures are needed to break
deadlocks in the network. If the network did not do this, a malicious or faulty
program could block another program’s packets.

1.7 Thesis Outline

This chapter introduced our area of research, communication support for PPSs.
We sketched the problems in this area and our approach to solving them. Chap-
ter 2 surveys the main design issues for user-level communication architectures
and shows that existing systems resolve these issues in widely different ways,
which illustrates that the tradeoffs are still unclear. Chapter 3 describes the de-
sign and implementation of our most optimistic LFC implementation. Chapter 4
gives a detailed description of the NI-level protocols employed by this LFC im-
plementation. Chapter 5 evaluates the implementation’s performance. Chapter 6

18 Introduction

describes Panda and its interactions with LFC. Chapter 7 describes the implemen-
tation of four PPSs: Orca, CRL, MPI, and Manta. We show how LFC and Panda
enable efficient implementations of these systems and describe additional opti-
mizations used within these systems. Chapter 8 compares the performance of five
LFC implementations at multiple levels: the NI protocol level, the PPS level, and
the application level. Finally, in Chapter 9, we draw conclusions.

Chapter 2

Network Interface Protocols

High-speed networks such as Myrinet offer great potential for communication-
intensive applications. Unfortunately, traditional communication protocols such
as TCP/IP are unable to realize this potential. In the common implementation of
these protocols, all network access is through the operating system, which adds
significant overheads to both the transmission path (typically a system call and
a data copy) and the receive path (typically an interrupt and a data copy). In
response to this performance problem, several user-level communication archi-
tectures have been developed that remove the operating system from the critical
communication path [48, 147]. This chapter provides insight into the design issues
for communication protocols for these architectures. We concentrate on issues
that determine the performance and semantics of a communication system: data
transfer, address translation, protection, control transfer, reliability, and multicast.

In this chapter, we use the following systems to illustrate the design issues:
Active Messages II (AM-II) [37], BIP [118], Illinois Fast Messages (FM) [112,
113], FM/MC [10, 146], Hamlyn [32], PM [141, 142], U-Net [13, 147], VMMC
[24], VMMC-2 [49, 50], and Trapeze [154]. All systems aim for high performance
and all except Trapeze offer a user-level communication service. Interestingly,
however, they differ significantly in how they resolve the different design issues.
It is this variety that motivates our study.

This chapter is structured as follows. Section 2.1 explains the basic principles
of NI protocols by describing a simple, unreliable, user-level protocol. Next, in
Sections 2.2 to 2.7, we discuss the six protocol design issues that determine system
performance and semantics. We illustrate these issues by giving performance data
obtained on our Myrinet cluster.

19

20 Network Interface Protocols

CPU

CPU CPU

Receive ringSend ring

DMA area

Host NI NI Host

CPU 8

7

6
54

3

1

2

Data packet

User address space

Fig. 2.1. Operation of the basic protocol. The dashed arrows are buffer pointers.
The numbered arrows represent the following steps. (1) Host copies user data
into DMA area. (2) Host writes packet descriptor to send ring. (3) NI processor
reads packet descriptor. (4) NI DMAs packet to NI memory. (5) Network transfer.
(6) NI reads receive ring to find empty buffer in DMA area. (7) NI DMAs packet
to DMA area. (8) Optional memory copy to user buffer by the host processor.

2.1 A Basic Network Interface Protocol

The goal of this section is to explain the basics of NI protocols and to introduce
the most important design issues. To structure our discussion, we first describe
the design of a simple, user-level NI protocol for Myrinet. The protocol ignores
several important problems, which we address in subsequent sections.

To avoid the cost of kernel calls for each network access, the basic protocol
maps all NI memory into user space. User processes write their send requests
directly to NI memory, without operating system (OS) involvement. The basic
protocol provides no protection, so the network device cannot be shared among
multiple processes.

User processes invoke a simple send primitive to send a data packet. The
basic protocol sends packets with a maximum payload of 256 bytes and requires
that users fragment their data so that each fragment fits in a packet. The signature
of the send primitive is as follows:

void send(int destination, void *data, unsigned size);

Send() performs two actions (see Figure 2.1). First, it copies the user data to a
packet buffer in a special staging area in host memory (step 1). The NI will later
fetch the packet from this DMA area by means of a DMA transfer. Unlike normal
user pages, pages in the DMA area are never swapped to disk by the OS. By only
DMAing to and from such pinned pages, the protocol avoids corruption of user
memory and user messages due to paging activity of the OS.

2.1 A Basic Network Interface Protocol 21

Second, the host writes a send request into a descriptor in NI memory (step 2).
These descriptors are stored in a circular buffer called the send ring. Send() stores
the identifier of the destination machine, the size of the packet’s payload, and the
packet’s offset in the DMA area into the next available descriptor in this send
ring. To inform the NI of this event, send() also sets a DescriptorReady flag in
the descriptor. This flag prevents races between the host and the NI: the NI will
not read any other descriptor fields until this flag has been set. The descriptor is
written using programmed I/O; since the descriptor is small, DMA would have a
high overhead.

The NI repeatedly polls the DescriptorReady flag of the first descriptor in
the send ring. As soon as this flag is set by the host, the NI reads the offset in
the descriptor and adds it to the physical address of the start of the DMA area,
resulting in the physical address of the packet (step 3). Next, the NI initiates a
DMA transfer over the I/O bus to copy the packet’s payload from host memory
to NI memory (step 4). Subsequently, it reads the destination machine in the
descriptor and looks up the route for the packet in a routing table. The route and a
packet header that contains the packet’s size are prepended to the packet. Finally,
the NI starts a second DMA to transmit the packet (step 5).

When the sending NI detects that the network DMA for a given packet has
completed, it sets a DescriptorFree flag to release the descriptor, and polls the next
free descriptor in the ring. If the host wants to send a packet while no descriptor
is available, it busy-waits by polling the DescriptorFree flag of the descriptor at
the tail of the ring.

NIs use receive DMAs to store incoming packets in their memory. Each NI
contains a receive ring with descriptors that point to free buffers in the host’s
DMA area. The NI uses the receive ring’s descriptors to determine where (in
host memory) to store incoming packets. After receiving a packet, the NI tries
to acquire a descriptor from the receive ring (step 6). Each descriptor contains a
flag bit that is used in a similar way as for the send ring. If no free host buffer
is available, the packet is simply dropped. Otherwise, the NI starts a DMA to
transfer the packet to host memory (step 7). Each host buffer also contains a flag
that is set by the NI as the last part of its NI-to-host DMA transfer. The host can
check if there is a packet available by polling the flag of the next unprocessed host
receive buffer. Once the flag has been set, the receiving process can safely read
the buffer and optionally copy its contents to a user buffer (step 8).

The data transfers in steps 1, 4, 5, 7, and 8 can all be performed concurrently.
For example, if the host sends a long, multipacket message, one packet’s network
DMA can be overlapped with the next packet’s host-to-NI DMA. Exploiting this
concurrency is essential for achieving high throughput.

Since the delivery of network interrupts to user-level processes is expensive
on current OSs, the basic protocol does not use interrupts, but requires users to

22 Network Interface Protocols

poll for incoming messages. A successful call to poll() results in the invocation of
a user function, handle packet(), that handles an inbound packet:

void poll(void);
void handle packet(void *data, unsigned size);

Our (unoptimized) implementation of the basic protocol achieves a one-way
host-to-host latency of 11 µs and a throughput of 33 Mbyte/s (using 256-byte
packets). For comparison, on the same hardware the highly optimized BIP sys-
tem [118], achieves a minimum latency of 4 µs and can saturate the I/O bus (127
Mbyte/s). For large data transfers, BIP uses DMA, both at the sending and the
receiving side. In contrast with the basic protocol, however, BIP does not stage
data through DMA areas. Section 2.3 discusses different techniques to eliminate
the use of DMA areas.

The basic protocol avoids all OS overhead, keeps the NI code simple, and uses
little NI memory. It is clear, however, that the protocol has several shortcomings:

� All inbound and outbound network transfers are staged through a DMA
area. For applications that need to send and receive from arbitrary locations,
this introduces extra memory copies.

� The protocol provides no protection. If the basic protocol allowed multiple
users to access the NI, these users could read and modify each other’s data
in NI memory. Users can even modify the NI’s control program and use it
to access any host memory location.

� The receiver-side control transfer mechanism, polling, is simple, but not
always effective. For many applications it is difficult to determine a good
polling rate. If the host polls too frequently, it will have a high overhead; if
it polls too late, it will not reply quickly enough to incoming packets.

� The protocol is unreliable, even though the Myrinet hardware is highly re-
liable. If the senders send packets faster than the receiver can handle them,
the receiving host will run out of buffer space and the NI will drop incoming
packets.

� The protocol supports only point-to-point messages. Although multicast
can be implemented on top of point-to-point messages, doing so may be
inefficient. Multicast is an important service by itself and a fundamental
component of collective communication operations such as those supported
by the message-passing standard MPI.

Below, we will discuss these problems in more detail and look at better design
alternatives.

2.2 Data Transfers 23

2.2 Data Transfers

On Myrinet, at least three steps are needed to communicate a packet from one user
process to another: the packet must be moved from the sender’s memory to its NI
(host-NI transfer), from this NI to the receiver’s NI (NI-NI transfer), and then to
the receiving process’s address space (NI-host transfer). Network technologies
that do not require data to be staged through NI memory use only two steps: host-
to-network and network-to-host. Below, we discuss the Myrinet case, but most
issues (programmed I/O versus DMA, pinning, alignment, and maximum packet
size) also apply to the two-step case.

The data transfers have a significant impact on the latency and throughput
obtained by a protocol, so optimizing them is essential for obtaining high per-
formance. As shown in Figure 2.1, the basic protocol uses five data transfers to
communicate a packet, because it stages all packets through DMA areas. Below,
we discuss alternative designs for implementing the host-NI, NI-NI, and NI-host
transfers.

2.2.1 From Host to Network Interface

On Myrinet, the host-to-NI transfer can use either DMA or Programmed I/O
(PIO). Steenkiste gives a detailed description of both mechanisms [133]. With
PIO, the host processor reads the data from host memory and writes it into NI
memory, typically one or two words at a time, which results in many bus transac-
tions. DMA uses special hardware (a DMA engine) to transfer the entire packet
in large bursts and asynchronously, so that the data transfer can proceed in par-
allel with host computations. One thus might expect DMA to always outperform
PIO. The optimal choice, however, depends on the type of host CPU and on the
packet size. The Pentium Pro, for example, supports write combining buffers,
which allow memory writes to the same cache line to be merged into a single
32-byte bus transaction. We can thus boost the performance of host-to-NI PIO
transfers by applying write combining to NI memory. (This use of the Pentium
Pro’s write combining facility was suggested to us by the Fast Messages group of
the University of Illinois at Urbana-Champaign [31].)

Figure 2.2 shows the throughput obtained by PIO (with and without write
combining) and cache-coherent DMA, for copying data from a Pentium Pro to
a Myrinet NI card. PIO with write combining quickly outperforms PIO without
write combining. For buffer sizes up to 1024 bytes, PIO with write combining
even outperforms DMA (which suffers from a startup cost).

For small messages, PIO with write combining is slower than PIO without
write combining. This is due to an expensive extra instruction (a serializing in-
struction) that our benchmark executes after each host-to-NI memory copy with

24 Network Interface Protocols

4 16 64 256 1K 4K 16K
Buffer size (bytes)

0

20

40

60

80

100
T

hr
ou

gh
pu

t (
M

by
te

/s
ec

on
d)

DMA
DMA + on-demand pinning
PIO + write combining
DMA + memcpy
PIO

Fig. 2.2. Host-to-NI throughput using different data transfer mechanisms.

write combining. We use this instruction to model the common situation in which
a data copy to NI memory is followed by another write that signals the presence
of the data. Clearly, the NI should not observe the latter write before the data copy
has completed. With write combining, however, writes may be reordered and it is
necessary to separate the data copy and the write that follows it by a serializing
instruction.

In user-level communication systems, DMA transfers can be started either by
a user process or by the network interface without any operating system involve-
ment. Since DMA transfers are performed asynchronously, the operating system
may decide to swap out the page that happens to be the source or destination of a
running DMA transfer. If this happens, part of the destination of the transfer will
be corrupted. To avoid this, operating systems allow applications to pin a lim-
ited number pages in their address space. Pinned pages are never swapped out by
the operating system. Unfortunately, pinning a page requires a system call and the
amount of memory that can be pinned is limited by the available physical memory
and by OS policies. In the best case, all pages that an application transfers data to
or from need to be pinned only once. In this case the cost of pinning the pages can
be amortized over many data transfers. In the worst case, an application transfers
data to or from more pages than can be pinned simultaneously. In this case, two
system calls are needed for every data transfer: one to unpin a previously pinned
page and one to pin the page involved in the next data transfer. SHRIMP pro-
vides special hardware that allows user processes to start DMA transfers without
pinning [25]. This user-level DMA mechanism, however, works only for host-
initiated transfers, not for NI-initiated transfers, so pinning is still required at the
receiving side.

2.2 Data Transfers 25

NI protocols that use DMA often choose to copy the data into a reserved (and
pinned) DMA area, which costs an extra memory copy and thus may decrease the
throughput. Figure 2.2, shows that a DMA transfer preceded by a memory copy
is consistently slower than PIO with write combining. On processors that do not
support cache-coherent DMAs, the DMA area needs to be allocated in uncached
memory, which also decreases performance. (Most modern CPUs, including the
Pentium Pro, support cache-coherent DMA, however.) With PIO, pinning is not
necessary. Even if the OS swapped out the page during the transfer, the host’s next
memory reference would generate a page fault, causing the OS to swap the page
back in. In practice, many protocols use DMA; other protocols (AM-II, Hamlyn,
BIP) use PIO for small messages and DMA for large messages. FM uses PIO for
all messages.

With both DMA and PIO, data transfers between unaligned data buffers can be
much slower than between aligned buffers. This problem is aggravated when the
NI’s DMA engines require that source and destination buffers be properly aligned.
In that case, extra copying is needed to align unaligned buffers.

Another important design choice is the maximum packet size. Large packets
yield better throughput, because per-packet overheads are incurred fewer times
than with small packets. The throughput of our basic protocol, for example, in-
creases from 33 Mbyte/s to 48 Mbyte/s by using 1024-byte instead of 256-byte
packets. The choice of the maximum packet size is influenced by the system’s
page size, memory space considerations, and hardware restrictions.

2.2.2 From Network Interface to Network Interface

The NI-to-NI transfer traverses the Myrinet links and switches. All Myrinet pro-
tocols use the NI’s DMA engine to send and receive network data. In theory, PIO
could be used, but DMA transfers are always faster. To send or receive a data
word by means of PIO, the processor must always move that data item through a
processor register, which costs at least two cycles. A DMA engine can transfer
one word per cycle. Moreover, using DMA frees the processor to do other work
during data transfers.

To prevent network congestion, the receiving NI should extract incoming data
from the network fast enough. On Myrinet, the hardware uses backpressure to
stall the sending NI if the receiver does not extract data fast enough. To pre-
vent deadlock, however, there is a time limit on the backpressure mechanism. If
the receiver does not drain the network within a certain time period, the network
hardware will reset the NI or truncate a blocked packet. Many Myrinet control
programs deal with this real-time constraint by copying data fast enough to pre-
vent resets. Other protocols avoid the problem by using a software flow control
scheme, as we will discuss later.

26 Network Interface Protocols

2.2.3 From Network Interface to Host

The transfer from NI to host at the receiving side can again use either DMA or
PIO. On Myrinet, however, only the host (not the NI) can use PIO, making DMA
the method of choice for most protocols. Some systems (e.g., AM-II) use PIO on
the host to receive small messages. For large messages, all protocols use DMA,
because reads over the I/O bus are typically much slower than DMA transfers.
Whether we use DMA or PIO, in both cases the bottleneck for the NI-to-host
transfer is the I/O bus.

Using microbenchmarks, we measured the attainable throughput on the impor-
tant data paths of our Pentium Pro/Myrinet cluster, using DMA and PIO. Table 2.1
summarizes the results and also gives the hardware bandwidth of the bottleneck
component on each data path. For transfers between the host and the NI, the
bottleneck is the 33.33 MHz PCI bus; both main memory and the memory bus
allow higher throughputs. With DMA transfers, the microbenchmarks can almost
saturate the I/O bus. Our throughput is slightly less than the I/O bus bandwidth
because in our benchmarks the NI acknowledges every DMA transfer with a one-
word NI-to-host DMA transfer. For network transfers from one NI’s memory
to another NI’s memory, the bottleneck is the NIs’ memory. The send and re-
ceive DMA engines can access at most one word per I/O bus clock cycle (i.e.,
127 Mbyte/s). The bandwidth of the network links is higher, 153 Mbyte/s. Fi-
nally, for local host memory copies, the bottleneck component is main memory.

An interesting observation is that a local memory copy on a single Pentium
Pro obtains a lower throughput than a remote memory copy over Myrinet (52
Mbyte/s versus 127 Mbyte/s). This problem is largely due to the poor memory
write performance of the Pentium Pro [29]; on a 450 MHz Pentium III platform,
we measured a memory-to-memory copy throughput of 157 Mbyte/s. Neverthe-
less, memory copies have an important impact on performance. For comparison,
recall that the basic protocol achieves a throughput of only 33 Mbyte/s. The rea-
son is that the basic protocol uses fairly small packets (256 bytes) and performs
memory copies to and from DMA areas, which interferes with DMA transfers.
Several systems (e.g., BIP and VMMC-2) can saturate the I/O bus: the key is-
sue is to avoid the copying to and from DMA areas. The next section describes
techniques to achieve this.

2.3 Address Translation

The use of DMA transfers between host and NI memory introduces two problems.
First, most systems require that every host memory page involved in a DMA trans-
fer be pinned to prevent the operating system from replacing that page. Pinning,

2.3 Address Translation 27

Source Destination Method Hardware Measured
bandwidth throughput

Host memory Host memory PIO 170 52
Host memory NI memory PIO 127 25

PIO + WC 127 84
DMA 127 117

NI memory Host memory PIO 127 7
DMA 127 117

NI memory NI memory DMA 127 127

Table 2.1. Bandwidths and measured throughputs (in Mbyte/s) on a Pen-
tium Pro/Myrinet cluster. WC means write combining.

however, requires an expensive system call which should be kept off the critical
path. The second problem is that, on most architectures, the NI’s DMA engine
needs to know the physical addresses of each page that it transfers data to or from.
Operating systems, however, do not export virtual-to-physical mappings to user-
level programs, so users normally cannot pass physical addresses to the NI. Even
if they could, the NI would have to check those physical addresses, to ensure that
users pass only addresses of pages that they have access to.

We consider three approaches to solve these problems. The first approach is
to avoid all DMA transfers by using programmed I/O. Due to the high cost of I/O
bus reads, however, this is only a realistic solution at the sending side.

The second approach, used by the basic protocol, requires that users copy
their data into and out of special DMA areas (see Figure 2.1). This way, only the
DMA areas need to be pinned. This is done once, when the application opens
the device, and not during send and receive operations. The address translation
problem is then solved as follows. The operating system allocates for each DMA
area a contiguous chunk of physical memory and passes the area’s physical base
address to the NI. Users specify send and receive buffers by means of an offset in
their DMA area. The NI only needs to add this offset to the area’s base address
to obtain the buffer’s physical address. Several systems (e.g., AM-II, Hamlyn)
use this approach, accepting the extra copying costs. As shown in Figure 2.2,
however, the extra copy reduces throughput significantly.

In the third approach, the copying to and from DMA areas is eliminated by
dynamically pinning and unpinning user pages so that DMA transfers can be per-
formed directly to those pages. Systems that use this approach (e.g., VMMC-2,
PM, and BIP) can track the ’DMA’ curve in Figure 2.2. The main implementa-
tion problem is that the NI needs to know the current virtual-to-physical mappings
of individual pages. Since NIs are usually equipped with only a small amount of

28 Network Interface Protocols

memory and since their processors are slow, they do not store information for ev-
ery single virtual page. Some systems (e.g., BIP) provide a simple kernel module
that translates virtual addresses to physical addresses. Users are responsible for
pinning their pages and obtaining the physical addresses of these pages from the
kernel module. The disadvantage of this approach is that the NI cannot check if
the physical addresses it receives are valid and if they refer to pinned pages.

An alternative approach is to let the kernel and NI cooperate such that the NI
can keep track of valid address translations (either in hardware or in software).
Systems like VMMC-2 and U-Net/MM [13] (an extension of U-Net) let the NI
cache a limited number of valid address translations which refer to pinned pages
(this invariant must be maintained cooperatively by the NI and the operating sys-
tem). This caching works well for applications that exhibit locality in the pages
they use for sending and receiving data. When the translation of a user-specified
address is found in the cache, the NI can access that address using a DMA transfer.
In the case of a miss, special action must be taken. In U-Net/MM, for example, the
NI generates an interrupt when it cannot translate an address. The kernel receives
the interrupt, looks up the address in its page table, pins the page, and passes the
translation to the NI.

In VMMC-2, address translations for user buffers are managed by a library.
This user-level library maps users’ virtual addresses to references to address trans-
lations which users can pass to the NI. The library creates these references by
invoking a kernel module. This module translates virtual addresses, pins the cor-
responding pages, and stores the translations in a User-managed TLB (UTLB) in
kernel memory.

To avoid invoking the operating system every time a reference is needed, the li-
brary maintains a user-level lookup data structure that keeps track of the addresses
for which a valid UTLB entry exists. The library invokes the UTLB kernel mod-
ule only when it cannot find the address in its lookup data structure. When the
NI receives a reference, it can find the translation using a DMA transfer to the
kernel module’s data structure. To avoid such DMA transfers on the critical path,
the NI maintains its own cache of references. The ’on-demand pinning’ curve in
Figure 2.2 shows the throughput obtained by a benchmark that imitates the miss
behavior of a UTLB. To simulate a miss in its lookup data structure, the host in-
vokes, for each page that is transferred, a system call to pin that page. To simulate
a miss in the NI cache, the NI fetches a single word from host memory before it
transfers the data.

2.4 Protection 29

2.4 Protection

Since user-level architectures give users direct access to the NI, the OS can no
longer check every network transfer. Multiplexing and demultiplexing must now
be performed by the NI and special measures are needed to preserve the integrity
of the OS and to isolate the data streams of different processes from one another.

In a protected system, no user process should be given unrestricted access to
NI memory. With unrestricted access to NI memory, a user process can modify
the NI control program and use it to read or write any location in host memory.
NI memory access must also be restricted to implement protected multiplexing
and demultiplexing. In the basic protocol, for example, user processes directly
write to NI memory to initialize send descriptors. If multiple processes shared
the NI, one process could corrupt another process’s send descriptors. Similarly,
no process should be able to read incoming network packets that are destined for
another process. The basic protocol prevents these problems by providing user-
level network access to at most one user at a time, but this limitation is clearly
undesirable in a multi-user and multiprogramming environment.

A straightforward solution to these problems is to use the virtual-memory sys-
tem to give each user access to a different part of NI memory [48]. When the
user opens the network device, the operating system maps such a part into the
user’s address space. Once the mapping has been established, all user accesses
outside the mapped area will be trapped by the virtual-memory hardware. Users
write their commands and network data to their own pages in NI memory. It is the
responsibility of the NI to check each user’s page for new requests and to process
only legal requests.

Since NI memory is typically small, only a limited number of processes can
be given direct access to the NI this way. To solve this problem, AM-II virtual-
izes network endpoints in the following way. Part of NI memory acts as a cache
for active communication endpoints; inactive endpoints are stored in host mem-
ory. When an NI receives a message for an inactive endpoint or when a process
tries to send a message via an inactive endpoint, the NI and the operating system
cooperate to activate the endpoint. Activation consists of moving the endpoint’s
state (send and receive buffers, protocol status) to NI memory, possibly replacing
another endpoint which is then swapped out to host memory.

The sharing problem also exists on the host, for the DMA areas. To maintain
protection, each user process needs its own DMA area. Since the use of a DMA
area introduces an extra copy, some systems eliminate it and store address trans-
lations on the NI. VMMC-2 and U-Net/MM do this in a protected way, either by
letting the kernel write the translations to the NI or by letting the NI fetch the
translations from kernel memory. BIP, on the other hand, eliminates the DMA
area, but does not maintain protection.

30 Network Interface Protocols

2.5 Control Transfers

The control transfer mechanism determines how a receiving host is notified of
message arrivals. The options are to use interrupts, polling, or a combination of
these.

Interrupts are notoriously expensive. With most operating systems, the time
to deliver an interrupt (as a signal) to a user process even exceeds the network
latency. On a 200 MHz Pentium Pro running Linux, dispatching an interrupt to
a kernel interrupt handler costs approximately 8 µs. Dispatching to a user-level
signal handler costs even more, approximately 17 µs. This exceeds the latency of
our basic protocol (11 µs).

Given the high costs of interrupts, all user-level architectures support some
form of polling. The goal of polling is to give the host a fast mechanism to check
if a message has arrived. This check must be inexpensive, because it may be
executed often. A simple approach is to let the NI set a flag in its memory and to
let the host check this flag. This approach, however, is inefficient, since every poll
now results in an I/O bus transfer. In addition, this polling traffic will slow down
other I/O traffic, including network packet transfers between NI and host memory.

A very efficient solution is to use a special device status register that is shared
between the NI and the host [107]. Current hardware, however, does not provide
these shared registers.

On architectures with cache-coherent DMA, a practical solution is to let the
NI write a flag in cached host memory (using DMA) when a message is available.
This approach is used by our basic protocol. The host polls by reading its local
memory; since polls are executed frequently, the flag will usually reside in the
data cache, so failed polls are cheap and do not generate memory or I/O traffic.
When the NI writes the flag, the host will incur a cache miss and read the flag’s
new value from memory. On a 200 MHz Pentium Pro, the scheme just described
costs 5 nanoseconds for a failed poll (i.e., a cache hit) and 74 nanoseconds for
a successful poll (i.e., a cache miss). For comparison, each poll in the simple
scheme (i.e., an I/O bus transfer) costs 467 nanoseconds.

Even if the polling mechanism is efficient, polling is a mixed blessing. In-
serting polls manually is tedious and error-prone. Several systems therefore use a
compiler or a binary rewriting tool to insert polls in loops and functions [114, 125].
The problem of finding the right polling frequency remains, though [89]. In mul-
tiprocessor architectures this problem can be solved by dedicating one of the pro-
cessors to polling and message handling.

Several systems (AM-II, FM/MC, Hamlyn, Trapeze, U-Net, VMMC, VMMC-
2) support both interrupts and polling. Interrupts usually can be enabled or dis-
abled by the receiver; sometimes the sender can also set a flag in each packet that
determines whether an interrupt is to be generated when the packet arrives.

2.6 Reliability 31

AM-II
VMMC-2

Hamlyn
FM
FM/MC
VMMC

U-Net
Trapeze

PM

Recovery

BIP

Yes No

No (unreliable interface)

Host

Yes

Application

Prevent buffer overflow

Assume Myrinet is reliable?

Reliability strategy Reliability protocol?

Locus of flow control

Fig. 2.3. Design decisions for reliability.

2.6 Reliability

Existing Myrinet protocols differ widely in the way they address reliability. Fig-
ure 2.3 shows the choices made by various systems. The most important choice
is whether or not to assume that the network is reliable. Myrinet has a very low
bit-error rate (less than 10�15 on shielded cables up to 25 m long [27]). Conse-
quently, the risk of a packet getting lost or corrupted is small enough to consider
it a ’fatal event’ (much like a memory parity error or an OS crash). Such events
can be handled by higher-level software (e.g., using checkpointing), or else cause
the application to crash.

Many Myrinet protocols indeed assume that the hardware is reliable, so let us
look at these protocols first. The advantage of this approach is efficiency, because
no retransmission protocol or time-out mechanism is needed. Even if the network
is fully reliable, however, the software protocol may still drop packets due to lack
of buffer space. In fact, this is the most common cause of packet loss. Each
protocol needs communication buffers on both the host and the NI, and both are
a scarce resource. The basic protocol described in Section 2.1, for example, will
drop packets when it runs out of receive buffers. This problem can be solved
in one of two ways: either recover from buffer overflow or prevent overflow to
happen.

The first idea (recovery) is used in PM. The receiver simply discards incom-
ing packets if it has no room for them. It returns an acknowledgement (ACK or
NACK) to the sender to indicate whether or not it accepted the packet. A NACK
indicates a packet was discarded; the sender will later retransmit that packet. This
process continues until an ACK is received, in which case the sender can release

32 Network Interface Protocols

the buffer space for the message. This protocol is fairly simple; the main disad-
vantages are the extra acknowledgement messages and the increased network load
when retransmissions occur.

A key property of the protocol is that it never drops acknowledgements. By as-
sumption, Myrinet is reliable, so the network hardware always delivers acknowl-
edgements to their destination. When an acknowledgement arrives, the receiver
processes it completely before it accepts a new packet from the network, so at
most one acknowledgement needs to be buffered. (Myrinet’s hardware flow con-
trol ensures that pending network packets are not dropped.)

Unlike an acknowledgement, a data packet cannot always be processed com-
pletely once it has been received. A data packet needs to be transferred from the
NI to the host, which requires several resources: at least a free host buffer and a
DMA engine. If the wait time for one of these resources (e.g., a free host buffer)
is unbounded, then the NI cannot safely wait for that resource without receiving
pending packets, because the network hardware may then kill blocked packets.

The second approach is to prevent buffer overflow by using a flow control
scheme that blocks the sender if the receiver is running out of buffer space. For
large messages, BIP requires the application to deal with flow control by means
of a rendezvous mechanism: the receiver must post a receive request and provide
a buffer before a message may be sent. That is, a large-message send never com-
pletes before a receive has been posted. FM and FM/MC implement flow control
using a host-level credit scheme. Before a host can send a packet, it needs to
have a credit for the receiver; the credit represents a packet buffer in the receiver’s
memory. Credits can be handed out in advance by pre-allocating buffers for spe-
cific senders, but if a sender runs out of credits it must block until the receiver
returns new credits.

A host-level credit scheme prevents overflow of host buffers, but not of NI
buffers, which are usually even scarcer (because NI memory is smaller than host
memory). With some protocols, the NI temporarily stops receiving messages if
the NI buffers overflow. Such protocols rely on Myrinet’s hardware, link-level,
flow control mechanism (backpressure) to stall the sender in such a case.

The protocols described so far implement a reliable interface by depending
on the reliability of the hardware. Several other protocols do not assume the
network to be reliable, and either present an unreliable programming interface
or implement a retransmission protocol. U-Net and Trapeze present an unreli-
able interface and expect higher software layers (e.g., MPI, TCP) to retransmit
lost messages. Other systems do provide a reliable interface, by implementing a
timeout-retransmission mechanism, either on the host or the NI. The cost of set-
ting timers and processing acknowledgements is modest, typically no more than a
few microseconds.

2.7 Multicast 33

Fig. 2.4. Repeated send versus a tree-based multicast.

2.7 Multicast

Multicasting occurs in many communication patterns, ranging from a straight-
forward broadcast to the more complicated all-to-all exchange [84]. Message-
passing systems like MPI [45] directly support such patterns by means of collec-
tive communication services and thus rely on an efficient multicast implementa-
tion. In addition, various higher-level systems use multicasting to update repli-
cated shared data [9].

Today’s wormhole-routed networks, including Myrinet, do not support reli-
able multicasting at the hardware level; multicast in wormhole-switched networks
is a hard problem and the subject of ongoing research [56, 128, 136, 135]. The
simplest way to implement a multicast in software is to let the sender send a
point-to-point message to each multicast destination. This solution is inefficient,
because the point-to-point startup cost is incurred for every multicast destination;
this cost includes the data copy to NI memory (possibly preceded by a copy to
a DMA area). With some NI support, the repeated copying can be avoided by
passing all multicast destinations to the NI, which then repeatedly transmits the
same packet to each destination. Such a ’multisend’ primitive is provided by PM.

Although more efficient than a repeated send on the host, a multisend still
leaves the network interface as a serial bottleneck. A more efficient approach is
to organize the sender and receivers into a multicast tree. The sender is the root
of the tree and transmits each multicast packet to all its children (a subset of the
receivers). These children, in turn, forward each packet to their children, and so
on. Figure 2.4 contrasts the repeated-send and the tree-based multicast strategies.
Tree-based protocols allow packets to travel in parallel along the branches of the
tree and therefore usually have logarithmic rather than linear complexity.

Tree-based protocols can be implemented efficiently by performing the for-
warding of multicast packets on the NI instead of on the host [56, 68, 80, 146].
Verstoep et al. implemented such an NI-level spanning tree multicast as an exten-
sion of the Illinois Fast Messages [113] substrate; the resulting system is called
FM/MC (Fast Messages/MultiCast) [146].

34 Network Interface Protocols

An important issue in the design of a multicast protocol is flow control. Mul-
ticast flow control is more complex than point-to-point flow control, because the
sender of a multicast packet needs to obtain buffer space on all receiving NIs and
hosts. FM/MC uses a central buffer manager (implemented on one of the NIs)
to keep track of the available buffer space at all receivers. This manager handles
all requests for multicast buffers and allows senders to prefetch buffer space for
future multicasts. An advantage of this scheme is that it avoids deadlock by ac-
quiring buffer space in advance; a disadvantage is that it employs a central buffer
manager. An alternative scheme is to acquire buffers on the fly: the sender of a
multicast packet is responsible only for acquiring buffer space at its children in the
multicast tree. A more detailed discussion of FM/MC is given in Section 4.5.4.

2.8 Classification of User-Level Communication Sys-
tems

Table 2.2 classifies ten user-level communication systems and shows how each
system deals with the design issues discussed in this chapter. These systems
all aim for high performance and all provide a lean, low-level, and more or less
generic communication facility. All systems except VMMC and U-Net were de-
veloped first on a Myrinet platform.

Most systems implement a straightforward message-passing model. The sys-
tems differ mainly in their reliability and protection guarantees and their support
for multicast. Several systems use active messages [148]. With active messages,
the sender of a message specifies not only the message’s destination, but also a
handler function, which is invoked at the destination when the message arrives.

VMMC, VMMC-2, and Hamlyn provide virtual memory-mapped and sender-
based communication instead of message passing. In both models the sender
specifies where in the receiver’s address space the communicated data must be
deposited. This model allows data to be moved directly to its destination without
any unnecessary copying.

In addition to the research projects listed in Table 2.2, industry has recently
created a draft standard for user-level communication in cluster environments [51,
149]. Implementations of this Virtual Interface (VI) architecture have been con-
structed by UC Berkeley, GigaNet, Intel, and Tandem. Giganet sells a hardware
VI implementation. The others implement VI in device driver software, in NI
firmware, or both. Speight et al. discuss the performance of one hardware and one
software implementation [130].

2.8 Classification of User-Level Communication Systems 35
Sy

st
em

D
at

a
tr

an
sf

er
(h

os
t-

N
I)

A
dd

re
ss

tr
an

sl
at

io
n

P
ro

te
ct

io
n

C
on

tr
ol

tr
an

sf
er

R
el

ia
bi

lit
y

M
ul

ti
ca

st
su

pp
or

t
A

M
-I

I
PI

O
+

D
M

A
D

M
A

ar
ea

s
Y

es
Po

lli
ng

+
in

te
rr

up
ts

R
el

ia
bl

e.
N

I:
al

te
rn

at
in

g
bi

t.
H

os
t:

sl
id

in
g

w
in

do
w

.

N
o

FM
PI

O
D

M
A

ar
ea

(r
ec

ei
ve

)
N

o
Po

lli
ng

R
el

ia
bl

e.
H

os
t-

le
ve

lc
re

di
ts

.
N

o

FM
/M

C
PI

O
D

M
A

ar
ea

(r
ec

ei
ve

)
N

o
Po

lli
ng

+
in

te
rr

up
ts

R
el

ia
bl

e.
U

ca
st

:
ho

st
-l

ev
el

cr
ed

its
.

M
ca

st
:

N
I-

le
ve

lc
re

di
ts

.

Y
es

(o
n

N
I)

PM
D

M
A

So
ft

w
ar

e
T

L
B

on
N

I
Y

es
(g

an
g

sc
he

du
lin

g)
Po

lli
ng

R
el

ia
bl

e.
A

C
K

/N
A

C
K

pr
ot

oc
ol

on
N

I.
M

ul
tip

le
se

nd
s

V
M

M
C

D
M

A
So

ft
w

ar
e

T
L

B
on

N
I

Y
es

Po
lli

ng
+

in
te

rr
up

ts
R

el
ia

bl
e.

E
xp

lo
its

ha
rd

-
w

ar
e

ba
ck

pr
es

su
re

.
N

o

V
M

M
C

-2
D

M
A

U
T

L
B

in
ke

rn
el

,
ca

ch
ed

on
N

I
Y

es
Po

lli
ng

+
in

te
rr

up
ts

R
el

ia
bl

e.
N

o

H
am

ly
n

PI
O

+
D

M
A

D
M

A
ar

ea
s

Y
es

Po
lli

ng
+

in
te

rr
up

ts
R

el
ia

bl
e.

E
xp

lo
its

ha
rd

-
w

ar
e

ba
ck

pr
es

su
re

.
N

o

T
ra

pe
ze

D
M

A
D

M
A

to
pa

ge
fr

am
es

N
o

Po
lli

ng
+

in
te

rr
up

ts
U

nr
el

ia
bl

e.
N

o

B
IP

PI
O

+
D

M
A

U
se

r
tr

an
sl

at
es

N
o

Po
lli

ng
R

el
ia

bl
e.

R
en

de
zv

ou
s

an
d

ba
ck

pr
es

su
re

.
N

o

U
-N

et
D

M
A

T
L

B
on

N
I

(U
-N

et
/M

M
)

Y
es

Po
lli

ng
+

in
te

rr
up

ts
U

nr
el

ia
bl

e.
N

o

T
ab

le
2.

2.
Su

m
m

ar
y

of
de

si
gn

ch
oi

ce
s

in
ex

is
tin

g
co

m
m

un
ic

at
io

n
sy

st
em

s.

36 Network Interface Protocols

2.9 Summary

This chapter has discussed several design issues and tradeoffs for NI protocols, in
particular:

� how to transfer data between hosts and NIs (DMA or programmed I/O);

� how to avoid copying to and from DMA areas by means of address transla-
tion techniques;

� how to achieve protected, user-level network access in a multi-user environ-
ment;

� how to transfer control (interrupts, polling, or both);

� how and where to implement reliability (application, hosts, NIs);

� whether to implement additional functionality on the NIs, such as multicast.

An interesting observation is that many novel techniques exploit the programma-
ble NI processor (e.g., for address translation). Programmable NIs are flexible,
which compensates for the lack of hardware support present in the more advanced
interfaces used by MPPs. Eventually, hardware implementations may be more
efficient, but the availability of a programmable NI has enabled fast and easy ex-
perimentation with different protocols for commodity network interfaces. As a
result, the performance of these protocols has substantially increased. In com-
bination with the economic advantages of commodity networks, this makes such
networks a key technology for parallel cluster computing.

An efficient network interface protocol, however, does not suffice; what counts
is application performance. As discussed in Section 1.1, most application pro-
grammers use a parallel-programming system to develop their applications. There
is a large gap between the high-level abstractions provided by these programming
systems and the low-level interfaces of the communication architectures discussed
in this chapter. It is not a priori clear that all types of programming systems can
be implemented efficiently on all of these low-level systems.

Chapter 3

The LFC User-Level
Communication System

This chapter describes LFC, a new user-level communication system. LFC dis-
tinguishes itself from other systems by the way it divides protocol tasks between
the host processor and the network interface (NI). In contrast with communication
systems that minimize the amount of protocol code executed on the NI, LFC ex-
ploits the NI to implement flow control, to forward multicast traffic, to reduce the
overhead of network interrupts, and to perform synchronization operations. This
chapter describes LFC’s user interface and gives an overview of LFC’s implemen-
tation on the computer cluster described in Section 1.6. LFC’s NI-level protocols
are described separately in Chapter 4.

This chapter is structured as follows. Section 3.1 describes LFC’s program-
ming interface. Section 3.2 states the key assumptions that we made in LFC’s
implementation. Section 3.3 gives an overview of the main components of the
implementation. Subsequent sections describe LFC’s packet format (Section 3.4),
data transfer mechanisms (Section 3.5), host buffer management (Section 3.6),
the implementation of message detection and dispatch (Section 3.7), and the im-
plementation of a fetch-and-add primitive (Section 3.8). Section 3.9 discusses
limitations of the implementation. Finally, Section 3.10 discusses related work.

3.1 Programming Interface

LFC aims to support the development of parallel runtime systems rather than the
development of parallel applications. Therefore, LFC provides an efficient, low-
level interface rather than a high-level, user-friendly interface. In particular, LFC
does not fragment large messages and does not provide a demultiplexing mecha-
nism. As a result, the user of LFC has to write code for fragmenting, reassembling,

37

38 The LFC User-Level Communication System

and demultiplexing messages. This interface requires extra programming effort,
but at the same time offers high performance to all clients. The most important
functions of the interface are listed in Table 3.1.

3.1.1 Addressing

LFC’s addressing scheme is simple. Each participating process is assigned a
unique process identifier, a number in the range [0 : : :P�1], where P is the number
of participating processes. This number is determined at application startup time
and remains fixed during the application’s lifetime. LFC maps process identifiers
to host addresses and network routes.

3.1.2 Packets

LFC clients use packets to send and receive data. Packets have a maximum size
(1 Kbyte by default); messages larger than this size must be fragmented by the
client. LFC deliberately does not provide a higher-level abstraction that allows
clients to construct messages of arbitrary sizes. Such abstractions impose over-
head and often introduce a copy at the receiving side when data arrives in packet
buffers that are not contiguous in memory. Clients that need only sequential ac-
cess to message fragments can avoid this copy by using stream messages [90]. An
efficient implementation of stream messages on top of LFC is described in Sec-
tion 6.3. Even with stream messages, however, some overhead remains in the form
of procedure calls, auxiliary data structures, and header fields that some clients
simply do not need. Our implementation of CRL, for example, is constructed
directly on LFC’s packet interface, without intermediate message abstractions.

LFC distinguishes between send packets and receive packets. Send packets
reside in NI memory. Clients can allocate a send packet and store data into it using
normal memory writes (i.e., using programmed I/O). At the receiving side, LFC
uses the DMA area approach described in Section 2.1, so receive packets reside
in pinned host memory.

Both send and receive packets form a scarce resource, for which only a limited
amount of memory is available. Send packets are stored in NI memory, which is
typically small: the memory sizes of current NIs range from a few hundred kilo-
bytes to a few megabytes. Receive buffers are stored in pinned host memory.
In a multiprogramming environment, where user processes compete for CPU cy-
cles and memory, most operating systems do not allow a single user to pin large
amounts of memory.

3.1 Programming Interface 39
vo

id
*l

fc
se

nd
al

lo
c(

in
tu

pc
al

ls
al

lo
w

ed
)

A
llo

ca
te

s
a

se
nd

pa
ck

et
bu

ff
er

in
N

I
m

em
or

y
an

d
re

tu
rn

s
a

po
in

te
r

to
th

e
pa

ck
et

’s
da

ta
pa

rt
.

Pa
ra

m
et

er
up

ca
ll

s
al

lo
w

ed
ha

s
th

e
sa

m
e

m
ea

ni
ng

in
al

l
fu

nc
tio

ns
.

It
in

di
ca

te
s

w
he

th
er

up
ca

lls
ca

n
be

m
ad

e
w

he
n

ne
tw

or
k

dr
ai

ni
ng

oc
cu

rs
du

ri
ng

ex
ec

ut
io

n
of

th
e

fu
nc

tio
n.

in
tl

fc
gr

ou
p

cr
ea

te
(

un
si

gn
ed

*m
em

be
rs

,u
ns

ig
ne

d
nm

em
be

r)

C
re

at
es

a
m

ul
tic

as
tg

ro
up

an
d

re
tu

rn
s

a
gr

ou
p

id
en

tifi
er

.T
he

pr
oc

es
s

id
en

tifi
er

s
of

al
ln

m
em

be
rs

m
em

be
rs

ar
e

st
or

ed
in

m
em

be
rs

.
vo

id
lfc

uc
as

t
la

un
ch

(u
ns

ig
ne

d
de

st
,

vo
id

*p
kt

,u
ns

ig
ne

d
si

ze
,i

nt
up

ca
lls

al
lo

w
ed

)

T
ra

ns
m

its
th

e
fir

st
si

ze
by

te
s

of
se

nd
pa

ck
et

pk
t

to
pr

oc
es

s
de

st
an

d
tr

an
sf

er
s

ow
ne

rs
hi

p
of

th
e

pa
ck

et
to

L
FC

.
vo

id
lfc

bc
as

t
la

un
ch

(

vo
id

*p
kt

,u
ns

ig
ne

d
si

ze
,i

nt
up

ca
lls

al
lo

w
ed

)

B
ro

ad
ca

st
s

th
e

fir
st

si
ze

by
te

s
of

se
nd

pa
ck

et
pk

t
to

al
l

pr
oc

es
se

s
ex

ce
pt

th
e

se
nd

er
an

d
tr

an
sf

er
s

ow
ne

rs
hi

p
of

th
e

pa
ck

et
to

L
FC

.
vo

id
lfc

m
ca

st
la

un
ch

(in
tg

id
,

vo
id

*p
kt

,u
ns

ig
ne

d
si

ze
,i

nt
up

ca
lls

al
lo

w
ed

)

M
ul

tic
as

ts
th

e
fir

st
si

ze
by

te
s

of
se

nd
pa

ck
et

pk
t

to
al

l
m

em
be

rs
of

gr
ou

p
gi

d
an

d
tr

an
sf

er
s

ow
ne

rs
hi

p
of

th
e

pa
ck

et
to

L
FC

.
vo

id
lfc

po
ll(

vo
id

)
D

ra
in

s
th

e
ne

tw
or

k
an

d
in

vo
ke

s
th

e
cl

ie
nt

-s
up

pl
ie

d
pa

ck
et

ha
nd

le
r

(l
fc

up
ca

ll
()

)
fo

r
ea

ch
pa

ck
et

re
m

ov
ed

fr
om

th
e

ne
tw

or
k.

vo
id

lfc
in

tr
di

sa
bl

e(
vo

id
)

vo
id

lfc
in

tr
en

ab
le

(v
oi

d)
D

is
ab

le
an

d
en

ab
le

ne
tw

or
k

in
te

rr
up

ts
.

T
he

se
fu

nc
tio

ns
m

us
t

be
ca

lle
d

in
pa

ir
s,

w
ith

lf
c

in
tr

di
sa

bl
e(

)
go

in
g

fir
st

.
in

tl
fc

up
ca

ll(

un
si

gn
ed

sr
c,

vo
id

*p
kt

,u
ns

ig
ne

d
si

ze
,l

fc
up

ca
ll

fla
gs

tfl
ag

s)

L
fc

up
ca

ll
()

is
th

e
cl

ie
nt

-s
up

pl
ie

d
fu

nc
tio

n
th

at
L

FC
in

vo
ke

s
on

ce
pe

r
in

co
m

in
g

pa
ck

et
.

P
kt

po
in

ts
to

th
e

da
ta

ju
st

re
ce

iv
ed

(s
iz

e
by

te
s)

an
d

fla
gs

in
di

ca
te

s
w

he
th

er
or

no
t

pk
t

is
a

m
ul

tic
as

t
pa

ck
et

.
If

lf
c

up
ca

ll
()

re
tu

rn
s

no
nz

er
o,

th
e

cl
ie

nt
be

co
m

es
th

e
ow

ne
r

of
pk

t
an

d
m

us
t

la
te

r
re

le
as

e
pk

t
us

in
g

lf
c

pa
ck

et
fr

ee
()

.
O

th
er

w
is

e,
L

FC
re

cy
cl

es
pk

ti
m

m
ed

ia
te

ly
.

vo
id

lfc
pa

ck
et

fr
ee

(v
oi

d
*p

kt
)

R
et

ur
ns

ow
ne

rs
hi

p
of

re
ce

iv
e

pa
ck

et
pk

tt
o

L
FC

.
un

si
gn

ed
lfc

fe
tc

h
an

d
ad

d(

un
si

gn
ed

va
r,

in
tu

pc
al

ls
al

lo
w

ed
)

A
to

m
ic

al
ly

in
cr

em
en

ts
th

e
F&

A
va

ri
ab

le
id

en
tifi

ed
by

va
r

an
d

re
-

tu
rn

s
th

e
va

lu
e

of
va

r
be

fo
re

th
e

in
cr

em
en

t.

T
ab

le
3.

1.
L

FC
’s

us
er

in
te

rf
ac

e.
O

nl
y

th
e

es
se

nt
ia

lf
un

ct
io

ns
ar

e
sh

ow
n.

40 The LFC User-Level Communication System

3.1.3 Sending Packets

LFC provides three send routines: lfc ucast launch() sends a point-to-point packet,
lfc bcast launch() broadcasts a packet to all processes, and lfc mcast launch()
sends a packet to all processes in a multicast group. Each multicast group contains
a fixed subset of all processes. Multicast groups are created once and for all at ini-
tialization time, so processes cannot join or leave a multicast group dynamically.
For reasons described in Appendix A, multicast groups may not overlap.

To send data, a client must perform three steps:

1. Allocate a send packet with lfc send alloc(). Lfc send alloc() returns a
pointer to a free send packet in NI memory and transfers ownership of the
packet from LFC to the client.

2. Fill the send packet, usually with a client-specific header and data.

3. Launch the packet with lfc ucast launch(), lfc mcast launch(), or lfc bcast -
launch(). These functions transmit the packet to one, multiple, or all des-
tinations, respectively. LFC transmits as many bytes as indicated by the
client. Ownership of the packet is transferred back to LFC. This implies
that the allocation step (step 1) must be performed for each packet that is to
be transmitted. No packet can be transmitted multiple times.

Steps 1 and 3 may block due to the finite number of send packet buffers and the
finite length of the NI’s command queue. To avoid deadlock, LFC continues to
receive packets while it waits for resources (see Section 3.1.4).

The send procedure avoids intermediate copying: clients can gather data from
various places (registers, different memory regions) and use programmed I/O to
store that data directly into send packets. An alternative is to use DMA trans-
fers, which consume fewer processor cycles and require fewer bus transfers. For
message sizes up to 1 Kbyte, however, programmed I/O moves data from host
memory to NI memory faster than the NI’s DMA engine (see Figure 2.2). Fur-
thermore, programmed I/O can easily move data from any virtual address in the
client’s address space to the NI, while DMA can be used only for pinned pages.

The send procedure separates packet allocation and packet transmission. This
allows clients to hide the overhead of packet allocation. The CRL implementation
on LFC, for example, allocates a new send packet immediately after it has sent a
packet. Since the CRL runtime frequently waits for a reply message after sending
a request message, it can often hide the cost of allocating a send packet.

3.1 Programming Interface 41

3.1.4 Receiving Packets

LFC copies incoming network packets from the NI to receive packets in host
memory. LFC delivers receive packets to the receiving process by means of an
upcall [38]. An upcall is a function that is defined in one software layer and
that is invoked from lower-level software layers. Upcalls are used to perform
application-specific processing at times that cannot be predicted by the applica-
tion. Since LFC does not know what a client aims to do with its incoming packets,
the client must supply an upcall function. This function, named lfc upcall(), is in-
voked by LFC each time a packet arrives; it transfers ownership of a receive packet
from LFC to the client. Usually, this function either copies the packet or performs
a computation using the packet’s contents. (The computation can be as simple
as incrementing a counter.) The upcall’s return value determines whether or not
ownership of the packet is returned to LFC. If the client keeps the packet, then
the packet must later be released explicitly by calling lfc packet free(), otherwise
LFC recycles the packet immediately. The main advantage of this interface is
that it does not force the client to copy packets that cannot be processed immedi-
ately. Panda exploit this property in its implementation of stream messages (see
Section 6.3).

Many systems based on active messages [148], invoke message handlers
while draining the network. (Draining the network consists of moving packets
from the network to host memory and is necessary to avoid congestion and dead-
lock.) The clients of such systems must be prepared to handle packets whenever
draining can occur. Unfortunately, draining sometimes occurs at inconvenient
times. Consider, for example, the case in which a message handler sends a mes-
sage. If the system drains the network while sending this message, it may recur-
sively activate the same message handler (for another incoming message). Since
the system does not guarantee atomic handler execution, the programmer must
protect global data against interleaved accesses by multiple handlers. Using a
lock to turn the entire handler into a critical region leads to deadlock. The recur-
sive invocation will block when it tries to enter the critical section occupied by the
first invocation. The first invocation, however, cannot continue, because it is wait-
ing for the recursive invocation to finish. Chapter 6 studies this upcall problem in
more detail and compares several solutions.

LFC separates network draining and handler invocation [28]. Draining occurs
whenever an LFC routine waits for resources (e.g., a free entry in the send queue),
when the user polls, or when the NI generates an interrupt. During draining,
however, LFC will invoke lfc upcall() only if one of the following conditions is
satisfied:

1. The client has not disabled network interrupts.

42 The LFC User-Level Communication System

2. The client invokes lfc poll().

3. The client invokes an LFC primitive with its upcalls allowed parameter set
to true (nonzero).

All LFC calls that potentially need to drain the network take an extra parameter
named upcalls allowed. If the client invokes a routine with upcalls allowed set
to false (zero), then LFC will drain the network if it needs to, but will not make
any upcalls. If the parameter is true, then LFC will drain the network and make
upcalls.

Separating draining and handler invocation is no panacea. If a client enables
draining but disables upcalls, LFC must buffer incoming network packets. To
prevent LFC from running out of receive packets the client must implement flow
control. This is crucial, because there is nothing LFC, or any communication
system, can do against clients that send an unbounded amount of data and do not
consume that data. The system will either run out of memory or deadlock because
it stops draining the network. Since LFC’s current clients do not implement flow
control —at least, not for all their communication primitives— they cannot disable
upcalls and must therefore always be prepared to handle incoming packets.

With the current interface, clients cannot specify that the network must be
drained asynchronously, using interrupts, without LFC making upcalls. If a pro-
cess enters a phase in which it cannot process upcalls and in which it does not
invoke LFC primitives, then the network will not be drained. The MPI implemen-
tation described in Section 7.4, for example, does not use interrupts. Draining
occurs only during the invocation of LFC primitives. Since these primitives are
invoked only when the application invokes an MPI primitive, there is no guaran-
tee that a process will frequently drain the network. If a process sends a large
message to a process engaged in a long-running computation —i.e., a process that
does not drain— then LFC’s internal flow-control mechanism (see Section 4.1)
will eventually stall the sender, even if the receiver has space to store incoming
packets.

3.1.5 Synchronization

LFC provides an efficient fetch-and-add (F&A) primitive [127]. A fetch-and-add
operation fetches the current value of a logically shared integer variable and then
increments this variable. Since these actions are performed atomically, processes
can use the F&A primitive to synchronize their actions (e.g., to obtain the next
free slot in a shared queue).

LFC stores F&A variables in NI memory. The implementation provides one
F&A variable per NI and initializes all F&A variables to zero. There is no function

3.2 Key Implementation Assumptions 43

to set or reset F&A variables to a specific value, but such a function could easily
be added.

Panda uses a single F&A variable to implement totally-ordered broadcasting
(see Chapter 6). Totally-ordered broadcasting, in turn, is used by the Orca run-
time system to update replicated objects in a consistent manner (see Section 7.1).
Karamcheti et al. describe another interesting use of fetch-and-add in their pa-
per on pull-based messaging [76]. In pull-based messaging senders do not push
message data to receivers. Instead, a sender transmits only a message pointer to
the receiver. The receiver pulls in the message data when it is ready to receive.
Pull-based messaging reduces contention.

3.1.6 Statistics

Besides the functions listed in Table 3.1, LFC provides various statistics routines.
LFC can be compiled such that it counts events such as packet transmissions,
DMA transfers, etc. The statistics routines are used to reset, collect, and print
statistics.

3.2 Key Implementation Assumptions

We have implemented LFC on the computer cluster described in Section 1.6. The
implementation makes the following key assumptions:

1. The network hardware is reliable.

2. Multicast and broadcast are not supported in hardware.

3. Each host is equipped with an intelligent NI.

4. Interrupt processing is expensive.

Assumptions 1–3 pertain to network architecture. Among these three, the first
assumption, reliable network hardware, is the most controversial. We assume that
the network hardware neither drops nor corrupts network packets. With the excep-
tion of custom supercomputer networks (e.g., the CM-5 network [91]), however,
network hardware is usually considered unreliable. This may be due to the net-
work material (e.g., insufficient shielding from electrical interference) or to the
network architecture (e.g., lack of flow control in the network switches).

The second assumption, no hardware multicast, is satisfied by most switched
networks (e.g., ATM), but not by token rings and bus-based networks (e.g., Ether-
net). We assume that multicast and broadcast services must be implemented in
software. Efficient software multicast schemes use spanning tree protocols in

44 The LFC User-Level Communication System

which network nodes forward the messages they receive to their children in the
spanning tree (see Section 2.7).

The third assumption, the presence of an intelligent NI, enables the execution
of nontrivial protocol code on the NI. Intelligent NIs are used both in supercom-
puters (e.g., FLASH [85] and the IBM SP/2 [129]) and in cluster architectures
(e.g., Myrinet and ATM clusters). NI-level protocols form an important part of
LFC’s implementation (see Chapter 4).

The fourth assumption, expensive interrupts, is related to host-processor ar-
chitecture and operating system implementations. Modern processors have deep
pipelines, which must be flushed when an interrupt is raised. In addition, commer-
cial operating systems do not dispatch interrupts efficiently to user processes [143].
We therefore assume that interrupt processing is slow and that interrupts should
be used only as a last resort.

3.3 Implementation Overview

LFC consists of a library that implements LFC’s interface and a control program
that runs on the NI and takes care of packet transmission, receipt, forwarding, and
flow control. The control program implements the NI-level protocols described in
Chapter 4. In addition, several device drivers are used to obtain efficient access
to the network device. The library, the NI control program, and the device drivers
are all written in C.

3.3.1 Myrinet

Myrinet implements hardware flow control on the network links between com-
municating NIs and has a very low bit-error rate [27]. If all NIs use a single,
deadlock-free routing algorithm and are always ready to process incoming pack-
ets, then Myrinet will not drop any packets. In a single administrative domain of
modest size, such as our Myrinet cluster, these conditions can be satisfied. Con-
sequently, LFC assumes that Myrinet neither drops nor corrupts packets. The
limitations of this approach are discussed in more detail in Section 3.9.

3.3.2 Operating System Extensions

All cluster nodes run the Linux operating system (RedHat distribution 5.2, kernel
version 2.0.36). To support user-level communication, we added several device
drivers to the operating system.

Myricom’s Myrinet device driver was modified so that at most one user at
a time can open the Myrinet network device. When a user process opens the

3.3 Implementation Overview 45

device, the driver maps the NI’s memory contiguously into the user’s address
space, so the user process can read and write NI memory using normal load and
store instructions (i.e., programmed I/O). The driver also processes all interrupts
generated by the NI. Each time the driver receives an interrupt, it sends a SIGIO

software signal to the process that opened the device.
At initialization time, LFC’s library allocates a fixed number of receive pack-

ets from the client’s heap. The pages on which these packets are stored are pinned
by means of the mlock() system call. The client can specify the number of receive
packets that the library is to allocate. To transfer data from its memory into the
receive packets in host memory, the NI’s control program needs the physical ad-
dresses of the receive packets. To obtain these addresses, we implemented a small
pseudo device driver that translates a page’s virtual address to the corresponding
physical address. (A pseudo device driver is a kernel module with a device driver
interface but without associated hardware.) LFC’s library invokes this driver at
initialization time to compute each packet’s physical address.

Writes to device memory (e.g., NI memory) are normally not cached by the
writing processor, because the data written to device memory is unlikely to be
read back again by the processor. Moreover, in the case of write-back caching,
the device will not observe the writes until they happen to be flushed from the
cache. By disabling caching for device memory, however, performance is reduced
because a bus transaction must be set up for each word that is written to the device.
Write-back caches, in contrast, write complete cache lines to memory, which is
beneficial when a large contiguous chunk of data is written.

To speed up writes to NI memory, LFC uses the Pentium Pro’s ability to set the
caching properties of specific virtual memory ranges [71]. A small pseudo device
driver enables write combining for the virtual memory range to which the NI’s
memory is mapped. The Pentium Pro combines all writes to a write-combining
memory region in on-processor write buffers. Writes are delayed until the write
buffer is full or until a serializing instruction is issued. By aggregating writes to
NI memory, the processor can transfer these writes in larger bursts to the I/O bus,
which reduces the number of I/O bus arbitrations.

As discussed in Section 2.2, the use of write combining considerably speeds
up programmed I/O data transfers from host memory to NI memory. The main
disadvantage of applying write combining to a memory region is that writes to
that region may be reordered. Two sucessive writes are executed in program order
only if they are separated by a serializing instruction. When necessary, we use the
Pentium Pro’s atomic increment instruction to order writes.

46 The LFC User-Level Communication System

Type Resource Description
Hardware Send DMA engine Transfers packets from NI memory to the

network.
Receive DMA engine Transfers packets from the network to NI

memory.
Host/NI DMA engine Mainly used to transfer packets from NI

memory to host memory. Also used to
retrieve and update status information.

Software Send credits A send credit represents a data packet
buffer in some NI’s memory. For each
destination NI, there is a separate re-
source queue.

Host receive buffer A receive buffer in host memory.

Table 3.2. Resources used by the NI control program.

3.3.3 Library

LFC’s library implements all routines listed in Table 3.1. The library manages
send and receive buffers, communicates with the NI control program, and delivers
packets to clients. Host-NI communication takes place through shared variables
in NI memory, through DMA transfers between host and NI memory, and through
signals generated by the kernel in response to NI interrupts.

3.3.4 NI Control Program

The main task of the NI control program is to send and receive packets. Outgoing
and incoming packets use various hardware and software resources as they travel
through the NI. The control program acquires and activates these resources in the
right order for each packet. If the control program cannot acquire the next resource
that a packet needs, then it queues the packet on a resource-specific (software)
resource queue. All resources listed in Table 3.2, except the host receive buffers,
have an associated resource queue.

Three hardware resources are available for packet transfers: the send DMA
engine, the receive DMA engine, and the host/NI DMA engine. These engines
operate asynchronously: typically, the NI processor starts a DMA transfer and
continues with other work, periodically checking if the DMA engine has finished
its transfer. (Alternatively, a DMA engine can generate an interrupt when it has
completed a transfer. LFC’s control program, however, does not use interrupts.)

Software resources are used to implement flow control, both between commu-
nicating NIs and between an NI and its host. Send credits represent buffer space

3.3 Implementation Overview 47

in some NI’s memory and are used to implement NI-to-NI flow control (see Sec-
tion 4.1). Before an NI can send a data packet to another NI, it must acquire a send
credit for that NI. Similarly, before an NI can copy a data packet to host memory,
it must obtain a host buffer. Host buffer management is described in Section 3.6.

To utilize all resources efficiently, LFC’s control program is structured around
resources rather than packets. The program’s main loop polls several work queues
and checks if resources are idle. When the control program finds a task on one of
its work queues, it executes the task up to the point where the task needs a resource
that is not available. The task is then appended to the appropriate resource queue.
When the control program finds that a resource is idle, it checks the resource’s
queue for new work. If the queue is nonempty, a task is dequeued and the resource
is put back to use again.

The resource-centric structure optimizes resource utilization. In particular, all
DMA engines can be active simultaneously. By allowing the receive DMA of one
packet to proceed concurrently with the host DMA of another packet, we pipeline
packet transfers and obtain better throughput. A packet-centric program structure
would guide a single packet completely through the NI before starting to work on
another packet. With this approach, the control program uses at most one DMA
engine at a time, leaving the other DMA engines idle.

The resource-centric approach increases latency, because packets are enqueued
and dequeued each time they use some resource. To attack this problem, LFC’s
control program contains a fast path at the sending side, which skips all queueing
operations if all resources that a packet needs are available. We also experimented
with a receiver-side fast path, but found that the latency gains with this extra fast
path were small. To avoid code duplication, we therefore removed this fast path.

The control program acts in response to three event types:

1. send requests

2. DMA transfer completions

3. timer expiration

The control program’s main loop polls for these events and processes them.
Send requests are created by the host library in response to a client invocation

of one of the packet launch routines. Each send request is stored (using pro-
grammed I/O) in a queue in NI memory. The control program’s main loop polls
this queue for new requests.

DMA transfers are used to send and receive packets and to move received
packets to host memory. DMA transfer completion is signaled by means of bits
in the NI’s interrupt status register. When a packet transfer completes, the control
program moves the packet to its next processing stage and checks if it can put

48 The LFC User-Level Communication System

2 bytes

Myrinet tag

LFC tag

Source

Size

Credits

Tree

Deadlock channel

User data
(1024 bytes)

Fig. 3.1. LFC’s packet format.

the DMA engine to work again. The control program always restarts the receive
DMA engine so that it is always prepared for incoming packets.

Myrinet’s NI contains a timer with a granularity of 0.5 µs. The control program
uses this timer to delay interrupts (see Section 4.4). Timer expiration is signaled
by means of certain bits in the NI’s interrupt status register.

3.4 Packet Anatomy

LFC uses several packet types to carry user and control data across the network.
As shown in Figure 3.1, each packet consists of a 12-byte header and a 1024-byte
user data buffer. The buffer stores the data that a client wishes to transfer. LFC
does not interpret the contents of this buffer. When LFC allocates a send packet
(in lfc send alloc()) or passes a receive packet to lfc upcall(), the client receives a
pointer to the data buffer. Clients must neither read nor write the packet header,
but this is not enforced.

The header’s tag field consists of a 2-byte Myrinet tag. Every Myrinet com-
munication system can obtain its own tag range from Myricom. This tag range is
different from the tag ranges assigned to other registered Myrinet communication
systems. NIs can use the Myrinet tag to recognize and discard misrouted pack-

3.4 Packet Anatomy 49

Packet class LFC tag Function
Control CREDIT Explicit credit update

CHANNEL CLEAR Deadlock recovery
FA REPLY Fetch-and-add reply

Data UCAST Unicast packet
MCAST Multicast packet
FA REQUEST Fetch-and-add request

Table 3.3. LFC’s packet tags.

ets from different communication systems. All LFC packets carry Myrinet tag
0x0450.

LFC uses an additional tag field to identify different types of LFC packets.
Unicast and multicast packets, for example, use different tags, because the control
program treats unicast and multicast packets differently; multicast packets are
forwarded, whereas unicast packets are not. Table 3.3 lists the most important
packet tags.

We distinguish between control packets and data packets. Control packets
require only a small amount of NI-level processing. Unlike data packets, control
packets are never queued; when the NI receives a control packet, it processes
it immediately and then releases the buffer in which the packet arrived. Two
packet buffers suffice to receive and process all control packets. A second buffer is
needed because the control program always restarts the receive DMA engine (with
a free packet buffer as the destination address) before it processes the packet just
received.

Data packets go through more processing stages and use more resources. Each
UNICAST packet, for example, needs to be copied to host memory, but this can be
done only when a free host buffer and the DMA engine are available. When either
resource is unavailable, the control program queues the packet and starts working
on another packet. Since some resources (e.g., host buffers) may be unavailable
for an unpredictable amount of time, the control program may have to buffer many
data packets. The total number of packets that needs to be buffered is bounded by
LFC’s flow control protocol, which stalls senders when receiving NIs run out of
free packet buffers.

The source field in the packet header identifies the sender of a packet. At LFC
initialization time, the client passes to each LFC process the number of partici-
pating processes and assigns a unique process identifier to each process. Since
LFC allows only one process per processor, this process identifier also identifies
the processor and the NI. Each time an NI transmits a packet, LFC stores the NI’s
identifier in the source field.

50 The LFC User-Level Communication System

2. Network send and receive DMA transfers
1. Programmed I/O to network interface

3. DMA transfer to host memory

NI receive packetNI send packet

2

1

3

User data

Sender’s address space
Receiver’s address space

Pinned host receive packet
NI NI

Host Host

Fig. 3.2. LFC’s data transfer path.

The user data part of send packets has a maximum size of 1024 bytes, but
clients need not fill the entire data part. The size field specifies how many bytes
have been written into the user data part of a packet. These bytes are called the
valid user bytes and they must be stored contiguously at the beginning of a packet.
When LFC transfers a packet, it transfers the packet header and the valid user
bytes, but not the unused bytes at the end of the packet. This yields low latency
for small messages and high throughput for large messages.

The remaining header fields are described in detail in Chapter 4. The credits
field is used to piggyback flow control information to the packet’s destination.
The tree field identifies multicast trees. The deadlock channel field is used during
deadlock recovery.

LFC’s outgoing packets are tagged (in hardware) with a CRC that is checked
(in software) by LFC’s control program at the receiving side. CRC errors are
treated as catastrophic and cause LFC to abort. Lost packets are not detected.

3.5 Data Transfer

LFC transfers data in packets which are allocated from three packet buffer pools.
Each NI maintains a send buffer pool and a receive buffer pool. Hosts maintain
only a receive buffer pool; all buffers in this pool are stored in pinned memory.
The data transfer path in Figure 3.2 for unicast packets shows how these three
pools are used.

At the sending side, the client allocates send packets from the send buffer pool
in NI memory (transfer 1 in Figure 3.2). Programmed I/O is used to copy client
data directly, without operating system intervention, into a send packet. The client

3.5 Data Transfer 51

���������
���������
���������
���������

���������
���������
���������
���������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

��������
��������
��������
��������

���������
���������
���������
���������

Send descriptor

Send queue

Transmit queue

Network interface

Client data

Send buffer pool

Blocked-sends
queues

Fig. 3.3. LFC’s send path and data structures.

calls one of LFC’s launch routines, which writes a send descriptor into the NI’s
send queue (see Figure 3.3). The send descriptor contains the packet’s destina-
tion and a reference to the packet. The NI, which polls the send queue, inspects
the send descriptor. When credits are available for the specified destination, the
descriptor is moved to the transmit queue; the packet will be transmitted when
the descriptor reaches the head of this queue (transfer 2 in Figure 3.2). After the
packet has been transmitted, it is returned to the NI’s send packet pool.

When no send credits are available, the descriptor is added to a blocked-sends
queue associated with the packet’s destination. When credits flow back from some
destination, descriptors are moved from that destination’s blocked-sends queue to
the transmit queue. The details of the credit algorithm are described in Chapter 4.

The destination NI receives the incoming packet into a free packet buffer allo-
cated from its receive buffer pool. This pool is partitioned evenly among all NIs:
each NI owns a fixed number of the buffers in the receive pool and can fill these
buffers —and no more— by sending packets. Each buffer corresponds to one send
credit and filling a buffer corresponds to consuming a send credit.

Each host is responsible for passing the addresses of free host receive buffers
to its NI. These addresses are stored in a shared queue in NI memory (see Sec-
tion 3.6). As soon as a free host receive buffer is available, the NI copies the
packet to host memory (transfer 3 in Figure 3.2). After this copy, the NI receive
buffer is returned to its pool. When no host receive buffers are available, the NI

52 The LFC User-Level Communication System

Combined data and
status DMA transfer

Packet buffer in host memory

E

Data DMA transfer

F

E = EMPTYPacket buffer in network interface memory

Header Payload F

Status DMA transfer

Status field (polled by host)

Displacement field

F = FULL

Fig. 3.4. Two ways to transfer the payload and status flag of a network packet.
The dashed arrows illustrate a simple, but expensive manner. The solid arrow
indicates the optimized transfer.

simply does not copy packets to the host and does not release any of its receive
buffers. Eventually, senders will be stalled and remain stalled until the receiving
host posts new buffers.

Each host receive buffer contains a status field that indicates whether the con-
trol program has copied data into the buffer. The host uses this field to detect
incoming messages. Copying a packet from an NI receive buffer to a host re-
ceive buffer involves two actions: copying the packet’s payload to host mem-
ory and setting the status field in the host buffer to FULL. For efficiency, LFC
folds both actions into a single DMA transfer. This is illustrated in Figure 3.4,
which also shows a naive implementation that uses two DMA transfers to copy
the packet’s payload and status field. To avoid transferring the unused part of the
receive packet’s data field, the status field must be stored right after the packet’s
payload. (If it were stored in front of the data, the host could believe it received a
packet before all of that packet’s data had arrived.) The position of the FULL word
therefore depends on the size of the packet’s payload. The host, however, needs to
know in advance where to poll for the status field. The control program therefore
transfers the packet’s payload and the FULL word to the end of the host receive
buffer. In addition, the control program transfers a word that holds the payload’s
displacement relative to the beginning of the host’s receive buffer.

Once filled, the host buffer is passed to the client-supplied upcall routine. The
client decides when it releases this buffer. Once released, the buffer is returned to
the host receive buffer pool.

3.6 Host Receive Buffer Management 53

������
������
������
������

������
������
������
������

����
����
����
����

��
��
��
��

����
����
����
����

Head

Host memory

Host receive queue

Empty Tail

Network interface memory

DMA transfer

Shared queue

Fig. 3.5. LFC’s receive data structures.

Multicast packets follow the same path as unicast packets, but may addition-
ally be forwarded by receiving NIs to other destinations. An NI receive buffer that
contains a multicast packet is not returned to its pool until the multicast packet has
been forwarded to all forwarding destinations.

3.6 Host Receive Buffer Management

Each host has a pool of free host receive buffers. The client specifies the ini-
tial number of buffers in this pool. At initialization time, the library obtains the
physical1 address of each buffer in the pool and stores this address in the buffer’s
descriptor.

Besides the pool, the library manages a receive queue of host receive buffers
(see Figure 3.5). The library maintains three queue pointers. Head points to the
first FULL, but unprocessed packet buffer. This is the next buffer that will be
passed to lfc upcall(). Empty points to the first EMPTY receive buffer. This is the
next buffer that the library expects to be filled by the NI. Tail points to the last
buffer in the queue. When the library allocates new receive buffers from the pool,
it appends them to the receive queue and advances tail.

Each time the library appends a buffer to its receive queue, it also appends
the physical address of the buffer to a shared queue in NI memory. When the
NI control program receives a network packet, it tries to fetch an address from

1To be precise, we obtain the bus address. This is a device’s address for a particular host
memory location. On some architectures, this address can be different from the physical address
used by the host’s CPU, but on Intel’s x86 architecture the bus address and the physical address
are identical.

54 The LFC User-Level Communication System

the shared queue and copy the packet to this address. When the shared queue is
empty, the control program defers the transfer until the queue is refilled by the
host library.

It is not necessary to separate the receive queue and the pool, but doing so often
reduces the memory footprint of the host receive buffers. In most cases, we keep
only a small number of buffers on the receive queue. As long as the client is able
to use and reuse these buffers, only a small portion of the processor’s data cache
is polluted by host receive buffers. In some cases, however, clients need more
buffers, which are then allocated from the pool and added to the receive queue. In
those cases, a larger portion of the cache will be polluted by host receive buffers.

When the library needs to drain (see Section 3.1.4), it performs two actions:

1. If the packet pointed to by empty has been filled, the library advances empty.
If empty cannot be advanced (because all packets are full) and upcalls are
not allowed, then the library appends a new buffer from the pool to both
queues.

2. If head does not equal empty and upcalls are allowed, the library dequeues
head and calls lfc upcall(), passing head as a parameter. Head is then ad-
vanced. If there are no buffers left in the receive queue, then the library ap-
pends a new buffer from the pool to both queues before calling lfc upcall().

Packets freed by clients are appended to both queues, unless the queue already
contains a sufficient number of empty packets. In the latter case, the packet is
returned to the buffer pool.

3.7 Message Detection and Handler Invocation

LFC delivers packets to a receiving process by invoking lfc upcall(). This routine
is either invoked sychronously, in the context of a client call to a draining LFC
routine, or asynchronously, in the context of a signal handler. Here, we discuss
the implementation of both mechanisms.

Each invocation of lfc poll() checks if the control program has copied a new
packet to host memory. If lfc poll() finds a new packet, it invokes lfc upcall(),
passing the packet as a parameter. To allow fair scheduling of the client computa-
tion and the packet handler, lfc poll() delivers at most one network packet.

The check for the next packet is implemented by reading the status field of the
next undelivered packet buffer (empty in Figure 3.5). When this buffer’s address
was passed to the control program, its status field is set to EMPTY. The poll
succeeds when the host detects that this field has been set to FULL. This polling

3.7 Message Detection and Handler Invocation 55

strategy is efficient, because the status field resides in host memory and will be
cached (see Section 2.5).

Asynchronous packet delivery is implemented cooperatively by LFC’s control
program, the Myrinet device driver, and LFC’s library. In principle, LFC’s con-
trol program generates an interrupt after it has copied a packet to host memory.
However, since the receiving process may poll, the control program delays its in-
terrupts. Myrinet NIs contain an on-board timer with 0.5 µs granularity. When
a packet arrives, the control program sets this timer to a user-specified timeout
value (unless the timer is already running). An interrupt is generated only if the
host fails to process a packet before the timer expires. The details of this polling
watchdog mechanism are described in Chapter 4.

Interrupts generated by the control program are received by the operating sys-
tem kernel, which passes them to the Myrinet device driver. The driver transforms
the interrupt into a user-level software signal and sends this network signal to the
client process. These signals are normally caught by the LFC library. The library’s
signal handler checks if the client is running with interrupts enabled. If this is the
case, the signal handler invokes lfc poll() to process pending packets; otherwise it
returns immediately.

Recall that clients may dynamically disable and enable network interrupts.
For efficiency, the interrupt status manipulation functions are implemented by
toggling an interrupt status flag in host memory, without any communication or
synchronization with the control program. Before sending an interrupt, the con-
trol program fetches (using a DMA transfer) the interrupt status flag from host
memory. No interrupt is generated when the flag indicates that the client disabled
interrupts.

Since the library does not synchronize with the control program when it ma-
nipulates the interrupt status flag, two races can occur:

1. The control program may raise an interrupt just after the client disabled
interrupts. Unless precautions are taken, the signal handler will invoke the
packet handler even though the client explicitly disabled interrupts. To solve
this problem, LFC’s signal handler always checks the interrupt status flag
before invoking lfc poll() and ignores the signal if the race occurred. In
practice, this race does not occur very often, so the advantage of inexpensive
interrupt manipulation outweighs the cost of spurious interrupts.

2. The control program may decide not to raise an interrupt just after the client
(re-)enabled interrupts. This race is fatal for clients that rely on interrupts
for correctness. To avoid lost interrupts, the control program continues to
generate periodic interrupts for a packet until the host has processed that
packet (see Chapter 4).

56 The LFC User-Level Communication System

3.8 Fetch-and-Add

The F&A implementation is straightforward. Every NI stores one F&A variable,
which is identified by the var argument in lfc fetch and add() (see Table 3.1).
Lfc fetch and add() performs a remote procedure call to the NI that stores the
F&A variable. The process that invoked lfc fetch and add() allocates a request
packet, tags it with tag FA REQUEST, and appends it to the NI’s host send queue.

When the destination NI receives the request, it increments its F&A variable
and stores the previous value in a reply packet. The reply packet, a control packet
tagged FA REPLY, is then appended to the NI’s transmit queue.

The implementation assumes that each participating process can issue at most
one F&A request at a time. To allow multiple outstanding requests, we need
a form of flow control that prevents the NI that processes those requests from
running out of memory as it creates and queues FA REPLY packets. FA REQUEST

packets consume credits, but those credits are returned as soon as the request has
been received and possibly before a reply has been generated.

When the reply arrives at the requesting NI, the control program copies the
F&A result from the reply to a location in NI memory that is polled by lfc fetch -
and add(). When lfc fetch and add() finds the result, it returns it to the client.

This implementation is simple and efficient. The FA REQUEST packet is han-
dled entirely by the receiving NI, without any involvement of the host to which
the NI is attached. This is particularly important when processes issue many F&A
requests. Many of these requests would either be delayed or generate interrupts if
they had to be handled by the host.

The implementation uses a data packet for the request and a control packet for
the reply. The request is a data packet only because the current implementation of
LFC does not allow hosts to send control packets. Although this is easy to add, it
will increase the send overhead for all packets, because the NI will have to check
if the host sends a data or a control packet.

3.9 Limitations

The implementation of LFC on Myrinet makes a number of simplifying assump-
tions, some of which limit its applicability in a production environment. We dis-
tinguish between functional limitations and security violations.

3.9.1 Functional Limitations

LFC’s functional limitations are all related to the assumption that LFC will be
used in a homogeneous, dedicated computing environment.

3.9 Limitations 57

Homogeneous Hosts

LFC assumes that all host processors use the same byte order. Adding byte swap-
ping for packet headers is straightforward and will add little overhead. (It is the
client’s responsibility to convert the data contained in network packets; LFC does
not know what type of data clients store in their packets.) Since our cluster’s host
processors are little-endian and the NI is big-endian, some byte swapping is al-
ready used for data that needs to be interpreted both by the host processor and
the NI. This concerns mainly shared descriptors and packet headers; user data
contained in packets is not interpreted by LFC and is never byte-swapped.

Device Sharing

LFC can service at most one user process per host, mainly because LFC’s control
program does not separate the packets from different users. In our current envi-
ronment (DAS), the Myrinet device driver returns an error if a second user tries to
obtain access to the Myrinet device.

Multiple users can be supported by giving different users access to different
parts of the NI’s memory. This can be achieved by setting up appropriate page
mappings between the user’s virtual address space and the NI’s memory. If this
is done, the NI’s control program must poll multiple command queues located on
different memory pages, which is likely to have some impact on performance.

Newer Myrinet network interfaces provide a doorbell mechanism. This mech-
anism detects host processor writes to certain regions and appends the target ad-
dress and value written to a FIFO queue. With this doorbell mechanism, the NI
need not poll all the pages that different processes can write to; it need only poll
the FIFO queue.

Recall that LFC partitions the available receive buffer space in NI memory
among all participating nodes. If the NI’s memory is also partitioned to support
multiprogramming, then the available buffer space per process will decrease no-
ticeably. Each process will be given fewer send credits per destination process,
which reduces performance. A simple, but expensive solution is to buy more
memory. However, this may only be possible to a limited extent. A less expensive
and more scalable solution is to employ swapping techniques such as described in
Section 2.4.

Fixed Process Configuration

LFC assumes that all of an application’s processes are known at application startup
time; users cannot add or remove processes to the initial set of processes. The
main obstacle to adding processes dynamically is that LFC evenly divides all NI
receive buffers (or rather, the send credits that represent them) among the initial

58 The LFC User-Level Communication System

set of processes. When a process is added, send credits must be reallocated in a
safe way.

Reliable Network

LFC assumes that the network hardware never drops or corrupts packets. While
LFC tests for CRC errors in incoming packets, it does not recover from such
errors. Lost packets are not detected at all.

A retransmission mechanism would allow an LFC application to tolerate tran-
sient network failures. In addition, retransmission allows communication proto-
cols to drop packets when they run out of resources. With retransmission, LFC
would not need to partition NI receive buffers among all senders. Chapter 8 con-
siders alternative implementations which do retransmit dropped and corrupted
packets.

3.9.2 Security Violations

LFC does not limit a user process’s access to the NI and is therefore not secure.
Any user process with NI access can crash any other process or even the kernel.
With a little kernel support, though, LFC can be made secure; the techniques to
achieve secure user-level communication are well-known. Moreover, LFC’s send
and receive methods require relatively simple and inexpensive security mecha-
nisms. Below, we describe the security problems in more detail. Where necessary,
we also provide solutions. These solutions have not been implemented.

Network Interface Access

LFC (or rather, the Myrinet device driver used by LFC) allows an arbitrary process
to map all NI memory into its address space and does not restrict access to this
memory. As a result, users can freely modify the NI control program. Once
modified, the control program can both read and write all host memory locations.

Access to the NI can be restricted by mapping only part of the NI’s memory
into a process’s address space. The process is not given any access to the con-
trol program or to another process’s pages. LFC can easily be modified to work
with a device driver that implements this type of protection and the expected the
performance impact is small. The page mappings can be set up at application ini-
tialization time so that the cost of setting up these mappings is not incurred on the
critical communication path.

3.10 Related Work 59

Address Translation

The LFC library passes the physical memory addresses of free host receive buffers
to the control program. Since the control program does not check if these ad-
dresses are valid, a malicious program can pass an illegal address, which the con-
trol program will use as the destination of a DMA transfer.

A simple solution is to have all host receive buffers allocated by a trusted
kernel module. This module assigns to each buffer an index (a small integer) and
maps this index to the buffer’s physical address. The mapping is passed to the NI,
but not to the user process. The user process, i.e., the LFC library, is only given
each buffer’s virtual address and its index. Instead of passing a buffer’s physical
address to the NI, the library will pass the buffer’s index. The NI control program
can easily check if the index it receives is valid. This way, DMA transfers to host
memory can only target the buffers allocated by the trusted kernel module.

Another solution is to use a secure address translation mechanism such as
VMMC-2’s user-managed TLB [49] (see Section 2.3). This scheme is more in-
volved, but supports dynamic pinning and unpinning of any page in the user’s
address space, whereas the scheme above would pin all host receive buffers once
and for all.

Foreign Packets

LFC’s control program makes no serious attempt to reject network packets that
originate from another application. LFC rejects only packets that do not carry
LFC’s Myrinet tag or that carry an out-of-range LFC tag. Consequently, mali-
cious or faulty programs can send a packet to any other application as long as the
packet carries tags known by LFC. The Hamlyn system [32] provides each paral-
lel application’s process with a shared random bit pattern that is appended to each
message and verified by the receiver. The bit pattern is sufficiently long that an
exhaustive search for its value is computationally infeasible.

3.10 Related Work

The design of LFC was motivated in part by the shortcomings of existing systems.
Since many of these systems were discussed in Chapter 2, we will not treat them
all again here.

LFC uses optimistic interrupt protection [134] to achieve atomicity with re-
spect to network signals. This technique was used in the Mach operating system
kernel to reduce the overhead of hardware interrupt-mask manipulation. With this
technique, interrupt-masking routines do not truly disable interrupts, but manipu-
late a software flag that represents the current interrupt mask. It is the responsi-

60 The LFC User-Level Communication System

bility of the interrupt handler to check this flag. If the flag indicates that interrupts
are not allowed, the interrupt handler creates an interrupt continuation, some state
that allows the interrupt-handling code to be executed at a later time. LFC uses
the same technique, but does not need to create interrupt continuations, because
the NI will automatically regenerate the interrupt.

Some systems emulate asynchronous notification using a background thread
that periodically polls the network [54]. The problem is to find a good polling
frequency. Also, adding a thread to an otherwise single-threaded software system
is often difficult.

A similar idea is used in the Message-Passing Library (MPL) for the IBM
SP/2. This library uses periodic timer interrupts to allow the network to be drained
even if senders and receivers are engaged in long-running computations [129].
The main difference is that MPL’s timeout handler does not invoke user code,
because MPL does not provide an asynchronous notification interface.

Another emulation approach is to use a compiler or binary rewriter to insert
polls automatically into applications. Shasta [125], a fine-grain DSM, uses binary
instrumentation. In a simulation study [114], Perkovic and Keleher compare au-
tomatic insertion of polls by a binary rewriter and the polling-watchdog approach.
Their simulation results, performed in the context of the CVM DSM, indicate
that both approaches work well and perform better than an approach that relies
exclusively on polling during message sends.

3.11 Summary

In this chapter, we have presented the interface and implementation of LFC, a
new user-level communication system designed to support the development of
parallel programming systems. LFC provides reliable point-to-point and multicast
communication, interrupt management, and synchronization through fetch-and-
add. LFC’s interface is low-level. In particular, there is no message abstraction:
clients operate on send and receive packets.

This chapter has described the key components of LFC’s implementation on
Myrinet (library, device drivers, and NI control program). We have described
LFC’s data transfer path, buffer management, control transfer, and synchroniza-
tion. The NI-level communication protocols, which form an important part of the
implementation, are described in the next chapter.

Chapter 4

Core Protocols for Intelligent
Network Interfaces

This chapter gives a detailed description of LFC’s NI-level protocols: UCAST,
MCAST, RECOV, and INTR. The UCAST protocol implements reliable point-
to-point communication between NIs. UCAST assumes reliable network hard-
ware and preserves this reliability using software flow control implemented at the
data link level, between NIs. LFC is named after this property: Link-level Flow
Control.

Link-level flow control also forms the basis of MCAST, an NI-level spanning
tree multicast protocol. MCAST forwards multicast packets on the NI rather than
on the host; this prevents unnecessary reinjection of packets into the network and
removes host processing —in particular interrupt processing and copying— from
the critical multicast path.

MCAST works for a limited, but widely used class of multicast trees (e.g.,
binary and binomial trees). For trees not in this class, MCAST may deadlock.
The RECOV protocol extends MCAST with a deadlock recovery protocol that
allows the use of arbitrary multicast trees.

UCAST, MCAST, and RECOV are concerned with data transfer between NIs.
The last protocol described in this chapter, INTR, deals with NI-to-host control
transfer. INTR reduces the overhead of network interrupts by delaying network
interrupts.

This chapter is structured as follows. Sections 4.1 through 4.4 discuss, re-
spectively, UCAST, MCAST, RECOV, and INTR. Section 4.5 discusses related
work.

61

62 Core Protocols for Intelligent Network Interfaces

4.1 UCAST: Reliable Point-to-Point Communication

The UCAST protocol implements reliable and FIFO point-to-point transfers of
packets between NIs. Since we assume that the hardware does not drop or corrupt
packets (see Section 3.2), the only cause of packet loss is lack of buffer space on
receiving nodes (both NIs and hosts). This chapter deals only with NI-level buffer
overflow; host-level buffering was discussed in Section 3.6.

UCAST uses a variant of sliding window flow control between each pair of
NIs to prevent NI-level buffer overflows. The protocol guarantees that no NI will
send a packet to another NI before it knows the receiving NI can store the packet.
To achieve this, each NI assigns an equal number of its receive buffers to each NI
in the system. An NI S that needs to transmit a packet to another NI R may do so
only when it has at least one send credit for R. Each send credit corresponds to
one of R’s free receive buffers for S. Each time S sends a packet to R, S consumes
one of its send credits for R. Once S has consumed all its send credits for R, S
must wait until R frees some of its receive buffers for S and returns new send
credits to S. Send credits are returned by means of explicit acknowledgements or
by piggybacking them on application-level return traffic.

4.1.1 Protocol Data Structures

Figure 4.1 shows the types and variables used by UCAST. All variables are be
stored in NI memory. UCAST uses two types of network packets: UNICAST

packets carry user data; CREDIT packets are used only to return credits to a sender
and do not carry any data. Each packet carries a header of type PacketType that
identifies the packet’s type (tag) and sender (src). In addition, the protocol uses a
credits field in the header to return send credits to an NI.

Transmission requests are stored in send descriptors of type SendDesc that
identify the packet to be transmitted (packet) and the destination NI (dest). Multi-
ple send descriptors can refer to the same packet; this is important for the multicast
protocol, which can forward a single packet to multiple destinations.

Each NI maintains protocol state for each other NI. This state is stored in a
protocol control block of type ProtocolCtrlBlock. The protocol state for a given
NI consists of the number of remaining send credits for that NI (send credits), a
queue of blocked transmission requests (blocked sends), and the number of credits
that can be returned to that NI (free credits).

Finally, each NI maintains several global variables. Each NI stores its unique
id in LOCAL ID, the number of NIs in the system in NR NODES, and a credit re-
fresh threshold in CREDIT REFRESH. The refresh threshold is used by receivers
to determine when credits must be returned to the sender that consumed them. The
protocol control blocks are stored in array pcbtab. Variable nr received counts

4.1 UCAST: Reliable Point-to-Point Communication 63

typedef enum fUNICAST, CREDITg PacketType;

typedef struct f
PacketType tag; /� packet type �/
unsigned src; /� sender of packet �/
unsigned credits; /� piggybacked credits �/

g PacketHeader;

typedef struct f
PacketHeader hdr;
Byte data[PACKET SIZE];

g Packet;

typedef struct f
unsigned dest;
Packet �packet;

g SendDesc;

typedef struct f
unsigned send credits;
SendDescQueue blocked sends;
unsigned free credits;

g ProtocolCtrlBlock;

unsigned LOCAL ID, NR NODES, CREDIT REFRESH; /� runtime constants �/
ProtocolCtrlBlock pcbtab[MAX NODES]; /� per-node protocol state �/
unsigned nr pkts received;

Fig. 4.1. Protocol data structures for UCAST.

64 Core Protocols for Intelligent Network Interfaces

void event unicast(unsigned dest, Packet �pkt) f
SendDesc �desc = alloc send desc();

pkt!hdr.tag = UNICAST;
desc!dest = dest;
desc!packet = pkt;
credit send(desc);

g

void credit send(SendDesc �desc) f
ProtocolCtrlBlock �pcb = &pcbtab[desc!dest];

if (pcb!send credits > 0) f
pcb!send credits��; /� consume a credit �/
send packet(desc);
return;

g
enqueue(&pcb!blocked sends, desc); /� wait for a credit �/

g

void send packet(SendDesc �desc) f
ProtocolCtrlBlock �pcb = &pcbtab[desc!dest];
Packet �pkt = desc!packet;

pkt!hdr.src = LOCAL ID;
pkt!hdr.credits = pcb!free credits; /� piggyback credits �/
pcb!free credits = 0;

transmit(desc!dest, pkt);
g

Fig. 4.2. Sender side of the UCAST protocol.

how many packets an NI has received; this variable is used by the INTR protocol
(see Section 4.4).

4.1.2 Sender-Side Protocol

Figure 4.2 shows the reliability protocol executed by each sending NI. All protocol
code is event-driven; this part of the protocol is activated in response to unicast
events which are generated when the NI’s host launches a packet. How LFC
generates this event was discussed in Chapter 3.

Each unicast event is dispatched to event unicast(). This routine creates a send
descriptor and passes this descriptor to credit send(), which checks if a send credit
is available for the destination specified in the send descriptor. If this is the case,

4.1 UCAST: Reliable Point-to-Point Communication 65

the packet is transmitted; otherwise the send descriptor is queued on the blocked-
sends queue for the destination NI. It will remain queued until the destination NI
has returned a sufficient number of send credits.

Packets are transmitted by send packet(). This routine is also used to re-
turn send credits to the destination NI. In the protocol control block of each NI
we count how many credits can be returned to that NI; send packet() copies the
counter into the credits field of the packet header and then resets the counter. This
way, any packet travelling to an NI will automatically return any available send
credits to that NI.

Send packets can be returned to the NI send buffer pool as soon as transmission
has completed. We do not show send packet deallocation, because it does not
trigger any significant protocol actions.

4.1.3 Receiver-Side Protocol

The receiver side of the reliability protocol is shown in Figure 4.3. This part of the
protocol handles two events: packet arrival and packet release. Incoming pack-
ets are dispatched to event packet received(). This routine accepts any new send
credits that the sender may have returned and then processes the packet. If the
packet is a UNICAST data packet, it is delivered to the host. In this protocol de-
scription, we are not concerned with the details of NI-to-host delivery. CREDIT

packets serve only to send credits to an NI; they do not require any further pro-
cessing and are discarded immediately.

Routine accept new credits() adds the credits returned in packet pkt to the
send credits for NI src. Next, this routine walks the blocked-sends queue to trans-
mit to src as many blocked packets as possible. Since the blocked-sends queue is
checked immediately when credits are returned, packets are always transmitted in
FIFO order.

Although UCAST is not concerned with the exact way in which packets are
delivered to the host, it needs to know when a packet buffer can be reused for
new incoming packets. The send credit consumed by the packet’s sender can-
not be returned until the packet is available for reuse. We therefore require that
a packet release event be generated when a receive packet is released. This
event is dispatched to event packet released(), which returns a send credit to
the packet’s sender and then deallocates the packet. Credits are returned by re-
turn credit to(), which increments a counter (free credits) in the protocol control
block of the packet’s sender. If this counter reaches the credit refresh threshold,
return credit to() sends an explicit CREDIT packet to the sender. This happens
only if data packets flow mainly in one direction. If there is sufficient return traf-
fic free credits will never reach the refresh threshold, because send packet() will
already have piggybacked all free credits on an outgoing UNICAST packet.

66 Core Protocols for Intelligent Network Interfaces

void event packet received(Packet �pkt) f
accept new credits(pkt);

switch(pkt!hdr.tag) f
case UNICAST:

deliver to host(pkt);
nr pkts received++;
break;

case CREDIT:
break;

g
g

void accept new credits(Packet �pkt) f
ProtocolCtrlBlock �pcb = &pcbtab[pkt!hdr.src];
SendDesc �desc;

/� Retrieve (piggybacked) credits and unblock blocked senders. �/
pcb!send credits += pkt!hdr.credits;
while (! queue empty(&pcb!blocked sends) && pcb!send credits > 0) f

desc = dequeue(&pcb!blocked sends);
credit send(desc);

g
g

void event packet released(Packet �pkt) f
return credit to(pkt!hdr.src);

g

void return credit to(unsigned sender) f
ProtocolCtrlBlock �pcb = &pcbtab[sender];

pcb!free credits++;
if (pcb!free credits � CREDIT REFRESH) f

Packet credit packet;
SendDesc �desc = alloc send desc();

credit packet.hdr.tag = CREDIT; /� send explicit credit packet �/
desc!dest = sender;
desc!packet = &credit packet;
send packet(desc);

g
g

Fig. 4.3. Receiver side of the UCAST protocol.

4.2 MCAST: Reliable Multicast Communication 67

Host Host

Network interface Network interface

Fig. 4.4. Host-level (left) and interface-level (right) multicast forwarding.

UCAST is simple and efficient. Since the protocol preserves the reliability of
the underlying hardware by avoiding receiver buffer overruns, senders need not
buffer packets for retransmission, nor need they manage any timers. The main
disadvantage of UCAST is that it statically partitions the available receive buffer
space among all senders, so it needs more NI memory as the number of processors
is increased. Chapter 8 studies this issue in more detail.

4.2 MCAST: Reliable Multicast Communication

Since we assume that multicast is not supported in hardware, we provide a soft-
ware spanning-tree multicast protocol. This protocol, MCAST, implements a reli-
able and FIFO-ordered multicast. Before describing MCAST, we discuss different
multicast forwarding strategies and the importance of multicast tree topology.

4.2.1 Multicast Forwarding

Most spanning-tree protocols use host-level forwarding. With host-level forward-
ing, the sender is the root of a multicast tree and sends a multicast packet to each
of its children. Each child’s NI passes the packet to its host, which reinjects the
packet to forward it to the next level in the multicast tree (see Figure 4.4).

Host-level forwarding has three drawbacks. First, since each reinjected packet
was already available in NI memory, host-level forwarding results in an unneces-
sary host-to-NI data transfer at each internal tree node of the multicast tree, which
wastes bus bandwidth and processor time. Second, no forwarding takes place un-
less the host processes incoming packets. If one host does not poll the network in
a timely manner, all its children will be affected. Instead of relying on polling, the
NI can raise an interrupt, but interrupts are expensive. Third, the critical sender-
receiver path includes the host-NI interactions of all the nodes between the sender
and the receiver. For each multicast packet, these interactions consist of copying
the packet to the host, host processing, and reinjecting the packet.

68 Core Protocols for Intelligent Network Interfaces

MCAST addresses these problems by means of NI-level forwarding: multicast
packets are forwarded by the NI without intervention by host processors.

4.2.2 Multicast Tree Topology

Multicast tree topology matters in two ways. First, different trees have different
performance characteristics. Many different tree topologies have been described
in the literature [30, 77, 80]. Deep trees (i.e., trees with a low fanout), for exam-
ple, give good throughput, because internal nodes need to forward packets fewer
times, so they use less time per multicast. Latency increases because more for-
warding actions are needed before the last destination is reached. Depending on
the type of multicast traffic generated by an application, one topology gives better
performance than another. Our goal is not to invent or analyze a particular topol-
ogy that is optimal in some sense. No topology is optimal under all circumstances.
It is important, however, that a multicast protocol does not prohibit topologies that
are appropriate for the application at hand.

Second, with MCAST’s packet forwarding scheme (described later), some
trees can induce buffer deadlocks. A multicast packet requires buffer space at
all its destinations. This buffer space can be obtained before the packet is sent or
it can be obtained more dynamically, as the packet travels from one node in the
spanning tree to another. The first approach is conceptually simple, but requires a
global protocol to reserve buffers at all destination nodes. The second approach,
taken by MCAST, introduces the danger of buffer deadlocks. A sender may know
that its multicast packet can reach the next node in the spanning tree, but does not
know if the packet can travel further once it has reached that node. Section 4.3
gives an example of such a deadlock.

MCAST avoids buffer deadlocks by restricting the topology of multicast trees.
An alternative approach is to detect deadlocks and recover from them. This ap-
proach is taken by RECOV, an extension of MCAST that allows the use of arbi-
trary multicast trees.

4.2.3 Protocol Data Structures

In MCAST, NIs multicast inside multicast groups that are created at initialization
time; MCAST does not include a group join or leave protocol. Each member of
a multicast group has its own spanning tree which it uses to forward multicast
packets to the other group members.

Figure 4.5 shows MCAST’s data structures. MCAST builds on UCAST, so
we reuse and extend UCAST’s data structures and routines. MCAST introduces
a new packet type, MULTICAST, and extend the packet header with a tree field.
Each process is given a unique index for each multicast group that it is a member

4.2 MCAST: Reliable Multicast Communication 69

typedef enum fUNICAST, MULTICAST, CREDITg PacketType;

typedef struct f
: : : /� as before �/
unsigned tree; /� identifies multicast tree �/

g PacketHeader;

typedef struct f
unsigned parent;
unsigned nr children;
unsigned children[MAX FORWARD];
/� MAX FORWARD depends on tree size and shape �/

g Tree;

Tree treetab[MAX TREES];

Fig. 4.5. Protocol data structures for MCAST.

of. This index identifies the process’s multicast tree for that particular multicast
group. When the process transmits a packet to the other members of that multicast
group, it stores the tree identifier in the packet’s tree field (see Figure 3.1). Each
NI stores a multicast forwarding table (treetab) that is indexed by this tree field.
The table entry for a given tree specifies how many children the NI has in that tree
and lists those children.

4.2.4 Sender-Side Protocol

An NI initiates a multicast in response to multicast events which are handled
by event multicast(). This routine marks the packet to be multicast as a MUL-
TICAST packet, stores the multicast tree identifier in the packet header, and tries
to transmit the packet to all first-level children in the multicast tree by calling
forward packet().

Routine forward() looks up the table entry for the multicast tree that the packet
was sent on and creates a send descriptor for each forwarding destination listed
in the table entry. From then on, exactly the same procedure is followed as for a
unicast packet. The packet will be transmitted to a forwarding destination only if
credits are available for that destination; otherwise, the send descriptor is moved
to the destination’s blocked-sends queue.

70 Core Protocols for Intelligent Network Interfaces

void event multicast(unsigned tree, Packet �pkt) f
pkt!hdr.tag = MULTICAST;
pkt!hdr.tree = tree;
forward packet(pkt);

g

void forward packet(Packet �pkt) f
Tree �tree = &treetab[pkt!hdr.tree];
SendDesc �desc;
unsigned i;

for (i = 0; i < tree!nr children; i++) f
desc = alloc send desc();
desc!dest = tree!children[i];
desc!packet = pkt;

credit send(desc);
g

g

Fig. 4.6. Sender-side protocol for MCAST.

4.2.5 Receiver-Side Protocol

Figure 4.7 shows the receiving side of MCAST. When a multicast packet is re-
ceived, it is delivered to the host, just like a unicast packet. In addition, the packet
is forwarded to all of the receiving NI’s children in the multicast tree. This is done
using the same forwarding routine described above (forward packet()).

An NI receive buffer that holds a multicast packet is released when it has
been delivered to the host and when it has been forwarded to all children in the
multicast tree. At that point, event packet released() is called. As before, this
routine returns a send credit to the (immediate) sender of the packet. In the case
of a multicast packet, the immediate sender is the receiving NI’s parent in the
multicast tree. We do not use the packet header’s source field (src) to determine
the packet’s sender, because this field is overwritten during packet forwarding (by
send packet()). Instead, we use the tree field to find this NI’s parent; this field is
never modified during packet forwarding.

To make this modified packet release routine work for unicast packets, we also
define unicast trees. These trees consist of two nodes, a sender and a receiver; the
sender is the parent of the receiver. One unicast tree is defined for each sender-
receiver pair. UNICAST is modified so that it writes the unicast tree identifier in
each outgoing unicast packet. Unicast trees are not defined only to make packet
release work smoothly, but are also important in the RECOV protocol.

4.2 MCAST: Reliable Multicast Communication 71

void event packet received(Packet �pkt) f
accept new credits(pkt);

switch(pkt!hdr.tag) f
case UNICAST: : : :; break /� as before �/
case CREDIT: : : :; break /� as before �/
case MULTICAST:

deliver to host(pkt);
nr pkts received++;
forward packet(pkt);
break;

g
g

void event packet released(Packet �pkt) f
return credit to(treetab[pkt!hdr.tree].parent);

g

Fig. 4.7. Receive procedure for the multicast protocol.

4.2.6 Deadlock

MCAST’s simplicity results from building on reliable communication channels
between NIs. Unfortunately, MCAST is susceptible to deadlock if an arbitrary
topology is used. Figure 4.8 illustrates a deadlock scenario. The figure shows four
NIs, each with its own send and receive pool. Recall that the NI receive buffer pool
is partitioned. In this scenario, each processor is the root of a degenerate multicast
tree, a linear chain. Initially, each NI owns one send credit for each destination
NI. All processors (not shown in the figure) have injected a multicast packet and
each multicast packet has been forwarded to the next NI in the sender’s multicast
chain. That is, each NI has spent its send credit for the next NI in the multicast
chain. Now every packet needs to be forwarded again to reach the next NI in its
chain, but no packet can make progress, because the target receive buffer on the
next NI is occupied by another blocked packet. Each NI has free receive buffers,
but UCAST’s flow control scheme does not allow one sending NI to use another
sending NI’s receive buffers.

This deadlock is the result of the specific multicast trees used to forward pack-
ets (linear chains). By default, LFC uses binary trees to forward multicast packets.
Figure 4.9 shows the binary multicast tree for processor 0 in a 16-node system.
The multicast tree for processor p is obtained by renumbering each tree node n
in the multicast tree of processor 0 to (n+ p) mod P, where P is the number of
processors. With these binary trees, it is impossible to construct a deadlock cycle
(see Appendix A).

72 Core Protocols for Intelligent Network Interfaces

������������
����
����
����

��������

����
����
����
����

Network interface 0 Network interface 1

Network interface 3

I0 I1

I2I3 3I

I0 I1

I2

I1

I2I3

0I

I2

1II0

I3

Send pool

Network interface 2

Receive
pool

Fig. 4.8. MCAST deadlock scenario.

7 8

3

1

0

4 6

2

5

15

9 10 1211 1413

Fig. 4.9. A binary tree.

4.3 RECOV: Deadlock Detection and Recovery 73

To avoid buffer deadlocks, MCAST imposes two restrictions:

1. Multicast groups may not overlap.

2. Not all multicast tree topologies are valid.

The first restriction implies that we cannot use broadcast and multicast at the same
time, because the broadcast group overlaps with every multicast group. The rea-
sons for these restrictions and a precise characterization of valid multicast trees
are given in Appendix A.

4.3 RECOV: Deadlock Detection and Recovery

MCAST’s restrictions on multicast tree topology are potentially cumbersome, be-
cause some topologies that are not deadlock-free are more efficient than other
combinations [80]. For large messages, for example, linear chains give the best
throughput, but as illustrated in the previous section, chains are not deadlock-free.
Several sophisticated multicast protocols build trees that contain short chains.
These trees are not deadlock-free either, yet we would like to use them if deadlock
is unlikely.

To solve this problem, we have extended MCAST with a deadlock recovery
mechanism. The extended protocol, RECOV, switches to a slower, but deadlock-
free protocol when a deadlock is suspected. In this section, we first give a high-
level overview of RECOV’s deadlock detection and recovery protocol. Next, we
give a detailed description of the protocol.

4.3.1 Deadlock Detection

RECOV uses the feedback from UCAST’s flow control scheme to detect poten-
tial deadlocks. In the case of a buffer deadlock, each NI in the deadlock cycle
has consumed all send credits for the next NI in the cycle. In RECOV, an NI
therefore signals a potential deadlock when it has run out of send credits for a
destination that it needs to send a packet to. That is, nonempty blocked-sends
queues signal deadlock. With this trigger mechanism an NI can signal a potential
deadlock unnecessarily, because an NI may run out of send credits even if there
is no deadlock. The advantage of this detection mechanism, however, is that NIs
need only local information (the state of their blocked-sends queues) to detect po-
tential deadlocks. No communication is needed to detect a deadlock, which keeps
the detection algorithm simple and efficient.

Since a deadlock need not involve all NIs, each NI must monitor all its blocked-
sends queue; progress on some, but not all queues does not guarantee freedom of

74 Core Protocols for Intelligent Network Interfaces

deadlock. Checking for a nonempty blocked-sends queue is efficient, but may
signal deadlock sooner than a timeout-based mechanism.

When an NI has signaled a potential deadlock, it initiates a recovery action.
No new recoveries may be started by that NI while a previous recovery is still in
progress. When a recovery terminates, the NI that initiated it will search for other
nonempty blocked-sends queues and start a new recovery if it finds one. To avoid
livelock, the blocked-sends queues are served in a round-robin fashion.

Multiple NIs can detect and recover from a deadlock simultaneously. Simulta-
neous recoveries do not interfere, but can be inefficient. In a deadlock cycle, only
one NI needs to use the slower escape protocol to guarantee forward progress.
With simultaneous recoveries, all NIs that detect deadlock will start using the
slower escape protocol [96].

4.3.2 Deadlock Recovery

To ensure forward progress when a deadlock is suspected, RECOV requires P�1
extra buffers on each NI, where P is the number of NIs used by the application.
Each NI N owns one buffer on every other NI. These buffers form a dedicated
recovery channel for N. Communication on this recovery channel can result only
from a recovery initiated by N.

When an NI suspects deadlock, it will use its recovery channel to make progress
on one multicast or unicast tree. (Recall that we have defined both unicast and
multicast tree, so that every data packet travels along some tree.) Other NIs will
use this channel only when they receive a packet that was transmitted on the chan-
nel. Specifically, when an NI receives, on recovery channel C, a packet p trans-
mitted along tree T , then that NI may forward one packet to each of its children in
T . The forwarded packets must also belong to T . This guarantees that we cannot
construct a cycle within a recovery channel, because all communication links used
in the recovery channel form a subtree of T .

Once an NI has initiated a recovery on its recovery channel, it may not initi-
ate another recovery until the recovery channel is completely clear. The recovery
channel is cleared bottom-up. When a leaf in the recovery tree releases its escape
buffer (because it has delivered the packet to its host), it sends a special acknowl-
edgement to its parent in the recovery tree. When the parent has released its escape
buffer and when it has received acknowledgements from all its children in the re-
covery tree, then it will propagate an acknowledgement to its parent. When the
root of the recovery tree receives an acknowledgement, the recovery channel is
clear.

Each NI can initiate at most one recovery at a time, but different NIs can start
a recovery simultaneously, even in a single multicast tree. Such simultaneous
recoveries do not interfere with each other, because they use different recovery

4.3 RECOV: Deadlock Detection and Recovery 75

D

E F

Recovery tree
R

Fig. 4.10. Subtree covered by the deadlock recovery algorithm.

channels: each recovery uses the recovery channel owned by the NI that initiates
the recovery.

The protocol’s operation is illustrated in Figure 4.10. In this figure, vertices
represent NIs and the edges show how these NIs are organized in a particular
spanning tree. Dashed edges between a parent and a child indicate that the parent
has no send credits left for the child.

NI R triggers a recovery because it has no send credits for its child D. R selects
a blocked packet p at the head of one of its blocked-sends queues and determines
the tree T that this packet is being forwarded on. R now becomes the root of a
recovery tree and will use its recovery channel to forward p. R marks p and sends
p to D. D then becomes part of the recovery tree. If D has any children for which
it has no send credits, then D may further extend the recovery tree by using R’s
recovery channel to forward p. If p can be forwarded to an NI using the normal
credit mechanism (e.g., to F), then D will do so, and the recovery tree will not
include that NI. (If F cannot forward p to its child, then F will initiate a recovery
on its own recovery channel.)

4.3.3 Protocol Data Structures

We now present the RECOV protocol as an extension of MCAST. Figure 4.11
shows the new and modified data structures and variables used by RECOV. A new
type of packet, CHANNEL CLEAR, is used to clear a recovery channel. CHAN-
NEL CLEAR packets travel from the leaves to the root of a recovery tree.

The packet header contains two new fields. (In reality LFC combines these
two fields in a single deadlock channel field (see Section 3.4)). Field deadlocked
is set to TRUE when a packet needs to use a recovery channel. The channel field
identifies the recovery channel. This field contains a valid value for all UNICAST

76 Core Protocols for Intelligent Network Interfaces

typedef enum fUNICAST, MULTICAST, CREDIT, CHANNEL CLEARg PacketType;

typedef struct f
: : : /� as before �/
int deadlocked; /� TRUE iff transmitted over recovery channel �/
unsigned channel; /� identifies owner of the recovery channel �/

g PacketHeader;

typedef struct f
: : : /� as before �/
int deadlocked; /� saves deadlocked field of incoming packets �/
unsigned channel; /� saves channel field of incoming packets �/

g SendDesc;

typedef struct f
: : : /� as before �/
unsigned nr acks; /� need to receive this many recovery acks �/

g ProtocolCtrlBlock;

typedef struct f
: : : /� as before �/
UnsignedQueue active channels; /� active recovery channels in this tree �/

g Tree;

int recovery active; /� TRUE iff the local node initiated a recovery �/

Fig. 4.11. Deadlock recovery data structures.

4.3 RECOV: Deadlock Detection and Recovery 77

void forward packet(Packet �pkt) f
Tree �tree = &treetab[pkt!hdr.tree];
int deadlocked = pkt!hdr.deadlocked; /� save! �/
unsigned channel = pkt!hdr.channel; /� save! �/
SendDesc �desc;
unsigned i;

for (i = 0; i < tree!nr children; i++) f
desc = alloc send desc();
desc!dest = tree!children[i];
desc!packet = pkt;
desc!deadlocked = deadlocked;
desc!channel = channel;

credit send(desc);
g

g

Fig. 4.12. Multicast forwarding in the deadlock recovery protocol.

and MULTICAST packets that travel across a recovery channel (i.e., packets that
have deadlocked set to TRUE) and for all CHANNEL CLEAR packets. The same
fields are added to send descriptors.

The protocol control block is extended with a counter (nr acks) that counts
how many CHANNEL CLEAR packets remain to be received before a channel-clear
acknowledgement can be propagated up the recovery tree.

The Tree data structure is extended with a queue of active recovery channels
(active channels). Each time an NI participates in a recovery on some recovery
channel C for some tree T , it adds C to the queue of tree T .

4.3.4 Sender-Side Protocol

The sender side of RECOV consists of several modifications to the MCAST and
UCAST routines. The modified multicast forwarding routine is shown in Fig-
ure 4.12. For each child, RECOV must know whether the packet to be forwarded
arrived on a deadlock recovery channel. At the time the packet is forwarded to a
specific child, we can no longer trust all information in the packet header, because
this information may have been overwritten when the packet was forwarded to an-
other child. Therefore, we have modified forward packet() to save the deadlocked
and channel fields of the incoming multicast packet in the send descriptors for the
forwarding destinations.

The saved deadlocked field is used by credit send() (see Figure 4.13). As be-
fore, this routine first tries to consume a send credit. If all send credits have been

78 Core Protocols for Intelligent Network Interfaces

consumed, however, send credit() no longer immediately enqueues the packet —
or rather, the descriptor that references the packet— on a blocked-sends queue.
Instead, we first check if the packet arrived on a recovery channel (using the saved
deadlocked field). If this is the case, we forward a packet that belongs to the
same tree on the same recovery channel. We cannot always forward the packet
referenced by desc, because other packets may be waiting to travel to the same
destination. If we bypass these packets and one of them arrived on the same tree
as the bypassing packet, then we violate FIFOness. To prevent this, next in tree()
(not shown) first appends desc to the blocked-sends queue for the packet’s desti-
nation. Next, it removes from this queue the first packet that is travelling along
the same tree as the packet referenced by desc and it returns the send descriptor
for this packet. This packet is transmitted on the recovery channel.

If the packet that credit send() tries to transmit did not arrive on a deadlock
recovery channel, then credit send() will start a new recovery on this NI’s recov-
ery channel. However, it can do so only if it is not already working on an earlier
recovery. If this NI has already initiated a recovery and this recovery is still ac-
tive, then the packet is simply enqueued on its destination’s blocked-sends queue.
Otherwise the NI starts a new recovery on its own recovery channel.

For completeness, we also show the modified send packet() routine. This rou-
tine now also copies the deadlocked field and the channel field into the packet
header.

4.3.5 Receiver-Side Protocol

The receiver-side code of RECOV is shown in Figure 4.14 and Figure 4.15. Only
a few modifications to event packet received() are needed.

First, special action must be taken when a packet arrives on a recovery channel.
In that case, the receiving NI creates some state for the recovery that this packet is
part of. In the protocol control block of the recovery channel’s owner, the NI sets
the channel-clear counter to 1. This counter is used when the recovery channel
is cleared and indicates how many parties need to agree that the channel is clear
before a channel-clear acknowledgement can be sent up the recovery tree. As long
as the receiving NI does not extend the recovery tree, only it needs to say that the
channel is clear, hence the counter is set to 1. If, however, the recovery tree is
extended by forwarding the packet on its recovery channel, then credit send() will
increase the counter to indicate that an additional channel-clear acknowledgement
is needed from the child that the packet was forwarded to.

Routine event packet received() also stores the identity of the recovery chan-
nel’s owner (the NI that initiated the recovery) on a queue associated with the tree
that the incoming packet travelled on. This information is used when packets are
released.

4.3 RECOV: Deadlock Detection and Recovery 79

void credit send(SendDesc �desc) f
ProtocolCtrlBlock �pcb = &pcbtab[desc!dest];

if (pcb!send credits > 0) f
desc!deadlocked = FALSE;
pcb!send credits��; /� consume a credit �/
send packet(dest);
return;

g

if (desc!deadlocked) f
/� desc!packet arrived on a deadlock channel. We forward desc!packet,
� or a predecessor in the same tree, on the same channel.
�/
pcbtab[desc!channel].nr acks++;
desc = next in tree(pcb, desc); /� preserve FIFOness in tree �/
send packet(desc); /� no credit consumed by this send �/

g else if (recovery active) f
/� Cannot do more than one recovery at a time. �/
enqueue(&pcb!blocked sends, desc);

g else f
/� Initiate recovery on my deadlock channel �/
recovery active = TRUE;
pcbtab[LOCAL ID].nr acks = 1;
desc!deadlocked = TRUE;
desc!channel = LOCAL ID; /� my recovery channel �/
send packet(desc); /� no credit consumed by this send �/

g
g

void send packet(SendDesc �desc) f
ProtocolCtrlBlock �pcb = &pcbtab[desc!dest];
Packet �pkt = desc!packet;

pkt!hdr.src = LOCAL ID;
pkt!hdr.credits = pcb!free credits; /� piggyback credits �/
pkt!hdr.deadlocked = desc!deadlocked;
pkt!hdr.channel = desc!channel;
pcb!free credits = 0; /� we returned all credits to dest �/

transmit(desc!dest, pkt);
g

Fig. 4.13. Packet transmission in the deadlock recovery protocol.

80 Core Protocols for Intelligent Network Interfaces

void event packet received(Packet �pkt) f
accept new credits(pkt);

if (pkt!hdr.deadlocked) f
ProtocolCtrlBlock �channel owner = &pcbtab[pkt!hdr.channel];
Tree �tree = &treetab[pkt!hdr.tree];

/� Register my state for this recovery in the pcb of the node that
� initiated the recovery. Add the owner’s id to a queue of ids
� that is maintained for the tree that the packet belongs to.
�/
channel owner!nr acks = 1; /� one ’ack’ for local delivery �/
enqueue(&tree!active channels, pkt!hdr.channel);

g

switch(pkt!tag) f
case UNICAST: : : :; break; /� as before �/
case MULTICAST: : : :; break; /� as before �/
case CREDIT: : : :; break; /� as before �/
case CHANNEL CLEAR:

release recovery channel(pkt!channel);
break;

g
g

Fig. 4.14. Receive procedure for the deadlock recovery protocol.

4.3 RECOV: Deadlock Detection and Recovery 81

void release recovery channel(unsigned channel) f
ProtocolCtrlBlock �channel owner = &pcbtab[channel];

channel owner!nr acks��;
if (channel owner!nr acks > 0) return; /� channel not clear yet �/

/� Below and at this tree node, the recovery channel is clear. �/
if (channel == LOCAL ID) f

/� Recovery completed; the entire recovery channel is clear. �/
recovery active = FALSE;
try new recovery(); /� search for new nonempty blocked-sends queue �/

g else f
Packet deadlock ack;
SendDesc �desc = alloc send desc();

/� Propagate channel-clear ack to parent �/
deadlock ack.hdr.tag = CHANNEL CLEAR;
desc!dest = pcb!parent;
desc!packet = &deadlock ack;
desc!deadlocked = FALSE;
desc!channel = channel;
send packet(desc);

g
g

void event packet released(Packet �pkt) f
Tree �tree = &treetab[pkt!hdr.tree];

if (queue empty(&tree!active channels)) f
return credit to(tree!parent);

g else f
/� Do not return a credit, but try to clear a deadlock channel �/
unsigned channel = dequeue(&tree!active channels);
release recovery channel(channel);

g
g

Fig. 4.15. Packet release procedure for the deadlock recovery protocol.

82 Core Protocols for Intelligent Network Interfaces

Second, we must process incoming channel-clear acknowledgements. This is
done by release recovery channel() (see Figure 4.15). This routine propagates
channel-clear acknowledgements up the recovery tree and detects recovery com-
pletion. If the channel-clear counter does not drop to zero, then this routine does
nothing. If the counter drops to zero, there are two possibilities. If the channel-
clear acknowledgement has reached the root of the recovery tree, then the recovery
is complete. The owner of the recovery channel knows that the entire recovery
channel is free and will try to initiate a new recovery on its recovery channel.
This is done by try new recovery() (not shown), which scans all blocked-sends
queues for a blocked packet. If such a queue is found, a new recovery is started.
If the channel-clear acknowledgements have not yet reached the recovery chan-
nel’s owner (the root of the recovery tree), then we create a new channel-clear
acknowledgement and send it up the recovery tree.

We have now described how a recovery is initiated, how a recovery tree is
built, and how channel-clear acknowledgements travel back up the recovery tree,
but we have not explained how the clearing of a recovery channel is initiated. This
is done by the leaves of the recovery tree when they release a packet. The modified
event packet released() first checks if this NI is participating in any recovery in
the tree that the packet arrived on. If it is, then it will have stored the identities of
the recovery channel owners in the active channels queue associated with the tree.
If this queue is not empty, event packet released() dequeues one channel owner
and returns the packet to that owner’s recovery channel. If, on the other hand, this
NI is not participating in a recovery on the tree that the packet arrived on, then it
will simply return a send credit to the packet’s last sender (as before).

4.4 INTR: Control Transfer

Since interrupts are expensive, LFC tries to avoid generating interrupts unneces-
sarily by means of a polling watchdog [101]. This is a mechanism that delays
interrupts in the hope that the target process will soon poll the network. The idea
is to start a watchdog timer when a packet arrives at the NI. The NI generates an
interrupt only if the host does not poll before the timer expires,

Where the original polling watchdog proposal by Maquelin et al. is a hard-
ware design, LFC uses the programmable NI processor to implement a software
polling watchdog. In addition, LFC refines the original design in the following
way. When the watchdog timer expires, LFC does not immediately generate an
interrupt if the host has not yet processed all packets delivered to it. Instead, the
NI performs two additional checks to determine whether it should generate an
interrupt: an interrupt status check and a client progress check.

The purpose of the interrupt status check is to avoid generating interrupts when

4.5 Related Work 83

the receiving process runs with network interrupts disabled. Recall that clients
may dynamically disable and enable network interrupts. For efficiency, the inter-
rupt status manipulation functions are implemented by toggling an interrupt status
flag in host memory, without any communication or synchronization with the con-
trol program (see Section 3.7). Before sending an interrupt, the control program
fetches (using a DMA transfer) the interrupt status flag from host memory. No
interrupt is generated when the flag indicates that the client disabled interrupts.

The goal of the client progress check is to avoid generating interrupts when the
receiving process recently processed some (but not necessarily all) of the packets
delivered to it. The host maintains a count of the number of packets that it has
processed. When the watchdog timer expires, the control program fetches this
counter. No interrupt is generated if the host processed at least one packet since
the previous watchdog timeout.

INTR starts the watchdog timer each time a packet arrives and the timer is
not already running on behalf of an earlier packet. Figure 4.16 shows how INTR
handles polling watchdog timeouts. The NI fetches the host’s interrupt flag and
packet counter using a single DMA transfer; both are stored into host. The NI
then performs the first part of the client progress check: if the client has processed
all (nr pkts received) packets delivered by the NI, then the NI cancels the polling
watchdog timer. In this case, the host processed all packets that were delivered
to it and there is no need to keep the timer running. If this check fails, the NI
performs both the interrupt status check and the second part of the client progress
check. If the host recently disabled interrupts or if the host consumed some of
the packets delivered to it, then the NI does not generate an interrupt, but restarts
the polling watchdog timer. If all checks fail, the NI generates an interrupt and
restarts the timer. Finally, the NI saves the host’s packet counter in last processed,
so that on the next timeout it can check if the client made progress.

4.5 Related Work

LFC’s NI-level protocols implement reliability, interrupt management, and multi-
cast forwarding. We discuss related work in all three areas.

4.5.1 Reliability

LFC assumes that the network hardware is reliable and preserves this reliabil-
ity by means of its link-level flow control protocol (UCAST). Several other sys-
tems (BIP [118], Hamlyn [32], Illinois Fast Messages [112, 113], FM/MC [146],
VMMC [24], and PM [141]) make the same hardware reliability assumption (see
Figure 2.3). These systems, however, implement flow control in a different way.

84 Core Protocols for Intelligent Network Interfaces

typedef struct f
unsigned nr pkts processed;
int intr disabled;

g HostStatus;

unsigned last processed;

void event watchdog timeout(void) f
HostStatus host;

fetch from host(&host);
if (host.nr pkts processed == nr pkts received) f

timer cancel(); /� client processed all packets �/
g else if (host.intr disabled jj host.nr pkts processed > last processed) f

timer restart(); /� client disabled interrupts or polled recently �/
g else f

send interrupt to host();
timer restart();

g
last processed = host.nr pkts processed;

g

Fig. 4.16. Timeout handling in INTR.

With the exception of PM (see Section 2.6) none of these systems implements
link-level flow control. Instead, they assume that the NI can copy data to the host
sufficiently fast to prevent buffer overflows (see Section 1.6).

With the exception of FM/MC, none of the above systems supports a complete
NI-level multicast. With NI-level forwarding, multicast packets occupy NI receive
buffers for a longer time. As a result, the pressure on these buffers increases, and
special measures are needed to prevent blocked-packet resets. FM/MC treats high
NI receive buffer pressure as a rare event and swaps buffers to host memory when
the problem occurs. For applications that multicast very heavily, however, swap-
ping occurs frequently and degrades performance [15]. LFC is more conservative
and uses NI-level flow control to solve the problem.

4.5.2 Interrupt Management

LFC supports both polling and interrupts as control-transfer mechanisms. Some
communication systems provide only a polling primitive. The main problem with
this approach is that many parallel-programming systems, notably DSM systems,
cannot rely on polling by the application. Interrupts provide asynchronous notifi-
cation, but are expensive on commercial architectures and operating systems: the

4.5 Related Work 85

time to field an interrupt often exceeds the latency of a small message. Research
systems such as the Alewife [2] and the J-machine [132] support fast interrupts,
but the mechanisms used in these machines have not found their way into com-
mercial processor architectures. Even without hardware support, operating sys-
tems can, in principle, dispatch interrupts efficiently [94, 143]. The key idea is to
save minimal processor state, and leave the rest (e.g., floating-point state) up to
the application program. In practice, however, interrupt processing on commodity
operating systems has remained expensive.

LFC does not attack the overhead of individual interrupts, but aims to re-
duce the interrupt frequency by optimistically delaying interrupts. Maquelin et
al. proposed the polling watchdog, a hardware implementation of this idea [101].
We augmented the polling watchdog with the interrupt-status and client-progress
checks described in Section 4.4. These two checks further reduce the number of
spurious interrupts.

4.5.3 Multicast

Several researchers have proposed to use the NI instead of the host processor
to forward multicast packets [56, 68, 80, 146]. Our NI-level protocol is origi-
nal, however, in that it integrates unicast and multicast flow control and uses a
deadlock-recovery scheme to avoid routing restrictions.

Verstoep et al. describe a system, FM/MC, that implements an NI-level mul-
ticast for Myrinet [146]. FM/MC runs on the same hardware as LFC, but imple-
ments buffer management and reliability in a very different way. Section 4.5.4
compares LFC and FM/MC in more detail.

Huang and McKinley propose to exploit ATM NIs to implement collective
communication operations, including multicast [68]. In their symmetric broadcast
protocol, NIs use an ATM multicast channel to forward messages to their children;
multicast acknowledgements are also collected via the NIs. The sending host
maintains a sliding window; it appears that a single window is used per broadcast
group. LFC, in contrast, uses sliding windows between each pair of NIs. This
allows LFC to integrate unicast and multicast flow control; Huang and McKinley
do not discuss unicast flow control and present simulation results only.

Gerla et al. [56] also discuss using NIs for multicast packet forwarding. They
propose a deadlock avoidance scheme that divides receive buffers in two classes.
The first class is used when messages travel to higher-numbered NIs, the second
when going to lower-numbered NIs. This scheme requires buffer resources per
multicast tree, which is problematic in a system with many small multicast groups.

Kesavan and Panda studied optimal multicast tree shapes for systems with pro-
grammable NIs [80]. They describe two packet-forwarding schemes, first-child-
first-served and first-packet-first-served (FPFS), and show that the latter performs

86 Core Protocols for Intelligent Network Interfaces

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

LFC

MulticastP2P1P0

P0 P1 P2
NI

Host Shared

Shared

FM/MC

��������������������

������ �������� ������ ������ ������ ������ ������

����
����
����
����

������

������������������

������ ����
����
����
����

������ �������� ������������������������

���
���
���
���������������������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

������

Fig. 4.17. LFC’s and FM/MC’s buffering strategies.

best. The paper does not discuss flow control issues. MCAST integrates FPFS
with UCAST’s flow control scheme. MCAST usually forwards packets to all
children as these packets arrive, just like in FPFS. When an NI has to forward a
packet to a destination for which no send credits are available, however, the NI
will queue that packet and start working on another packet.

All spanning-tree multicast protocols must deal with the possibility of dead-
lock. Deadlock is often avoided by means of a deadlock-free routing algorithm;
the literature on such algorithms is abundant. Most research in this area, how-
ever, applies to routing at the hardware level. Also, as pointed out by Anjan and
Pinkston [4], most protocols avoid deadlock by imposing routing restrictions [43].
This is the approach taken by MCAST. RECOV was inspired by the DISHA pro-
tocol for wormhole-routed networks [4]. DISHA, however, is a deadlock recov-
ery scheme for unicast worms, whereas RECOV deals with buffer deadlocks in a
store-and-forward multicast protocol.

4.5.4 FM/MC

FM/MC implements a reliable NI-level multicast for Myrinet, but does so in a
very different way than LFC. The most important differences are related to buffer
management and the reliability protocol.

Figure 4.17 shows how LFC and FM/MC allocate receive buffers. FM/MC
uses a single queue of NI buffers for all inbound network packets. LFC, on the
other hand, statically partitions its NI buffers among all senders: one sender can-
not use another sender’s receive buffers. At the host level, the situation has almost
been reversed. FM/MC allocates a fixed number of unicast buffers per sender.
These unicast buffers are managed by a standard sliding-window protocol that
runs on the host. In addition, FM/MC has another, separate class of multicast
buffers which are not partitioned statically among senders. LFC does not distin-
guish between unicast and multicast buffers and uses a single pool of host receive
buffers.

FM/MC’s multicast buffers are allocated to senders by a central credit man-
ager that runs on one of the NIs. A multicast credit represents a buffer on every

4.5 Related Work 87

receiving host. Before a process can multicast a message, it must obtain credits
from the credit manager. To avoid the overhead of a credit request-reply pair for
every multicast packet, hosts can request multiple credits and cache them. Credits
that have been consumed are returned to the credit manager by means of a token
that rotates among all NIs.

At the NI level, no software flow control is present. Each NI contains a single
receive queue for all inbound packets. Under conditions of high load, this queue
fills up. FM/MC then moves part of the receive queue to host memory to make
space for inbound packets. Eventually, senders will run out of credits and the
memory pressure on receiving NIs will drop; packets can then be copied back
to NI memory and processed further. The idea is that this type of swapping to
host memory will occur only under exceptional conditions, and it is assumed that
swapping will not take too much time. Eventually, however, FM/MC relies on
hardware back-pressure to stall sending NIs.

By default, FM/MC uses the same binary trees as LFC to forward multicast
packets. The protocol, however, allows the use of arbitrary multicast trees, be-
cause the credit and swapping mechanism avoid buffer deadlocks at the NI level.
When NI buffers fill up, they are copied to host memory. The centralized credit
mechanism guarantees that buffer space is available on the host. Since packets are
not forwarded from host memory, there is no risk of buffer deadlock at the host
level.

Both LFC and FM/MC have their strengths and weaknesses. An important
advantage of LFC over FM/MC is its simplicity. A single flow control scheme is
used for unicast and multicast traffic. There is no need to communicate with a sep-
arate credit manager. No request messages are needed to obtain credits: receivers
know when senders are low on credits and send credit update messages without
receiving any requests. Finally, since LFC implements NI-level flow control, it
does not need to swap buffers back and forth between host and NI memory. The
price we pay for this simplicity is the restriction on the tree topologies that can be
used by MCAST. FM/MC can use arbitrary multicast trees.

LFC and FM/MC also differ in the way credits are obtained for multicast pack-
ets. LFC is optimistic in that a sender waits only for credits for its children in the
multicast tree. In FM/MC, a sender waits until every receiver has space before
sending the next multicast packet(s). On the other hand, host buffers are not as
scarce a resource as NI buffers, so waiting in FM/MC may occur less frequently.

Both protocols have potential scalability problems. LFC partitions NI receive
buffers among all senders. FM/MC, in contrast, allows NI buffers to be shared,
which is attractive when the amount of NI memory is small and the number of
nodes in the system large. Given a reasonable amount of memory on the NI and
a modest number of nodes, however, LFC’s partitioning of NI buffers poses no
problems, and obviates the need for FM/MC’s buffer swapping mechanism.

88 Core Protocols for Intelligent Network Interfaces

FM/MC has other scalability problems. First, all credit requests are processed
by a single NI, which introduces a potential bottleneck. Second, to recover multi-
cast credits, FM/MC uses a rotating token. The credit manager may have to wait
for a complete token rotation until it can satisfy a request for credits.

4.6 Summary

This chapter has given a detailed description of LFC’s NI-level protocols for reli-
able point-to-point communication, reliable multicast communication, and for in-
terrupt management. The UCAST protocol provides reliable point-to-point com-
munication between NIs. MCAST extends UCAST with multicast support, but
is not deadlock-free for all multicast trees. RECOV extends MCAST with dead-
lock recovery and the resulting protocol is deadlock-free for all multicast trees.
Finally, INTR is a refined software polling watchdog protocol. INTR delays the
generation of network interrupts as much as possible by monitoring the behavior
of the host.

Chapter 5

The Performance of LFC

This chapter evaluates the performance of LFC’s unicast, fetch-and-add, and broad-
cast primitives using microbenchmarks. The performance of client systems and
applications, which is what matters in the end, will be studied in subsequent chap-
ters.

5.1 Unicast Performance

First we discuss the latency and throughput of LFC’s point-to-point message-
passing primitive, lfc ucast launch(). Next, we describe LFC’s point-to-point per-
formance in terms of the LogGP [3] parameters.

5.1.1 Latency and Throughput

Figure 5.1 shows LFC’s one-way latency for different receive methods. All mes-
sages fit in a single packet and are received through polling. We used the following
receive methods:

1. No-touch. The receiving process is notified of a packet’s arrival (in host
memory), but never reads the packet’s contents. This type of receive behav-
ior is frequently used in latency benchmarks and gives a good indication of
the overheads imposed by LFC.

2. Read-only. The receiving process uses a for loop to read the packet’s con-
tents into registers (one 32-bit word per loop iteration), but does not write
the packet’s contents to memory. This type of behavior can be expected
for small control messages, which can immediately be interpreted by the
receiving processor.

89

90 The Performance of LFC

0 200 400 600 800 1000
Message size (bytes)

0

10

20

30

40

50

La
te

nc
y

(m
ic

ro
se

co
nd

s)
Read only
Copy
No touch

Fig. 5.1. LFC’s unicast latency.

3. Copy. The receiving process copies the packet’s contents to memory. (This
is done using an efficient string-move instruction.) This is the typical be-
havior for larger messages that need to be copied to a data structure in the
receiving process’s address space.

The one-way latency of an empty packet is 11.6 µs (for all receive strategies).
This does not include the cost of packet allocation at the sending side and packet
deallocation at the receiving side, because both can be performed off the critical
path. Send packet allocation costs 0.4 µs, receive packet deallocation costs 0.7 µs.

As expected, the read-only and copy latencies are higher than the no-touch
latencies, because the receiving process incurs cache misses when it reads the
packet’s contents. Surprisingly, however, the copy variant is faster than the read-
only variant. This has two causes. First, the copy variant always copies incoming
packets to the same, write-back cached destination buffer, so the writes that result
from the copy do not generate any memory traffic (as long as the buffer fits in the
cache). Second, the read-only variant accesses the data by means of a for loop,
while the copy variant uses a fast string-copy instruction.

Figure 5.2 shows the one-way unicast throughput using the same three receive
methods. (Note that the message size axis has a logarithmic scale.) The sawtooth
shape of the curves is caused by fragmentation. Messages larger than 1 Kbyte
are split into multiple packets. If the last of these packets is not full, the overall
efficiency of the message transfer decreases. This effect is strongest when the last
fragment is nearly empty.

With the no-touch receive strategy, the maximum throughput is 72.0 Mbyte/s.
Reading the data reduces the throughput significantly. For message sizes up to
128 Kbyte, copying the data is faster than just reading it, for the reasons described

5.1 Unicast Performance 91

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

50

60

70

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

No touch
Copy
Read only

Fig. 5.2. LFC’s unicast throughput.

above (write-back caching and a fast copy instruction). For large messages, how-
ever, the throughput of the copy variant drops noticeably (e.g., from 63.2 Mbyte/s
for 1 Kbyte messages to 33.2 Mbyte/s for 1 Mbyte messages). For messages up to
256 Kbyte, the receive buffer used by the copy variant ought to fit in the proces-
sor’s second-level data cache. Since the L2 cache is physically indexed, however,
some of the buffer’s memory pages may map to the same cache lines as other
pages. The exact page mappings vary from run to run, but for larger buffers, con-
flicts are more likely to occur. Conflicting page mappings result in conflict misses
during the copy operation and these misses generate memory traffic. This traffic
competes for bus and memory bandwidth with incoming network packets and re-
duces the overall throughput. Messages larger than 256 Kbyte no longer fit in the
L2 cache. Cache misses are guaranteed to occur when such a message is copied.

Although LFC achieves good throughput, it is not able to saturate the hardware
bottleneck, the I/O bus, which has a bandwidth of 127 Mbyte/s. The main reason
is that LFC uses programmed I/O (with write combining) at the sending side. As
shown in Figure 2.2, this data transfer mechanism cannot saturate the I/O bus.
This problem can be alleviated by switching to DMA, but DMA introduces its
own problems (see Section 2.2).

5.1.2 LogGP Parameters

While the throughput and latency graphs are useful, additional insight can be
gained by measuring LFC’s LogGP parameters. LogGP [3, 102] is an extension of
the LogP model [40, 41], which characterizes a communication system in terms of

92 The Performance of LFC

four parameters: latency (L), overhead (o), gap (g), and the number of processors
(P).

Latency is the time needed by a small message to propagate from one computer
to another, measured from the moment the sending processor is no longer involved
in the transmission to the moment the receiving processor can start processing the
message. Latency includes the time consumed by the sending NI to transmit the
message and the time consumed by the receiving NI to deliver the message to the
receiving host. This definition of latency is different from the sender-to-receiver
latency discussed above. The sender-to-receiver latency includes send and receive
overhead (described below), which are not included in L.

Overhead is the time a processor spends on transmitting or receiving a mes-
sage. We will make the usual distinction between send overhead (os) and receive
overhead (or). Overhead does not include the time spent on the NI and on the
wire. Unlike latency, overhead cannot be hidden.

The gap is the reciprocal of the system’s small-message bandwidth. Succes-
sive packets sent between a given sender-receiver pair are always at least g mi-
croseconds apart from each other.

The LogP model assumes that messages carry at most a few words. Large
messages, however, are common in many parallel programs and many commu-
nication systems can transfer a single large message more efficiently than many
small messages. LogGP therefore extends LogP with a parameter, G, that captures
the bandwidth for large messages. For LFC, we define G as the peak throughput
under the no-touch receive strategy.

To measure the values of the LogGP parameters for LFC, we used benchmarks
similar to those described by Iannello et al [69]. The resulting values are given in
Table 5.1. All values, except the value of G, were measured using messages with
a payload of 16 bytes.

The sender-to-receiver latencies reported in Figure 5.1 are related to the LogGP
parameters as follows:

sender-to-receiver latency = os +L+or.

The sender-to-receiver latency of a 16-byte message is thus 1:6 +8:2 +2:2 =
12:0 µs, slightly more than the latency of a zero-byte message (11.6 µs). The
largest part (L) of the sender-to-receiver latency is spent on the sending and re-
ceiving NIs; this part can in principle be overlapped with useful work on the host
processor.

5.1.3 Interrupt Overhead

All previous measurements were performed with network interrupts disabled. We
now briefly consider interrupt-driven message delivery. As explained in Sec-

5.2 Fetch-and-Add Performance 93

LogGP parameter Value
Send overhead (os) 1.6 µs
Receive overhead (or) 2.2 µs
Latency (L) 8.2 µs
Gap (g) 5.6 µs
Big gap (G) 72.0 Mbyte/s

Table 5.1. Values of the LogGP parameters for LFC.

tion 3.7, LFC delays interrupts in the hope that the destination process will poll
before the interrupt needs to be raised. The default delay is 70 µs. This value,
approximately twice the interrupt overhead (see below), was determined after ex-
perimenting with some of the applications described in Chapter 8.

To measure the overhead of interrupt-driven message delivery, we set the de-
lay to 0 µs and measure the null unicast latency in two different ways: first, us-
ing a program that does not poll for incoming messages and that uses interrupts
to receive messages; second, using a program that does poll and that does not
use interrupts. The difference in latency measured by these two programs stems
from interrupt overhead. Using this method, we measure an interrupt overhead
of 31 µs, which is more than twice the unicast null latency. This time includes
context-switching from user mode to kernel mode, interrupt processing inside the
kernel and the Myrinet device driver, dispatching the user-level signal handler,
and returning from the signal handler (using the sigreturn() system call). Notice
that the last overhead component, the signal handler return, need not be on the
critical communication path: a message can be processed and a reply can be sent
before returning from the signal handler.

This large interrupt overhead is not uncommon for commercial operating sys-
tems. In user-level communication systems with low-latency communication,
however, the high cost of using interrupts should clearly be avoided whenever
possible. It is exactly this high cost that motivated the addition of a polling watch-
dog mechanism to LFC.

5.2 Fetch-and-Add Performance

A contention-free fetch-and-add operation on a variable in local NI memory costs
20.7 µs. Since we have not optimized this local case, an FA REQUEST and an
FA REPLY message will be sent across the network. Each message travels to the
switch to which the sending NI is attached; this switch then sends the message
back to the same NI.

A contention-free F&A operation on a remote F&A variable costs 19.8 µs,

94 The Performance of LFC

0 20 40 60
Number of processors

0

100

200

300

400

500

La
te

nc
y

(m
ic

ro
se

co
nd

s)

0 1 2 3 4 5
0

10
20
30
40
50

Fig. 5.3. Fetch-and-add latencies under contention.

which is slightly less expensive than the local case. To detect the F&A reply, the
host that issued the operation polls a location in its NI’s memory. In the local
case, this polling steals memory cycles from the local NI processor which needs
to process the F&A request and send the F&A reply (to itself). In the remote case,
receiving the request, processing it, and sending the reply are all performed by a
remote NI, without interference from a polling host.

Figure 5.3 shows how F&A latencies increase under contention. In this bench-
mark, each processor, except the processor where the F&A variable is stored, ex-
ecutes a tight loop in which an F&A operation is issued. With as few as three
processors (see inset), the NI that services the F&A variables becomes a bottle-
neck and the latencies increase rapidly.

5.3 Multicast Performance

The multicast performance evaluation is organized as follows. First, we present
latency, throughput, and forwarding overhead results for LFC’s basic protocol.
Next, we evaluate the deadlock recovery protocol under various conditions. In
Chapter 8 we will also compare the performance of LFC’s multicast protocol with
protocols that use host-level forwarding.

5.3.1 Performance of the Basic Multicast Protocol

We first examine the latency, throughput, and forwarding overhead of LFC’s ba-
sic multicast protocol. The basic protocol uses binary trees and therefore does
not need the deadlock recovery mechanism. In the following measurements, the

5.3 Multicast Performance 95

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150
La

te
nc

y
(m

ic
ro

se
co

nd
s)

64 processors
32 processors
16 processors
8 processors
4 processors

Fig. 5.4. LFC’s broadcast latency.

maximum packet size is 1 Kbyte and each sender is allocated b 512
P c send credits,

where P is the number of processors. All packets are received through polling.
We use the copy receive strategy described in Section 5.1.

Figure 5.4 shows the broadcast latencies of the basic protocol. We define
broadcast latency as the latency between the sender and the last receiver of the
broadcast packet. As expected, the latency increases linearly with increasing
message size and logarithmically with increasing numbers of processors. With
a 4-node configuration, we obtain a null latency of 22 µs; with 64 nodes, the null
latency is 72 µs.

Figure 5.5 shows the throughput of the basic protocol. Throughput is mea-
sured using a straightforward blast test in which the sender transmits many mes-
sages of a given size and then waits for an (empty) acknowledgement message
from all receivers. We report the throughput observed by the sender.

All curves decline for large messages. This is due to the same cache effect as
described in Section 5.1. For messages that fit in the cache, the maximum multi-
cast throughput (41 Mbyte/s for 4 processors) is less than the maximum unicast
throughput (63 Mbyte/s) and decreases as the number of processors increases.
These effects are due to the following throughput-limiting factors:

1. NI memory supports at most two memory accesses per NI clock cycle
(33.33 MHz). Memory references are issued by the NI’s three DMA en-
gines and by the NI processor. None of these sources can issue more than
one memory reference per clock cycle. As a result, the maximum packet re-
ceive and send rate is 127 Mbyte/s (33.33 MHz � 32 bits). This maximum
can be obtained only with large packets; with LFC’s 1 Kbyte packets, the
maximum DMA speed is approximately 120 Mbyte/s.

96 The Performance of LFC

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)
4 processors
8 processors
16 processors
32 processors
64 processors

Fig. 5.5. LFC’s broadcast throughput.

2. The fanout of the multicast tree determines the number of forwarding trans-
fers that an NI’s send DMA engine must make. Since these forwarding
transfers must be performed serially, the attainable throughput is propor-
tional to the reciprocal of the fanout. Binary trees have a maximum fanout of
two. The maximum throughput that can be obtained is therefore 120=2= 60
Mbyte/s.

3. High throughput can only be obtained if the NI processor manages to keep
its DMA engines busy.

4. Multicast packets travelling across different logical links in the multicast
tree may contend for the same physical links. The amount of contention de-
pends on the mapping of processes to processors. Since different mappings
can give very different performance results, we used a simulated-annealing
algorithm to obtain reasonable mappings for all single-sender throughput
benchmarks. The resulting mappings give much better performance than
random mappings, but are not necessarily optimal, because simulated an-
nealing is not guaranteed to find a true optimum and because we did not
take acknowledgement traffic into account.

The first three factors explain why we do not attain the unicast throughput, but not
why throughput decreases when the number of processors is increased. Since the
amount of forwarding work performed by the bottleneck nodes of the multicast
tree —i.e., internal nodes with two children— is independent of the size of the
multicast tree, we would expect that throughput is also independent of the size

5.3 Multicast Performance 97

1

P-2 P-132

0

Fig. 5.6. Tree used to determine multicast gap.

1 2 3 4 5 6 7 8 9 10
Fanout

0

10

20

30

40

50

M
ul

tic
as

t g
ap

 (
m

ic
ro

se
co

nd
s)

Measured multicast gap
Least-squares fit

Fig. 5.7. LFC’s broadcast gap.

of the tree. In reality, adding more processors increases the demand for physical
network links. The resulting contention leads to decreased throughput.

To estimate the amount of work performed by the NI to forward a multicast
packet, we can measure the multicast gap g(P). This is the reciprocal of the
multicast throughput on P processors for small (16-byte) messages. We assume
that the multicast gap is proportional to the fanout F(P) of the bottleneck node(s)
in the multicast tree. That is, we assume g(P) = α �F(P)+β, for some α and β.
By varying F(P) and measuring the resulting multicast gaps g(P), we can find α
and β. LFC’s binary trees, however, have a fixed fanout of two. To vary F(P), we
therefore use multicast trees that have the shape shown in Figure 5.6. In such trees,
there is exactly one forwarding node and the fanout of the tree is F(P) = P�2.

We measured the multicast gaps for various numbers of processors and used
a least-squares fit to determine α and β from these measurements. The measured
gaps and the resulting fit are shown in Figure 5.7; we found α = 4:6 µs per forward
and β = 5:2 µs. The forwarding time per destination (α) is fairly large; this time

98 The Performance of LFC

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30
T

hr
ou

gh
pu

t (
M

by
te

/s
ec

on
d)

Basic, 8 procs.
Recovery, 8 procs.
Basic, 16 procs.
Recovery, 16 procs.

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

Basic, 32 procs.
Recovery, 32 procs.
Basic, 64 procs.
Recovery, 64 procs.

Fig. 5.8. Impact of deadlock recovery on broadcast throughput.

is used to look up the forwarding destination, to allocate a send descriptor, to
enqueue this descriptor, and to initiate the send DMA.

5.3.2 Impact of Deadlock Recovery and Multicast Tree Shape

We assume that most programs will rarely multicast in such a way that deadlock
recovery is necessary. It is therefore important to know the overhead that the
protocol imposes without recovery.

Enabling deadlock recovery does not increase the broadcast latency. In the
latency benchmark, the condition that triggers deadlock recovery (an NI has run
out of send credits) is never satisfied, so the recovery code is never executed. Also,
the test for the condition does not add any overhead, because it takes place both
in the basic and in the enhanced protocol.

Throughput is affected by enabling deadlock recovery. Figure 5.8 shows single-
sender throughput results for 8, 16, 32, and 64 processors, with and without dead-
lock recovery. For the recovery protocol measurements, we used almost the same
configuration as for the basic protocol measurements shown in Figure 5.5. The
only difference is that we enabled deadlock recovery and added P� 1 NI receive
buffers on each NI (see Section 4.3). We use the same binary trees as before, so
no true deadlocks can occur. Since our deadlock recovery scheme makes a local,
conservative decision, however, it still signals deadlock.

Our measurements indicate that, with a few exceptions, all recoveries are ini-
tiated by the root of the multicast tree. The deadlocked subtrees that result from
these recoveries are small. With 64 processors and 64 Kbyte messages, for ex-

5.3 Multicast Performance 99

ample, each deadlock recovery results (on average) in 1.1 packets being sent via
a deadlock recovery channel. In almost all cases, the deadlocked subtree consists
of the root and one of its children. The root performs less work than its children,
because it does not have to receive and deliver incoming multicast packets. Conse-
quently, the root can send out multicast packets faster than its children can process
them and therefore runs out of credits, which triggers a deadlock recovery.

For 8 processors, the performance impact of these recoveries is small, but for
larger numbers of processors, the number of recoveries increases and the through-
put decreases significantly. With 64 Kbyte messages, for example, the number of
recoveries per multicast increases from 0.02 for 8 processors to 0.37 for 64 pro-
cessors (on average). This increase in the number of recoveries and the decrease in
throughput appear to be caused by increased contention on the physical network
links (due to the larger number of processors). This contention delays acknowl-
edgements, which causes senders to run out of credits more frequently. The prob-
lem is aggravated slightly by a fast path in the multicast code that tries to forward
incoming multicast packets immediately. If this succeeds, the send channel is
blocked by an outgoing data packet and cannot be used by an acknowledgement.
Removing this optimization improves performance when deadlock recovery is en-
abled, but reduces performance when deadlock recovery is disabled.

Figure 5.9 shows the impact of tree shape on broadcast throughput. We com-
pare binary trees and linear chains on 64 processors. We use a large number of
processors, because that is when we expect the performance characteristics of
different tree shapes to be most visible. In both cases, deadlock recovery was en-
abled, because with chains, deadlocks can occur when multiple senders multicast
concurrently. With a single sender, however, deadlocks cannot occur, and we ex-
pect low-fanout trees to perform best. Figure 5.9 confirms this expectation. The
linear chain (fanout 1) performs better than the binary tree (fanout 2).

To test the behavior of the deadlock recovery scheme in the case that deadlocks
can occur, we performed an all-to-all benchmark in which all senders broadcast
simultaneously. In this case, true deadlocks may occur for the chain. Figure 5.10
shows the per-sender throughput on 64 processors for the chain and the binary
tree. Due to contention for network resources (links, buffers, and NI processor
cycles), the per-sender throughput is much lower than in the single-sender case.

As expected, the chain performs worse than the binary tree. Table 5.2 reports
several statistics that illustrate the behavior of the recovery protocol for both tree
types. These statistics are for an all-to-all exchange of 64 Kbyte messages on
64 processors. In this table, Lused is the number of logical links between pairs of
NIs that are used in the all-to-all test; Lav is the total number of logical links avail-
able (64 � 63). Lused=Lav indicates how well a particular tree spreads its packets
over different links. RC is the number of deadlock recoveries; M is the number of
multicasts. RC=M indicates how often a recovery occurs. D is the number of pack-

100 The Performance of LFC

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30
T

hr
ou

gh
pu

t (
M

by
te

/s
ec

on
d)

Chain
Binary

64 processors

Fig. 5.9. Impact of tree topology on broadcast throughput.

64 256 1K 4K 16K 64K
Message size (bytes)

0.0

0.1

0.2

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

Binary
Chain

64 processors

Fig. 5.10. Impact of deadlock recovery on all-to-all throughput.

5.4 Summary 101

Tree shape Lused=Lav RC=M D=RC+1
Binary 0:51 0:38 3:3
Chain 0:02 1:00 63:9

Table 5.2. Deadlock recovery statistics. Lused — #NI-to-NI links used in this test;
Lav — #NI-to-NI links available; RC — #deadlock recoveries; M — #multicasts;
D — #packets that use a deadlock recovery channel.

ets that are forced to travel through a slow deadlock recovery channel. D=RC+1
is the average size of deadlocked subtrees. These statistics show that, with chains,
every multicast triggers a deadlock recovery action. What is worse, these recov-
eries involve all 64 NIs, so each multicast packet uses a slow deadlock channel.
With chains, this benchmark can use only a small fraction (0.02) of the available
NI receive buffer space. In combination with the high communication load, this
causes senders to run out of credits and triggers deadlock recoveries. With binary
trees, which make better use of the available NI buffer space, deadlock recoveries
occur less frequently and the size of the deadlocked subtrees is much smaller.

Summarizing, we find that deadlock recovery is triggered frequently, but that
its effect on performance is modest when the communication load is moderate
and true deadlocks do not occur. To reduce the number of false alarms, a more
refined, timeout-based mechanism could be used [96]. This mechanism does not
signal deadlock immediately when a blocked-sends queue becomes nonempty, but
starts a timer and waits for a timeout to occur. The timer is canceled when a send
descriptor is removed from the blocked-sends queue.

5.4 Summary

In this chapter, we have analyzed the performance of LFC using microbench-
marks. LFC’s point-to-point performance is comparable to that of existing user-
level communication systems and does not suffer much from the NI-level flow
control protocol. Specifically, on the same hardware LFC achieves similar point-
to-point latencies as Illinois Fast Messages (version 2.0), which uses a host-level
variant of the same flow control protocol. Running the protocol between NIs,
however, allows for a simple and efficient multicast implementation.

Due to our use of programmed I/O at the sending side, LFC cannot attain
the maximum available throughput, but we believe that LFC’s throughput is still
sufficiently high that this is not a problem in practice. At least one study suggests
that parallel applications are more sensitive to send and receive overhead than to
throughput [102].

102 The Performance of LFC

LFC’s NI-level fetch-and-add implementation is not much faster than a host-
level implementation would be, but has the advantage that it need never generate
an interrupt.

LFC’s NI-level multicast also avoids unnecessary interrupts (during packet
forwarding) and eliminates an unnecessary data transfer. The binary trees used
by the basic multicast protocol give good latency and throughput. Client systems
that wish to optimize for either latency or throughput can use other tree shapes if
they use LFC’s extended multicast protocol which includes a deadlock recovery
mechanism. We showed that the extended protocol allows clients to obtain the
advantages of a specific tree shape such as the chain.

Chapter 6

Panda

This chapter describes the design and implementation of the Panda communica-
tion system on top of LFC. Panda is a multithreaded communication library that
provides flow-controlled point-to-point message passing, remote procedure call,
and totally-ordered broadcast. Since 1993, versions of Panda have been used by
implementations of the Orca shared object system [9, 19, 124], the MPI message-
passing system, a parallel Java system [99], an implementation of Linda tuple
spaces on MPI [33], a subset of the PVM message-passing system [124], the SR
programming language [124], and a parallel search system [121].

Portability and efficiency have been the main goals of all Panda implementa-
tions. Panda has been ported to a variety of communication architectures. The
first Panda implementation [19] was constructed on a cluster of workstations, us-
ing the UDP datagram protocol. Since then, versions of Panda have been ported to
the Amoeba distributed operating system [111], to a transputer-based system [65],
to MPI for the IBM SP/2, to active messages for the Thinking Machines CM-5,
to Illinois Fast Messages for Myrinet clusters [10], and to LFC, also for Myri-
net clusters. This chapter, however, focuses on a single Panda implementation:
Panda 4.0 on LFC. Panda 4.0 differs substantially from the original system which
had no separate message-passing layer and had a different message interface [19].

The second goal, efficiency, conflicts with the first, portability. Whereas porta-
bility favors a modular, layered structure, efficiency dictates an integrated struc-
ture. In this chapter we demonstrate that Panda can be implemented efficiently (on
LFC) without sacrificing portability. This efficiency results from Panda’s flexible
internal structure, carefully designed interfaces (both in Panda and LFC), exploit-
ing LFC’s communication mechanisms, and integrating multithreading and com-
munication.

In this chapter, we show how Panda uses LFC’s packet-based interface, NI-
level multicast and fetch-and-add, and polling watchdog to implement the follow-
ing abstractions:

103

104 Panda

1. Asynchronous upcalls. Since many PPSs require asynchronous message de-
livery, Panda delivers all incoming messages by means of asynchronous up-
calls. To avoid the use of interrupts for each incoming message, Panda trans-
parently and dynamically switches between using polling and interrupts. To
choose the most appropriate mechanism, Panda uses thread-scheduling in-
formation.

2. Stream messages. LFC’s packet-based communication interface allows a
flexible implementation of stream messages [112]. Stream messages allow
end-to-end pipelining of data transfers. Our implementation avoids unnec-
essary copying and decouples message notification and message consump-
tion.

3. Totally-ordered broadcast. Panda provides a simple and efficient implemen-
tation of a totally-ordered broadcast primitive. The implementation builds
on LFC’s multicast and fetch-and-add primitives.

The first section of this chapter gives an overview of Panda 4.0. It describes
Panda’s functionality and its internal structure. Section 6.2 describes how Panda
integrates communication and multithreading. Section 6.3 studies the implemen-
tation of Panda’s message abstraction. Section 6.4 describes Panda’s totally-
ordered broadcast protocol. Section 6.5 reports on the performance of Panda on
LFC and Section 6.6 discusses related work.

6.1 Overview

This section gives an overview of Panda’s functionality, describes the internal
structure of Panda, and discusses the key performance issues in Panda’s imple-
mentation.

6.1.1 Functionality

Panda extends LFC’s low-level message-passing functionality in several ways.
First, processes that communicate using Panda exchange messages of arbitrary
size rather than packets with a maximum size.

Second, Panda implements demultiplexing. Each Panda module (described
later) allows its clients to construct communication endpoints and to associate a
handler function with each endpoint. Senders direct their messages to such end-
points. When a message arrives at an endpoint, Panda invokes the associated mes-
sage handler and passes the message to this handler. LFC, in contrast, dispatches
all network packets that arrive at a processor to a single packet handler.

6.1 Overview 105

Totally ordered? Yes Yes No

A B A B A B A B

No

T
im

e

Fig. 6.1. Different broadcast delivery orders.

Third, Panda supports multithreading. Panda clients can create threads and
use them to structure a system or to overlap communication and computation.

Finally, Panda supports several high-level communication primitives, all of
which operate on messages of arbitrary length. With one-way message pass-
ing, messages can be sent from one process to an endpoint in another process.
Such messages can be received implicitly, by means of upcalls, or explicitly, by
means of blocking downcalls. Remote procedure call, a well known communica-
tion mechanism in distributed systems [23], allows a process to invoke a proce-
dure (an upcall) in a remote process and wait for the result of the invocation. A
totally-ordered broadcast is a broadcast with strong ordering guarantees. It has
many applications in systems that need to maintain consistent replicas of shared
data [75]. Specifically, a totally-ordered broadcast primitive guarantees that when
n processes receive the same set of broadcast messages, then

1. All messages sent by the same process will be delivered to their destinations
in the same order they were sent.

2. All messages (sent by any process) will be delivered in the same order to all
n processes.

The first requirement (FIFOness) is also satisfied by LFC’s broadcast primitive,
but the second is not.

Figure 6.1 illustrates the difference between a FIFO broadcast and a totally-
ordered broadcast. Two processes A and B concurrently broadcast a message. The
figure shows all four possible delivery orders. With a FIFO broadcast, all delivery
orders are valid. With a totally-ordered broadcast, however, only the first two
scenarios are possible. In the third and fourth scenario, processes A and B receive
the two messages in different orders.

Both message passing and RPC are subject to flow control. If a receiving
process does not consume incoming messages, Panda will stall the sender(s) of

106 Panda

those messages. At present, no flow control is implemented for Panda’s totally-
ordered broadcast. Scalable multicast flow control is difficult due to the large
number of receivers that a sender needs to get feedback from. LFC’s current set
of clients and applications, however, works fine without multicast flow control, for
two reasons. First, due to application-level synchronization or due to the use of
collective-communication operations, many applications have at most one broad-
casting process at any time, which reduces the pressure on receiving processes.
Second, a receiver that disables network interrupts and that does not poll, will
eventually stall all nodes that try to send to it. If there is only a single broad-
casting process, this back-pressure is sufficient to stall that process when needed.
This is an all-or-nothing mechanism, though: either the receiver accepts incoming
packets from all senders or it does not receive any packets at all.

Since Panda adds considerable functionality to LFC’s simple unicast and mul-
ticast primitives, the question arises why this functionality is not part of LFC
itself. The answer is that not all client systems need this extra functionality. The
CRL DSM system (discussed in Section 7.3), for example, needs little more than
efficient point-to-point message passing and interrupt management. Adding extra
functionality would introduce unnecessary overhead.

6.1.2 Structure

Panda consists of several modules, which can be configured at compile time to
build a complete Panda system. Figure 6.2 illustrates the module structure. Each
box represents a module and lists its main functions. The arrows represent depen-
dencies between modules. A detailed description of the module interfaces can be
found in the Panda documentation [62].

The System Module

The most important module is the system module. For portability, Panda allows
only the system module to access platform-specific functionality such as the native
message-passing primitives. All other modules must be implemented using only
the functionality provided by the system module.

The system module implements threads, endpoints, messages, and Panda’s
low-level unicast and multicast primitives. The thread and message abstractions
are used in all Panda modules and by Panda clients. The unicast and multicast
functions, however, are mainly used by Panda’s message-passing and broadcast
module to implement higher-level communication primitives. Panda clients use
these higher-level primitives.

One way to achieve both portability and efficiency would be to define only a
high-level interface that every Panda system must implement. The fixed interface

6.1 Overview 107

Message-passing module

Broadcast module

Messages of arbitrary length
Totally ordered broadcast
Reliable broadcast

Unicast and multicast
Demultiplexing (endpoints)
Protocol header stacks
Threads

System module

Messages of arbitrary length
Reliable unicast and multicast
Demultiplexing (ports)

RPC module

Reliable remote procedure call

Fig. 6.2. Panda modules: functionality and dependencies.

ensures that Panda clients will run on any platform that the interface has been im-
plemented on. Also, if only the top-level interface is defined, the implementation
of Panda can exploit platform-specific properties. For example, if the message-
passing primitive of the target platform is reliable, then Panda need not buffer
messages for retransmission.

The main problem with this single-interface approach is that Panda must be
implemented from scratch for every target platform. In practice platforms vary
in a relatively small number of ways, so implementing Panda from scratch for
every platform would lead to code duplication. To allow code reuse, Panda hides
platform-specific code in the system module and requires that all other modules be
implemented in terms of the system module. These modules can thus be reused on
other platforms. The system-module functions have a fixed signature (i.e., name,
argument types, and return type), but the exact semantics of these functions may
vary in a small number of predefined ways from one Panda implementation to
another. The system module exports the particular semantics of its functions by
means of compile-time constants that indicate which features or restrictions apply
to the target platform. This way, the system module can convey the main proper-
ties of the underlying platform to higher-level modules. The properties exported
by the system module do not have to match those of the underlying system. For
some platforms, including LFC, the system module sometimes exports a stronger
interface than provided by the underlying system.

Variations of semantics is possible along the following dimensions:

108 Panda

1. Maximum packet size. The system module can export a maximum packet
size and leave fragmentation and reassembly to higher-level modules, or it
can accept and deliver messages of arbitrary size.

2. Reliability. The system module can export an unreliable or a reliable com-
munication interface.

3. Message ordering. The system module can export FIFO or unordered com-
munication primitives. The system module can also indicate whether or not
its broadcast primitive is totally-ordered.

Panda’s system module for LFC implements fragmentation and reassembly, both
for unicast and broadcast communication. (In this respect, the system module
thus exports a stronger interface than LFC.) The system module preserves the
reliability and FIFOness of LFC’s unicast and multicast primitives, and exports
a reliable and FIFO interface to higher-level Panda modules. In addition, the
system module implements a totally-ordered broadcast using LFC’s fetch-and-add
and broadcast primitives and exports this totally-ordered broadcast to higher-level
modules. With this configuration, the implementation of the higher-level modules
is relatively simple. Fragmentation, reliability, and ordering are all implemented
in lower layers.

High-Level Modules

We discuss three higher-level modules: the message-passing module, the RPC
module, and the broadcast module. These modules can exploit the information
conveyed by the system module’s (compile-time) parameters. This is the only
information about the underlying system available to the higher-level modules.
These modules can therefore be reused in Panda implementations for another
platform, provided that the system module for that platform implements the same
(or stronger) semantics. It is not necessary to build implementations of higher-
level modules for every possible combination of system-module semantics. First,
many combinations are unlikely. For example, no system module provides reliable
broadcast and unreliable unicast. Second, we only need an implementation for the
system module that exports the weakest semantics (i.e., unreliable and unordered
communication). Such an implementation is suboptimal for system modules that
offer stronger primitives, but it will function correctly and can serve as a starting
point for optimization.

The message-passing module implements reliable point-to-point communi-
cation and an endpoint (demultiplexing) abstraction. Since LFC is reliable and
Panda’s system module performs fragmentation and reassembly, the message-

6.1 Overview 109

passing module need only implement demultiplexing, which amounts to adding a
small header to every message.

The RPC module implements remote procedure calls on top of the message-
passing module. An RPC is implemented as follows. The client creates a request
message and transmits it to the server process using the message-passing mod-
ule’s send primitive. The RPC module then blocks the client (using a condition
variable). When the server receives the request, it invokes the request handler.
This handler creates a reply message and transmits it to the client process. At the
client side, the reply is dispatched to a reply handler (internal to the RPC module)
which awakens the blocked client thread and which passes the reply message to
the awakened client. Since the implementation is built upon the message-passing
module’s reliable primitives, it is small and simple.

The broadcast module implements a totally-ordered broadcast primitive. All
broadcast messages are delivered in the same total order to all processes, includ-
ing the sender. Since the system module already implements a totally-ordered
broadcast —so that it can exploit LFC’s multicast and fetch-and-add— the imple-
mentation of the broadcast module is also very simple.

6.1.3 Panda’s Main Abstractions

Below we describe the abstractions and mechanisms that are used throughout the
Panda system and by Panda clients. On LFC, most of these abstractions are im-
plemented in the system module.

Threads

Panda’s multithreading interface includes the data types and functions that are
found in most thread packages: thread create, thread join, scheduling priorities,
locks, and condition variables. Since most thread packages provide similar mech-
anisms, Panda’s thread interface can usually be implemented using wrapper rou-
tines that invoke the routines supplied by the thread package available on the tar-
get platform (e.g., POSIX threads [110]). The LFC implementation of Panda’s
thread interface uses a thread package called OpenThreads [63, 64]. Section 6.2
describes how Panda orchestrates the interactions between LFC and OpenThreads
in an efficient way.

Addressing

The system module implements an addressing abstraction called Service Access
Points (SAPs). Messages transmitted by the system module are addressed to
a SAP in a particular destination process. Since Panda does not implement a

110 Panda

name service, all SAPs must be created by all processes at initialization time. The
creator of a SAP (a Panda client or one of Panda’s modules) associates a receive
upcall with each SAP. When a message arrives at a SAP, this upcall is invoked
with the message as an argument. Panda executes at most one upcall per SAP at a
time. Upcalls of different SAPs may run concurrently.

Panda’s high-level modules use similar addressing and message delivery mech-
anisms as the system module. The message-passing module, for example, imple-
ments an endpoint abstraction called ports. On LFC, ports are implemented as
system module endpoints (SAPs), but on other platforms there need not be a one-
to-one correspondence between ports and SAPs. In the Panda 4.0 implementation
on top of UDP, for instance, SAPs are implemented as UDP sockets, but ports
are not. The reason for this difference is that communication to UDP sockets is
unreliable, while communication to a port is reliable.

As to message delivery, almost all modules deliver messages by means of
upcalls associated with communications endpoints (SAPs, ports, etc.). The RPC
module is an exception, because RPC replies are delivered synchronously to the
thread that sent the request. This thread is blocked until the reply arrives. RPC
requests, on the other hand, are delivered by means of upcalls.

Message Abstractions

Panda provides two message abstractions: I/O vectors at the sending side and
stream messages at the receiving side. Both abstractions are used by all Panda
modules.

A sending process creates a list of pointers to buffers that it wishes to transmit
and passes this list to a send routine. The buffer list is called an I/O vector. Panda’s
low-level send routines (described below) gather the data referenced by the I/O
vector by copying the data into network packets. The main advantage of a gather
interface over interfaces that accept only a single buffer argument, is that they do
not force the client to copy data into a contiguous buffer before invoking the send
routine (which will have to copy the message at least once more, to the NI).

At the receiving side, Panda uses stream messages. Stream messages were
introduced in Illinois Fast Messages (version 2.0) [112]. A stream message is
a message of arbitrary length that can be accessed only sequentially (i.e., like a
stream). A stream message behaves like a TCP connection that contains exactly
one message. This property allows receivers of a message to begin consuming that
message before it has been fully received. Incoming data can be copied to its final
destination in a pipelined fashion, which is more efficient than first reassembling
the complete message before passing it to the client.

Panda consists of multiple protocol layers and Panda clients may add their
own protocol layers. Each layer typically adds a header to every message that

6.1 Overview 111

Headers

Client protocol B

Client protocol A

Message-passing module

System module

Group module

Client protocol C

Unused

RPC module

Header stack Header stack

Fig. 6.3. Two Panda header stacks.

it transmits. To support efficient header manipulation, we borrow an idea from
the x-kernel [116]. All protocol headers that need to be prepended to an outgo-
ing message are stored in a single, contiguous buffer. By using a single buffer
to store protocol headers, Panda avoids copying its clients’ I/O vectors just to
prepend pointers to its own headers (which are small). Such buffers are called
header stacks and are used both at the sending and the receiving side. Senders
write (push) their headers to the header stack. Receivers read (pop) those head-
ers in reverse order. Both pushing and popping headers are simple and efficient
operations.

Figure 6.3 shows two Panda protocol stacks and the corresponding header
stacks. Each protocol layer, whether internal or external to Panda, exports how
much space in the header stack it and its descendants in the protocol graph need.
Other protocols can retrieve this information and use it to determine where in the
header stack buffer they must store their header.

Send and Receive Interfaces

Table 6.1 gives the signatures of the system module’s communication routines.
Pan unicast() gathers and transmits a header stack (proto) and an I/O vector (iov)
to a SAP (sap) in the destination process (dest). When the destination process
receives the first packet of the sender’s message, it invokes the handler routine
associated with the service access point parameter (sap). The handler routine
takes a header stack and a stream message as its arguments. The receiving process
can read the stream message’s data by passing the stream message to pan msg -
consume(). The header stack can be read directly.

112 Panda

void pan unicast(unsigned dest, pan sap p sap,
pan iovec p iov, int veclen, void *proto, int proto size)

Constructs a message out of all veclen buffers in I/O vector iov. Buffer
proto, of length proto size, is prepended to this message and is used
to store headers. The message is transmitted to process dest. When
dest receives the message, it invokes the upcall associated with sap,
passing the message, its headers, and its sender as arguments.

void pan multicast(pan pset p dests, pan sap p sap,
pan iovec p iov, int veclen, void *proto, int proto size)

Behaves like pan unicast(), but multicasts the I/O vector to all pro-
cesses in dests, not just to a single process.

int pan msg consume(pan msg p msg, void *buf, unsigned size)

Tries to copy the next size bytes from message msg to buf and returns
the number of bytes that have been copied. This number equals size
unless the client tried to consume more bytes than the stream contains.
When the last byte has been consumed, the message is destroyed.

Table 6.1. Send and receive interfaces of Panda’s system module.

Pan msg consume() consumes the next n bytes from the stream message and
copies them to a client-specified buffer. If less than n bytes have arrived at the
time that pan msg consume() is called, pan msg consume() blocks and polls until
at least n bytes have arrived.

In many cases, the message handler reads all of a stream message’s data. If this
is inconvenient, however, then the receiving process can store the stream message,
return from the handler, and consume the data later. Storing the stream message
consists of copying a pointer to the message data structure; the contents of the
message need not be copied.

Other Panda modules have similar send and receive signatures. In all cases,
the send routine accepts an I/O vector with buffers to transmit and the receive
upcall delivers a stream message and a protocol header stack.

Upcalls

The system module delivers every incoming message by invoking the upcall rou-
tine associated with the message’s destination SAP. The upcall routine is usually
a routine inside the higher-level module that created the SAP. In most cases, this
routine passes the message to a higher-level layer (either the Panda client or an-

6.2 Integrating Multithreading and Communication 113

other Panda module). This is done by invoking another upcall or by storing the
message (e.g., an RPC reply) in a known location. In other cases, the message
(e.g., an acknowledgement) serves only control purposes internal to the receiving
module and will not be propagated to higher-level layers.

When the system module receives the first packet of a message, it schedules
an upcall. Each SAP maintains a queue of pending upcalls, which are executed
in-order and one at a time. Clients and higher-level modules do not have precise
control over the scheduling of upcalls. They must assume that every upcall is
executed asynchronously and protect their global data structures accordingly.

An interesting question is whether an upcall should be viewed as an indepen-
dent thread or as a subroutine of the running ’computation’ thread. The former
view is more natural, because the next incoming message may have nothing to
do with the current activity of the running thread. Unfortunately, this view has
some problems associated with it. These problems and their resolution in Panda
are discussed in Section 6.2.

6.2 Integrating Multithreading and Communication

This section studies the interactions between LFC’s communication mechanisms
and multithreading in Panda. Section 6.2.1 explains how Panda and other mul-
tithreaded clients can be implemented safely on LFC. Next, in Section 6.2.2 we
show how the knowledge that is available in a thread scheduler can be exploited to
reduce interrupt overhead. Finally, in Section 6.2.3 we discuss design options and
implementation techniques for upcall models. The design of an upcall model is
related to multithreading and efficient implementations of some upcall models re-
quire cooperation of the multithreading system. After discussing different design
options, we describe Panda’s upcall model.

6.2.1 Multithread-Safe Access to LFC

LFC is not multithread-safe: concurrent invocations of LFC routines can corrupt
LFC’s internal data structures. LFC does not use locks to protect its global data,
because several LFC clients (e.g., CRL, TreadMarks, and MPI) do not use multi-
threading and because we are reluctant to make LFC dependent on specific thread
packages. Nevertheless, Panda and other multithreaded systems can safely use
LFC without modifications to LFC’s interface or implementation.

With single-threaded clients LFC has to be prepared for two types of concur-
rent invocation of LFC routines: recursive invocations and invocations executed
by LFC’s signal handler. Recursive invocations occur (only) when an LFC routine
drains the network (see Section 3.6). The routine that sends a packet, for exam-

114 Panda

Message handling

Computation

Time

Procedure call
Packet in flight

Client (computation)
LFC send (lfc_ucast_launch)
Client (lfc_upcall)

����
����
����
����

����
����
����
����

����
����
����
����

��
��
��
��

Fig. 6.4. Recursive invocation of an LFC routine.

ple, will poll when no free send descriptors are available. During a poll, LFC may
invoke lfc upcall() to handle incoming network packets. This upcall is defined by
the client and may invoke LFC routines, including the routine that polled. This
scenario is illustrated in Figure 6.4. To prevent corruption of global state due to
recursion, LFC always leaves all global data in a consistent state before polling.

When we allow network interrupts, LFC routines can be interrupted by an
upcall at any point, which can easily result in data races. To avoid such data races,
LFC logically1 disables network interrupts whenever an LFC routine is entered
that accesses global state.

The two measures described above are insufficient to deal with multithreaded
clients, because they do not prevent two client threads from concurrently entering
LFC. To solve this problem, Panda’s system module employs a single lock to
control access to LFC routines. Panda acquires this lock before invoking any LFC
routine and releases the lock immediately after the routine returns.

The lock introduces a new problem: recursive invocations of an LFC routine
will deadlock, because Panda does not allow a thread to acquire a lock multiple
times (i.e., Panda does not implement recursive locks). To prevent this, Panda
releases the lock upon entering lfc upcall() and acquires it again just before re-
turning from lfc upcall(). This works, because all recursive invocations have
lfc upcall() in their call chain. When lfc upcall() releases the lock, another thread
can enter LFC. This is safe, because the polling thread that invoked lfc upcall()
always leaves LFC’s global variables in a consistent state.

With these measures, we can handle concurrent invocations from multiple
Panda threads and recursive invocations by a single thread. There remains one

1As explained in Section 3.7, LFC does not truly disable network interrupts.

6.2 Integrating Multithreading and Communication 115

problem: network interrupts. Network interrupts are processed by LFC’s signal
handler (see Section 3.7). When invoked, this signal handler checks that interrupts
are enabled (otherwise it returns) and then invokes lfc poll() to check for pending
packets. Lfc poll(), in turn, may invoke lfc upcall() and will do so before Panda
has had a chance to acquire its lock. When this occurs, lfc upcall() will release
the lock even though the lock had never been acquired.

The problem is that the signal handler is another entry point into LFC that
needs to be protected with a lock/unlock pair. To do that, Panda overrides LFC’s
signal handler with its own signal handler. Panda’s signal handler acquires the
lock, invokes LFC’s signal handler, and releases the lock. This closes the last
atomicity hole.

Summarizing, Panda achieves multithread-safe access to LFC through three
measures:

1. LFC leaves its global variables in a consistent state before polling.

2. The client brackets calls to LFC routines with a lock/unlock pair to prevent
multiple client threads from executing concurrently within LFC.

3. The client brackets invocations of LFC’s network signal handler with a
lock/unlock pair.

Two properties of LFC make these measures work. First, LFC does not provide a
blocking receive downcall, but dispatches all incoming packets to a user-supplied
upcall function. Systems like MPI, in contrast, provide a blocking receive down-
call. If we bracket calls to such a blocking receive with a lock/unlock pair, we
block entrance to the communication layer until a message is received. This
causes deadlock if a thread blocked in a receive downcall waits for a message
that can be received only if another thread is able to enter the communication sys-
tem (e.g., to send a message). This type of blocking is different from the transient
blocking that occurs when LFC has run out of some resource (e.g., send packets).
The latter type of blocking is always resolved if all participating processes drain
the communication network and release host receive-packets.

Second, LFC dispatches all packets to a single upcall function, which allows
lock management to be centralized. If the communication system would directly
invoke user handlers, then it would be the responsibility of the user to get the
locking right, or, alternatively, LFC would have to know about the locks used by
the client system.

6.2.2 Transparently Switching between Interrupts and Polling

In Section 2.5 we discussed the main advantages and disadvantages of polling
and interrupts. This section presents an approach, implemented in Panda and its

116 Panda

underlying thread package OpenThreads, that combines the advantages of polling
and interrupts. In this approach polling is used when the application is known
to be idle. Interrupts are used to deliver messages to a process that is busy exe-
cuting application code. Using the thread scheduler’s knowledge of the state of
all threads, Panda dynamically (and transparently) switches between these two
strategies. As a result, Panda never polls unnecessarily and we use interrupts only
when the application is truly busy.

The techniques described in this section were initially developed on another
user-level communication system (FM/MC [10]). The same techniques, however,
are used on LFC. In addition, LFC supports the mixing of polling and interrupts
by means of its polling watchdog.

Polling versus Interrupts

Choosing between polling and interrupts can be difficult. There are difficulties in
two areas: ease of programming and performance cost. We consider two issues
related to ease of programming: matching the polling rate to the message-arrival
rate and concurrency control.

With polling, it is necessary to roughly match the polling rate to the message-
arrival rate. Unfortunately, many parallel programming systems cannot predict
when messages arrive and when they need to be processed. These systems must
either use interrupts or insert polls automatically. Since interrupts are expensive, a
polling-based approach is potentially attractive. Automatic polling, however, has
its own costs and problems.

Polls can be inserted statically, by a compiler, or dynamically, by a runtime
system. A compiler must be conservative and may therefore insert far too many
polling statements (e.g., at the beginning of every loop iteration). A runtime sys-
tem can poll the network each time it is invoked, but this approach works only
if the application frequently invokes the runtime system. Alternatively, the run-
time system can create a background thread that regularly polls the network. This,
however, requires that the thread scheduler implement a form of time-slicing, and
introduces the overhead of switching to and from the background thread. Polling
is also troublesome from a software-engineering perspective, because all code,
including large standard libraries, may have to be processed to include polls.

The second issue is concurrency control. Unlike interrupts, using polls gives
precise control over message-handler execution. Consequently, a single-threaded
application that polls the network only when it is not in a critical section need
not use locks or interrupt-status manipulation to protect its shared data. How-
ever, to exploit the synchronous nature of polling, one must know exactly where
a poll may occur. Calling a library routine from within a critical section can be
dangerous, unless it is guaranteed that this routine does not poll.

6.2 Integrating Multithreading and Communication 117

Quantifying the difference in cost between using interrupts and polling is dif-
ficult due to the large number of parameters involved: hardware (cache sizes,
network adapters), operating system (interrupt handling), runtime support (thread
packages, communication interfaces), and application (polling policy, message-
arrival rate, communication patterns). The discussion below considers the base
costs of polling and interrupts, and the relationship with the message-arrival rate.

First, executing a single poll is typically much cheaper than taking an inter-
rupt, because a poll executes entirely in user space without any context switching
(see Section 2.5). Dispatching an interrupt to user space on a commodity oper-
ating system, on the other hand, is expensive. The main reason is that software
interrupts are typically used to signal exceptions like segmentation faults, events
for which operating systems do not optimize [143]. In LFC, a successful poll costs
1.0 µs; dispatching an interrupt and a signal handler costs 31 µs.

Second, comparing the cost of a single poll to the cost of a single interrupt
does not provide a sufficient basis for statements about application performance.
A single interrupt can process many messages, so the cost of an interrupt can be
amortized over multiple messages. Also, each time a poll fails, the user program
wastes a few cycles. Since matching the polling rate to the message-arrival rate
can be hard, an application may either poll too often (and thus waste cycles) or
poll too infrequently (and delay the delivery of incoming messages).

For Panda, the following observations apply. Since Panda is multithreaded,
many Panda clients will already use locks to protect accesses to global data. Such
clients will have no trouble when upcalls are scheduled preemptively and do not
get any benefit from executing upcalls at known points in time. Moreover, several
of Panda’s clients cannot predict when messages will arrive, yet need to respond to
those messages in a timely manner. These two (ease-of-use) observations suggest
an interrupt-driven approach. However, since we expect that the exclusive use of
interrupts will lead to bad performance for clients that communicate frequently,
polling should also be taken into consideration. Below, we describe how Panda
tries to get the best of both worlds.

Exploiting the Thread Scheduler

Both polling and interrupts have their advantages and it is often beneficial to com-
bine the two of them. LFC provides the mechanisms to switch dynamically be-
tween polling and interrupts: primitives to disable and enable interrupts, and a
polling primitive. Using these primitives, a sophisticated programmer can get the
advantages of both polling and interrupts. The CRL runtime system, for exam-
ple, takes this approach [73]. Unfortunately, this approach is error-prone: the
programmer may easily forget to poll or, worse, to disable interrupts.

To solve this problem, we have devised a simple strategy for switching be-

118 Panda

Procedure call
Fast thread switch
Message in flightOpenThreads idle/polling loop

Panda/LFC communication code
Application code

Processor B

Processor A

Application

Idle/polling

LFC/Panda upcall

Time

LFC/Panda upcall

Idle/polling

Application

Request Reply

��
��
��
��

����
����
����
����

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����

����
����
����
����

Fig. 6.5. RPC example.

6.2 Integrating Multithreading and Communication 119

tween the two message extraction mechanisms. The key idea is to integrate thread
management and communication. This integration is motivated by two observa-
tions. First, polling is always beneficial when the application is idle (i.e., when it
waits for an incoming message). Second, when the application is active, polling
may still be effective from a performance point of view, but inserting polls into
computational code and finding the right polling rate can be tedious. Thus, our
strategy is simple: we poll whenever the application is idle and use interrupts
whenever runnable threads exist. To be able to poll when the application is idle,
however, we must be able to detect this situation. This suggests that the decision
to switch between polling and interrupts be taken in the thread scheduler.

We implemented this strategy in the following way. By default, Panda uses
interrupts to receive messages. However, when OpenThreads’s thread sched-
uler detects that all threads are blocked, it disables network interrupts and starts
polling the network in a tight loop. A successful poll results in the invocation
of lfc upcall(). If the execution of the handler wakes up a local thread, then the
scheduler will re-enable network interrupts and schedule the awakened thread. If
an application thread is running when a message arrives, LFC will generate a net-
work signal. Since LFC delays the generation of network interrupts, it is unlikely
that interrupts are generated unnecessarily (see Section 3.7).

OpenThreads does not detect all types of blocking: a thread is considered
blocked only if it blocks by invoking one of Panda’s thread synchronization prim-
itives (pan mutex lock(), pan cond wait(), or pan thread join()). If a thread spin-
waits on a memory location then this is not detected by OpenThreads. Also, Open-
Threads is not aware of blocking system calls. If a system call blocks, it will block
the entire process and not just the thread that invoked the system call. Some thread
packages solve this problem by providing wrappers for blocking system calls. The
wrapper invokes the asynchronous version of the system call and then invokes the
scheduler, which can then block the calling thread. When a poll or a signal indi-
cates that the system call has completed, the scheduler can reschedule the thread
that made the system call.

Figure 6.5 illustrates a typical RPC scenario. A thread on processor A is-
sues an RPC to remote processor B, which also runs a computation thread. After
sending its request, the sending thread blocks on a condition variable and Panda
invokes the thread scheduler. The scheduler finds no other runnable threads, dis-
ables interrupts, and starts polling the network.

When the request arrives at processor B, it interrupts the running application
thread. (Since processor B has an active thread, interrupts are enabled.) The
request is then dispatched to the destination SAP’s message handler. This handler
processes the request, sends a reply, and returns.

On processor A, the polling thread receives the reply, enters the message-
passing library, and then signals the condition variable that the application thread

120 Panda

blocked on. When the handler thread dies, the scheduler re-enables interrupts,
because the application thread has become runnable again. Next, the scheduler
switches to the application thread and starts to run it.

Summarizing, the behavior of the integrated threads and communication sys-
tem is that synchronous communication, like the receipt of an RPC reply, is usu-
ally handled through polling. Asynchronous communication, on the other hand,
is mostly handled through interrupts. This mixing of polling and interrupts com-
bines nicely with LFC’s polling watchdog.

6.2.3 An Efficient Upcall Implementation

In this section we discuss the design options for upcall implementations. Next, we
discuss three upcall models that take different positions in the design space. The
properties of these models have influenced the design of Panda’s upcall model,
which is discussed toward the end of this section.

The two main design axes for upcall systems are upcall context and upcall
concurrency. Upcalls can be invoked from different processing contexts. A simple
approach is to invoke upcall routines from the thread that happens to be running
when a message arrives. We call this the procedure call approach. The alternative
approach, the thread approach, is to give each upcall its own execution context.
This amounts to allocating a thread per incoming message. The exact context
from which a system makes upcalls affects both the programming model and the
efficiency of upcalls.

Upcall concurrency determines how many upcalls can be active concurrently
in a single receiver process. The most restrictive policy allows at most one upcall
to execute at any time; the most liberal strategy allows any number of upcalls to
execute concurrently. Again, different choices lead to differences in the program-
ming model and performance.

Table 6.2 summarizes the design axes and the different positions on these axes.
The table also classifies three upcall models along these axes: active message,
single-threaded upcalls, and popup threads. The active-messages model [148]
is restrictive in that it prohibits all blocking in message handlers. In particular,
active-message handlers may not block on locks, which complicates programming
significantly. On the other hand, highly efficient implementations of this model
exist. Some of these implementations allow active-message handler invocations
to nest, others do not. Popup threads [116] allow message handlers to block at any
time. Popup threads are often slower than active messages, because conceptually
a thread is created for each message. Finally, we consider single-threaded up-
calls [14], which disallow blocking in some, but not all cases. Below, we compare
the expressiveness of these models and the cost of implementing them.

6.2 Integrating Multithreading and Communication 121

Concurrency Context
Procedure call Thread

One upcall at a time Active messages Single-threaded upcalls
Multiple upcalls Active messages Popup threads

Table 6.2. Classification of upcall models.

int x, y;

void
handle store(int �x addr, int y val, int z0, int z1)
f

�x addr = y val;
g

void
handle read(int src, int �x addr, int z0, int z1)
f

AM send 4(src, handle store, x addr, y, 0, 0);
g

: : :

/� send read request to processor 5 �/
AM send 4(5, handle read, my cpu, &x, 0, 0);
: : :

Fig. 6.6. Simple remote read with active messages.

Active Messages

As explained in Section 2.8, an active message consists of the address of a han-
dler function and a small number of data words (typically four words). When an
active message is received, the handler address is extracted from the message and
the handler is invoked; the data words are passed as arguments to the handler. For
large messages, the active-messages model provides separate bulk-transfer prim-
itives.

A typical use of active messages is shown in Figure 6.6. In this example,
processor my cpu sends an active message to read the value of variable y on pro-
cessor 5. To send the message, we use the hypothetical routine AM send 4(),
which accepts a destination, a handler function, and four word-sized arguments.
At the receiving processor, the handler function is applied to the arguments. In
this case, the message contains the address of the handler handle read(), the iden-

122 Panda

tity of the sender (my cpu), and the address at which the result of the read should
be stored (&x). Function handle read() will be invoked on processor 5 with src
set to my cpu and x addr set to &x. The handler replies with another active mes-
sage that contains the value of y. When this reply arrives at processor my cpu,
handle store() is invoked to store the value in variable x. We assume that reading
an integer (variable y) is an atomic operation.

Active-message implementations deliver performance close to that of the raw
hardware. An important reason for this high performance is that active-message
handlers do not have their own execution context. When an application thread
polls or is interrupted by a network signal, the communication system invokes the
handler(s) of incoming messages in the context of the application thread. That
is, the handler’s stack frames are simply stacked on top of the application frames
(see Figure 6.8(a)). No separate thread is created, which eliminates the cost of
building a thread descriptor, allocating a stack, and a thread switch.

The lack of a dedicated thread stack makes active messages efficient, but
makes them unattractive as a general-purpose communication mechanism for ap-
plication programmers. Active-message handlers are run on the stacks of appli-
cation threads. If an active-message handler blocks, then the application thread
cannot be resumed, because part of its stack is occupied by the active-message
handler (see Figure 6.8(a)). This type of blocking occurs when the application
thread holds a resource (e.g., a lock) that is also needed by the active-message
handler. Clearly, a deadlock is created if the active-message handler waits until
the application thread releases the resource.

Similar problems arise when a handler waits for the arrival of another mes-
sage. Consider for example the transmission of a large reply message by an upcall
handler. If the message is sent by means of a flow-controlled protocol, then the
send routine may block when its send window closes. The send window can be
reopened only after an acknowledgement has been processed, which requires an-
other upcall. If the active-messages system allows at most one upcall at a time,
then we have a deadlock. If the system allows multiple upcalls, however, then
the acknowledgement handler can be run on top of the blocked handler (i.e., as a
nested upcall) and no deadlock occurs.

These problems are not insolvable. If it is necessary to suspend a handler, the
programmer can explicitly save state in an auxiliary data structure, a continuation,
and let the handler return. The state saved in the continuation can later be used by a
local thread or another handler to resume the suspended computation. We assume
that continuations are created manually by the programmer. Sometimes, though,
it is possible to create continuations automatically. Automatic approaches either
rely on a compiler to identify the state to be saved or save state conservatively. If a
compiler recognizes potential suspension points in a program, then it can identify
live variables and generate code to save live variables when the computation is

6.2 Integrating Multithreading and Communication 123

suspended. Blocking a thread is an example of conservative state saving: the
saved state consists of the entire thread stack.

To select between these state-saving alternatives, the following tradeoffs must
be considered. With manual state saving, no compiler is needed and application-
specific knowledge can be exploited to minimize the amount of state saved. How-
ever, manual state saving can be tedious and error prone. Compilers can remove
this burden, but most communication systems are constructed as libraries rather
than languages. Finally, blocking an entire thread is simple, but requires that ev-
ery upcall be run in its own thread context, otherwise we will also suspend the
computation on which the upcall has been stacked. This alternative is discussed
below, in the section on popup threads.

In small and self-contained systems, continuations can be used effectively to
solve the problem of blocking upcalls (see Section 7.1). On the other hand, contin-
uations are too low-level and error prone to be used by application programmers.
In fact, the original active-message proposal [148] explicitly states that the active-
message primitives are not designed to be high-level primitives. Active messages
are used in implementations of several parallel programming systems. A good
example is Split-C [39, 148], an extension of C that allows the programmer to use
global pointers to remote words or arrays of data. If a global pointer to remote
data is dereferenced, an active message is sent to retrieve the data.

Single-Threaded Upcalls

In the single-threaded upcall model [14], all messages sent to a particular process
are processed by a single, dedicated thread in that process. We refer to this thread
as the upcall thread. Also, in its basic form, the single-threaded upcall model
allows at most one upcall to execute at a time.

Figure 6.7 shows how single-threaded upcalls can be used to access a dis-
tributed hash table. Such a table is often used in distributed game-tree searching
to cache evaluation values of board positions that have already been analyzed. To
look up an evaluation value in a remote part of the hash table, a process sends
a handle lookup message to the processor that holds the table entry. Since the
table may be updated concurrently by local worker threads, and because an up-
date involves modifying multiple words (a key and a value), each table entry is
protected by a lock. In contrast with the active-messages model, the handler can
safely block on this lock when it is held by some local thread. While the handler is
blocked, though, no other messages can be processed. The single-threaded upcall
model assumes that locks are used only to protect small critical sections so that
pending messages will not be delayed excessively.

Allowing at most one upcall at a time restricts the set of actions that a pro-
grammer can safely perform in the context of an upcall. Specifically, this policy

124 Panda

void
handle lookup(int src, int key, int �ret addr, int z0)
f

int index;
int val;

index = hash(key);

lock(table[index].lock);
if (table[index].key == key) f

val = table[index].value;
g else f

val = -1;
g
unlock(table[index].lock);

AM send 4(src, handle reply, ret addr, val, 0, 0);
g

Fig. 6.7. Message handler with locking.

does not allow an upcall to wait for the arrival of a second message, because this
arrival can be detected only if the second message’s upcall executes. For example,
if a message handler issues a remote procedure call to another processor, deadlock
would ensue because the handler for the RPC’s reply message cannot be activated
until the handler that sent the request returns. In practice, the single-threaded
upcall model requires that message handlers create continuations or additional
threads in cases where condition synchronization or synchronous communication
is needed.

The difference between single-threaded upcalls and active messages is illus-
trated in Figure 6.8. With active messages, upcall handlers are stacked on the
application’s execution stack. Some implementations allow upcall handlers to
nest, others do not. Single-threaded upcall handlers, in contrast, do not run on the
stack of an arbitrary thread; they are always run, one at a time, on the stack of
the upcall thread. Executing message handlers in the context of this thread allows
the handlers to block without blocking other threads on the same processor. In
particular, the single-threaded upcall model allows message handlers to use locks
to synchronize their shared-data accesses with the accesses of other threads. This
is an important difference with active messages, where all blocking is disallowed.
If an active-message handler blocked, it would occupy part of the stack of another
thread (see Figure 6.8(a)), which then cannot be resumed safely.

6.2 Integrating Multithreading and Communication 125

Active-message handler 2

Active-message handler 1

Application code

Application thread

(a) Active messages.

Application thread Upcall thread

(b) Single-threaded upcalls.

Popup threadsApplication thread

(c) Popup threads.

Fig. 6.8. Three different upcall models.

126 Panda

void
handle job request(int src, int �jobaddr, int z0, int z1)
f

int job id;

lock(queue lock);
while (is empty(job queue)) f

wait(job queue nonempty, queue lock);
g
job id = fetch job(job queue);
unlock(queue lock);

AM send 4(src, handle store, jobaddr, job id, 0, 0);
g

Fig. 6.9. Message handler with blocking.

The single-threaded upcall model has been implemented in several versions
of Panda. The current version of Panda, Panda 4.0, uses a variant of the single-
threaded upcall model that we will describe later.

Popup Threads

While the single-threaded upcall model is more expressive than the active-messages
model, it is still a restrictive model because all messages are handled by a single
thread. The popup-threads model [116], in contrast, allows multiple message han-
dlers to be active concurrently. Each message is allocated its own thread context
(see Figure 6.8(c)). As a result, each message handler can synchronize safely on
locks and condition variables and issue (possibly synchronous) communication
requests, just like any other thread.

Figure 6.9 illustrates the advantages of popup threads. In this example, the
message handler handle job request() attempts to retrieve a job identifier (job id)
from a job queue. When no job is available, the handler blocks on condition
variable job queue nonempty and waits until a new job is added to the queue.
While this is a natural way to express condition synchronization, it is prohibited
in both the active-messages and the single-threaded upcall model. In the active-
messages model, the handler is not even allowed to block on the queue lock. In the
single-threaded upcall model, the handler can lock the queue, but is not allowed
to wait until a job is added, because the new job may arrive in a message not yet
processed. To add this new job, it is necessary to run a new message handler while
the current handler is blocked. With single-threaded upcalls, this is impossible.

6.2 Integrating Multithreading and Communication 127

Dispatching a popup thread need not be any more expensive than dispatching
a single-threaded upcall [88]. Popup threads, however, have some hidden costs
that do not immediately show up in microbenchmarks:

1. When many message handlers block, the number of threads in the system
can become large, which wastes memory.

2. The number of runnable threads on a node may increase, which can lead to
scheduling anomalies. In earlier experiments we observed a severe perfor-
mance degradation for a search algorithm in which popup threads were used
to service requests for work [88]. The scheduler repeatedly chose to run
high-priority popup threads instead of the low-priority application thread
that generated new work. As a result, many useless thread switches were
executed. Druschel and Banga found similar scheduling problems in UNIX
systems that process incoming network packets at top priority [47].

3. Because popup threads allow multiple message handlers to execute concur-
rently, the ordering properties of the underlying communication system may
be lost. For example, if two messages are sent across a FIFO communica-
tion channel from one node to another, the receiving process will create two
threads to process these messages. Since the thread scheduler can sched-
ule these threads in any order, the FIFO property is lost. In general, only
the programmer knows when the next message can safely be dispatched.
Hence, if FIFO ordering is needed, it has to be implemented explicitly, for
example by tagging messages with sequence numbers.

Several systems provide popup threads. Among these systems are Nexus [54],
Horus [144], and the x-kernel [116]. These systems have all been used for a
variety of parallel and distributed applications.

Panda’s Upcall Model

The first Panda system [19] implemented popup threads. To reduce the overhead
of thread switching, however, later versions have used the single-threaded upcall
model. Two kinds of thread switching overhead were eliminated:

1. In our early Panda implementations on Unix and Amoeba [139] all in-
coming messages were dispatched to a single thread, the network daemon,
which passed each message to a popup thread. (These systems maintained
a pool of popup threads to avoid thread creation costs on the critical path.)
The use of single-threaded upcalls allowed the network daemon to process
all messages without switching to a popup thread.

128 Panda

2. Multiple upcall threads could be blocked, waiting for an event that was to
be generated by a local (computation) thread or a message. When the event
occurred, all threads were awakened, even if the event allowed only one
thread to continue; the other threads would put themselves back to sleep.
It is frequently possible to avoid putting upcall threads to sleep. Instead,
upcalls can create continuations which can be resumed by other threads
without any thread switching. Once upcalls do not put themselves to sleep
any more, they can be executed by a single-threaded upcall instead of popup
threads.

In retrospect, the first type of overhead could have been eliminated without chang-
ing the programming model, by means of lazy thread-creation techniques such as
described below. The second problem occurred in the implementation of Orca and
is discussed in more detail in Section 7.1.4.

Panda 4.0 implements an upcall model that lies between active messages and
single-threaded upcalls. The model is as follows. First, as in single-threaded
upcalls, Panda clients can use locks in upcalls, but should not use condition-
synchronization or synchronous communication primitives in upcalls.

Second, Panda clients must release their locks before invoking any Panda send
or receive routine. This restriction is the main difference between Panda’s upcall
model and single-threaded upcalls. It sometimes allows the implementation to run
upcalls on the current stack rather than on a separate stack.

Finally, Panda allows up to one upcall per endpoint to be active at any time.
Panda clients must therefore be prepared to deal with concurrency between upcalls
for different endpoints. In practice, this poses no problems, because programmers
already have to deal with concurrency between upcalls and a computation thread
or between multiple computation threads. Since Panda runs only upcalls for dif-
ferent endpoints concurrently, the order of messages sent to any single endpoint
is preserved, so we avoid a disadvantage of popup threads.

Implementation of Panda’s Upcall Model

On LFC, we use an optimized implementation of Panda’s upcall model. In many
cases, this implementation completely avoids thread switching during message
processing. The implementation distinguishes between synchronous and asyn-
chronous upcalls. Synchronous upcalls occur implicitly, as the result of polling
by an LFC routine, or explicitly as the result of an invocation of lfc poll() by
Panda. Panda polls explicitly when all threads are idle or when it tries to consume
an as yet unreceived part of a stream message (see Section 6.3). A successful
poll results in the (synchronous) invocation of lfc upcall() in the context of the
current thread (or the last-active thread if all threads are idle). This synchronous

6.2 Integrating Multithreading and Communication 129

upcall queues the packet just received at the packet’s destination SAP. If this is the
first packet of a message, and no other messages are queued before this message,
then Panda invokes the SAP’s upcall routine (by means of a plain procedure call)
without switching to another stack. This is safe, because Panda’s upcall model
requires that the polling thread does not hold any locks.

Asynchronous upcalls occur when the NI generates a network interrupt. Net-
work interrupts are propagated to the receiving user process by means of a UNIX
signal. The signal handler interrupts the running thread and executes on that
thread’s stack. Eventually, the signal handler invokes lfc poll() to process the
next network packet. In this case, there is no guarantee that the interrupted thread
does not hold any locks, so we cannot simply invoke a SAP’s upcall routine. A
simple solution is to store the packet just received in a queue and signal a separate
upcall thread. Unfortunately, this involves a full thread switch.

To avoid this full thread switch, OpenThreads invokes lfc poll() by means of
a special, slightly more expensive procedure-call mechanism. Instead of running
lfc poll() on the stack of the interrupted thread, OpenThreads switches to a special
upcall stack and runs the poll routine on that stack. At first sight, this is just a
thread switch, but there are two differences. First, since the upcall stack is used
only to run upcalls, OpenThreads does not need to restore any registers when it
switches to this stack. Put differently, we always start executing at the bottom
of the upcall stack. Second, OpenThreads sets up the bottom stack frame of the
upcall stack in such a way that the poll routine will automatically return to the
signal handler’s stack frame on the top of the stack of the interrupted thread (see
Figure 6.10(a)).

If the SAP handler does not block, then we will leave behind an empty upcall
stack, return to the stack of the interrupted thread, return from the signal handler,
and resume the interrupted thread. This is the common case that OpenThreads
optimizes. If, on the other hand, the SAP handler blocks on a lock, then Open-
Threads will disconnect the upcall stack from the stack of the interrupted thread.
This is illustrated in Figure 6.10(b). OpenThreads modifies the return address in
the bottom stack frame so that it points to a special exit function. This prevents
the upcall from returning to the stack of the interrupted thread and it allows the
interrupted thread to continue execution independently.

Summarizing, OpenThreads’s special calling mechanism optimistically ex-
ploits the observation that most handlers run to completion without blocking. In
this case, upcalls execute without true thread switches. If the handler does block,
then we promote it to an independent thread which OpenThreads schedules just
like any other thread.

130 Panda

��
��
��
��

��
��
��
��Signal frame

Return link

Upcall
thread

Interrupted thread

(a) Interrupted thread and upcall
thread before the upcall thread
has blocked. The upcall will re-
turn to the interrupted thread’s
stack.

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���Signal frame

Upcall
thread

Exit frame

Return link

Interrupted thread

(b) When the upcall thread blocks, Open-
Threads modifies the return address.

Fig. 6.10. Fast thread switch to an upcall thread.

6.3 Stream Messages

Panda’s stream messages are implemented in the system module. The implemen-
tation minimizes copying and allows pipelining of data transfers from application
to application process. The key idea is illustrated in Figure 6.11. The data-transfer
pipeline consists of four stages, which operate in parallel. In the first stage, Panda
copies client data into LFC send packets. In the second stage, LFC transmits
send packets to the destination NI. In the third stage, the receiving NI copies re-
ceive packets to host memory. Finally, in the fourth stage, the receiving Panda
client consumes data from receive packets in host memory. Messages larger than
a single packet will benefit from the parallelism in this pipeline. (A stream of
short messages also benefits from this pipelining, but the key feature of stream
messages is that the same parallelism can be exploited within a single message.)

Stream messages are implemented as follows. At the sending side, the system-
module functions pan unicast() and pan multicast() are responsible for message
fragmentation. They repeatedly allocate an LFC send packet, store a message
header into this packet, and fill the remainder of the packet with data from the
user’s I/O vector and the header stack.

Unicast header formats are shown in Figure 6.12. The first packet of a message
has a different header than the packets that follow. Both headers contain a count
of piggybacked credits and a field that identifies the destination SAP. The credits

6.3 Stream Messages 131

Receive packets (NI)

I/O vector1 1

3

4

Send packets (NI) Receive packets (host)

4

2

Panda

LFC

Network

Panda message
Panda client

Fig. 6.11. Application to application streaming with Panda’s stream messages.
(1) Panda copies user data into a send packet. (2) LFC transmits a send packet.
(3) LFC copies the packet to host memory. (4) The Panda client consumes data.

Piggybacked credits

Header stack size

Message size

SAP identifier

Header for first packet Header for subsequent packets

Piggybacked credits

SAP identifier

Fig. 6.12. Panda’s message-header formats.

field is used by Panda’s sliding-window flow-control scheme. The SAP identifier
is used for reassembly. Panda does not interleave outgoing packets that belong to
different messages. Consequently, senders need not add a message id to outgoing
packets. The source identifier in the LFC header (see Figure 3.1) and the SAP
identifier in the Panda header suffice to locate the message to which a packet
belongs.

The header of a message’s first packet contains two extra fields: the size of the
header stack contained in the packet and the total message size. The header-stack
size is used to find the start of the data that follows the headers. The total message
size is used to determine when all of a message’s packets have arrived.

Figure 6.13 illustrates the receiver-side data structures. The receiver maintains
an array of SAPs. Each SAP contains a pointer to the SAP’s handler and a queue
of pending stream messages. A stream message is considered pending when its
first packet has arrived and the receiving process has not yet entirely consumed
the stream message. A stream message is represented by a data structure that is
created when the stream message’s first packet arrives. This data structure con-

132 Panda

SAP 0
SAP 1
SAP 2
SAP 3

Packet

Stream message

Fig. 6.13. Receiver-side organization of Panda’s stream messages.

tains an array which holds pointers to the stream message’s constituent packets.
Packets are entered into this array as they arrive. In Figure 6.13, one stream mes-
sage is pending for SAP 0 and two stream messages are pending for SAP 3. The
first stream message for SAP 3 consists of three packets. All packets but the last
one are full.

When a packet arrives, lfc upcall() searches the destination SAP’s queue of
pending stream messages. If it does not find the stream message to which this
packet belongs, it creates a new stream message and appends it to the queue.
(Since LFC delivers all unicast packets in-order, there is no need to store an offset
or sequence number in the message headers.) If an incoming packet is not the first
packet of its stream message, then lfc upcall() will find the stream message in the
SAP’s queue of pending messages. The packet is then appended to the stream
message’s packet array.

When a stream message reaches the head of its SAP’s queue, Panda dequeues
the stream message and invokes the SAP handler, passing the stream message as
an argument. The stream messages queued at a specific SAP are processed one at
a time. (That is, a SAP’s handler is not invoked again until the previous invocation
has returned.)

Pan msg consume() copies data from the packets in a message’s packet list
to user buffers. Each time pan msg consume() has consumed a complete packet,
it returns the packet to LFC. If a Panda client does not want to consume all of a
message’s data, it can either skip some bytes or discard the entire message without
copying any data.

6.4 Totally-Ordered Broadcasting 133

6.4 Totally-Ordered Broadcasting

This section describes an efficient implementation of Panda’s totally-ordered broad-
cast primitive. Totally-ordered broadcast is a powerful communication primitive
that can be used to manage shared, replicated data. Panda’s totally-ordered broad-
cast, for example, is used to implement method invocations for replicated shared
objects in the Orca system (see Section 7.1).

A broadcast is totally-ordered if all broadcast messages are received in a single
order by all receivers and if this order agrees with the order in which senders
sent the messages. Most totally-ordered broadcast protocols use a centralized
component to implement the ordering constraint and the protocol presented in
this section is no exception. The protocol uses a central node, a sequencer, to
order messages. The protocol we describe uses LFC’s fetch-and-add primitive to
obtain sequence numbers to order messages.

The protocol is simple. Before sending a broadcast message, the sender just in-
vokes lfc fetch and add() to obtain a system-wide unique sequence number. This
sequence number is attached to the message and then the message’s packets are
broadcast using LFC’s broadcast primitive. All senders perform their fetch-and-
add operations on a single fetch-and-add variable that acts as a shared sequence
number. This variable is stored in a single NI’s memory.

Receivers assemble the message in the same way they assemble unicast mes-
sages (see Section 6.3). The only difference is that a message is not delivered
until all preceding messages have been delivered. This enforces the total ordering
constraint.

This Get-Sequence-number-then-Broadcast (GSB) protocol was first devel-
oped for a transputer-based parallel machine [65]. The main difference with the
original implementation is that with LFC, requests for a sequence number are
handled entirely by the NI. This reduces the latency of such requests in two ways.
First, the NI need not copy the request to host memory and the host need not copy
a reply message to NI memory. This gain is measurable – an LFC fetch-and-
add costs less than an LFC (host-to-host) roundtrip – but small (19.8 µs versus
23.3 µs). The main gain is the reduction in the number of interrupts. Namely, the
sequencer does not expect a sequence number request. Therefore, such requests
are quite likely to be delivered by means of an interrupt rather than a poll. LFC’s
fetch-and-add primitive avoids this type of interrupt.

6.5 Performance

In this section we discuss Panda’s performance. We measure the latency and
throughput for the message-passing and broadcast modules. We do not present

134 Panda

0 200 400 600 800 1000
Message size (bytes)

0

10

20

30

40

50

La
te

nc
y

(m
ic

ro
se

co
nd

s)
Panda
LFC

Fig. 6.14. Panda’s message-passing latency.

separate results for the RPC module, because RPCs are trivially composed of pairs
of message-passing module messages. We compare the Panda measurements with
the LFC measurements of Chapter 5, to assess the cost of Panda’s higher-level
functionality.

In Chapter 5 we measured latency and throughput using three receive methods:
no-touch, read-only, and copy. Here we use only the copy method; this is the most
common scenario for Panda clients and includes all overhead that Panda’s stream-
message abstraction adds to LFC’s packet interface.

6.5.1 Performance of the Message-Passing Module

Figure 6.14 shows the one-way latency for Panda’s message-passing module. For
comparison, we also show the one-way latency (with copying at the receiver side)
of LFC’s unicast primitive. As shown, Panda adds a constant amount (approx-
imately 5 µs) of overhead to LFC’s latency. There are several reasons for this
increase:

1. Locking. To ensure multithread-safe execution, Panda brackets all calls to
LFC routines with lock/unlock pairs.

2. Message abstraction. At the sending side, Panda has to process an I/O vector
before sending an LFC packet. At the receiving side, incoming packets have
to be appended to a stream message before the receiver upcall can process
the data. Panda also maintains several pointers and counters to keep track
of the current packet and the current position in that packet.

6.5 Performance 135

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

50

60

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

LFC
Panda

Fig. 6.15. Panda’s message-passing throughput.

3. Demultiplexing. Panda adds a header to each LFC packet. The header
identifies the destination port and the stream message to which the packet
belongs.

4. Flow control. Panda has to check and update its flow-control state for each
outgoing and incoming packet.

For 1024-byte messages, the difference between Panda’s latency and LFC’s la-
tency is larger than for smaller message sizes. For this message size, Panda needs
two packets, whereas LFC needs only one; this is due to Panda’s header.

Figure 6.15 shows the one-way throughput for Panda’s message-passing mod-
ule and for LFC. Due to the overheads described above, Panda’s throughput for
small messages is not as good as LFC’s throughput. In particular, sending and
receiving the first packet of a stream message involves more work than sending
and receiving subsequent packets. At the sending side, for example, we need to
store the header stack into the first packet; at the receiving side, we have to create
a stream message when the first packet arrives. For larger messages, these over-
heads can be amortized over multiple packets. For this reason, Panda does not
reach its peak throughput until a message consists of multiple LFC packets.

For larger messages, Panda sometimes attains higher throughputs than LFC.
This is due to cache effects that occur during the copying of data into send packets
and out of receive packets.

136 Panda

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150

200
La

te
nc

y
(m

ic
ro

se
co

nd
s)

16 processors

Panda, ordered
Panda, unordered
LFC, unordered

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150

200 64 processors

Panda, ordered
Panda, unordered
LFC, unordered

Fig. 6.16. Panda’s broadcast latency.

6.5.2 Performance of the Broadcast Module

We measured broadcast performance using three different broadcast primitives:

1. LFC’s broadcast using the copy receive strategy (see Section 5.3).

2. Panda’s unordered broadcast. Panda provides an option to disable total or-
dering. When this option is enabled, Panda does not tag broadcast mes-
sages with a system-wide unique sequence number. That is, Panda skips the
fetch-and-add operation that it normally performs to obtain such a sequence
number.

3. Panda’s totally-ordered broadcast. This is the broadcast primitive described
earlier in this chapter.

Figure 6.16 shows the latency for all three primitives, for message sizes up to
1 Kbyte and for 16 and 64 processors. The difference in latency for a null message
between Panda’s unordered broadcast and LFC’s broadcast is 9 µs. As expected,
adding total ordering increases the latency by a constant amount: the cost of a
fetch-and-add operation. On 64 processors, the null latency difference between
Panda’s unordered and ordered broadcasts is 23 µs.

Figure 6.17 shows broadcast throughput for 16 and 64 processors. Adding
total ordering reduces the throughput for small and medium-size messages. For
larger messages, however, Panda reaches LFC’s throughput.

Figure 6.16 and Figure 6.17 show only single-sender broadcast performance.
With multiple senders, the performance of totally-ordered broadcasts may suffer

6.5 Performance 137

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

16 processors

LFC, unordered
Panda, unordered
Panda, ordered

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

64 processors

LFC, unordered
Panda, unordered
Panda, ordered

Fig. 6.17. Panda’s broadcast throughput.

from the centralized sequencer. In practice, however, this is rarely a problem. In
many applications, there is at most one broadcasting process at any time. When
processes do broadcast simultaneously, the overall broadcast rate is often low.
In an Orca performance study [9], we measured the overhead of obtaining a se-
quence number from the sequencer. For 7 out of the 8 broadcasting applications
considered, the time spent on fetching sequence numbers was less than 0.2% of
the application’s execution time. Only one application suffered from the central-
ized sequencer: for this application, a linear equation solver, the time to access the
sequencer accounted for 4% of the application’s execution time. All applications
were run on FM/MC, which uses an NI-level fetch-and-add to obtain sequence
numbers, just like LFC.

6.5.3 Other Performance Issues

Some optimizations discussed in this chapter reduce costs that are architecture and
operating system dependent. The cost of a thread switch, for example, depends
on the amount of CPU state that has to be saved and on the way in which this state
is saved. The early Panda implementations ran on SPARC processor architectures
on which each (user-level) thread switch requires a trap to the operating system.
This trap is needed to flush the register windows, a SPARC-specific cache of the
top of the runtime stack, to memory [72, 79]. On other architectures, thread
switches are cheaper. On the Pentium Pros used for the experiments in this thesis,
a switch from one Panda thread to another costs 1.3 µs. This is still a considerable
overhead to add to LFC’s one-way null latency, but it is not excessive.

138 Panda

Interrupts and signal processing are other sources of architecture and operating-
system dependent overhead. Whereas thread switches are cheap on our experi-
mental platform, interrupts and signals are expensive and should be avoided when
possible (see Section 2.5).

6.6 Related Work

We discuss related work in five areas: portable message-passing libraries, polling
and interrupts, upcall models and their implementation, stream messages, and
totally-ordered broadcasting.

6.6.1 Portable Message-Passing Libraries

PVM [137] and MPI [53] are the most widely used portable message-passing
systems. Unlike Panda, these systems target application programmers. The main
differences between these systems and Panda are that PVM and MPI are hard to
use in a multithreaded environment, use receive downcalls instead of upcalls and
do not support totally-ordered broadcast.

PVM and MPI do not provide a multithreading abstraction. Both systems use
blocking receive downcalls and do not provide a mechanism to notify an external
thread scheduler that a thread has blocked. This is not a problem if the operating
system provides kernel-scheduled threads and the client uses these kernel threads.
If, on the other hand a client employs a thread package not supported by the op-
erating system, or if the operating system is not aware of threads at all, then the
use of blocking downcalls and the lack of a notification mechanism complicate
the use of multithreaded systems on top of MPI and PVM.

Multithreaded MPI and PVM clients can avoid the blocking-receive problem
by using nonblocking variants of the receive calls, but this means that appli-
cations will have to poll for messages, because PVM and MPI do not support
asynchronous (i.e., interrupt-driven) message delivery. The same lack of asyn-
chronous message delivery complicates the implementation of PPSs that require
asynchronous delivery to operate correctly and efficiently. These PPSs are forced
to poll (e.g., in a background thread), but finding the right polling rate is difficult.

LFC does not provide receive downcalls: all packets are delivered through
upcalls. Blocking receive downcalls can still be implemented on top of LFC,
though. (Panda’s message-passing module provides a blocking receive.) When a
blocking receive is implemented outside the message-passing system, control can
be passed to the thread scheduler when a thread blocks on a receive.

Neither PVM nor MPI provides a totally-ordered broadcast. While a totally-
ordered broadcast can be implemented using PVM and MPI primitives, such

6.6 Related Work 139

an implementation will be slower than an implementation that supports ordered
broadcasting at the lowest layers of the system.

The Nexus communication library [54] has the same goals as Panda; Nexus
is intended to be used as a compiler target or as part of a larger runtime system.
Nexus provides an asynchronous, one-way message-passing primitive called a
Remote Service Request (RSR). The destination of an RSR is named by means
of a global pointer, which is a system-wide unique name for a communication
endpoint. Endpoints can be created dynamically and references to them can be
passed around in messages. Unlike Panda, Nexus does not provide a broadcast
primitive.

Horus [144] and its precursor Isis [22] were designed to simplify the con-
struction of distributed programs. Horus focuses on message-ordering and fault-
tolerance issues. Panda supports parallel rather than distributed programming,
provides only one type of ordered broadcast, and does not address fault tolerance.
Like Panda, Horus can be configured in different ways. Horus, however, is much
more flexible in that it allows protocol stacks to be specified at run time rather
than at compile time.

6.6.2 Polling and Interrupts

In their remote-queueing model [28], Brewer et al. focus on the benefits of polling.
They recognize, however, that interrupts are indispensable and combine polling
with selective interrupts. Interrupts are generated only for specific messages (e.g.,
operating-system messages) or under specific circumstances (e.g., network over-
flow). In contrast, our integrated thread package chooses between polling and
interrupts based on the application’s state (idle or not).

CRL [74] is a DSM system that illustrates the need to combine polling and
interrupts in a single program. Operations on shared data are bracketed by calls
to the CRL library. During or between such operations, a CRL application may
not enter the library for a long time, so unless the responsibility for polling is put
on the user program, protocol requests can be handled in a timely manner only by
using interrupts. CRL therefore uses interrupts to deliver protocol request mes-
sages; polling is used to receive protocol reply messages. This type of behavior
occurs not only in CRL, but also in other DSMs such as CVM [114] and Orca [9].
It is exactly the kind of behavior that Panda deals with transparently.

Foster et al. describe the problems involved in implementing Nexus’s message
delivery mechanism (RSRs) on different operating systems and hardware [54].
Available mechanisms for polling and interrupts, and their costs, vary widely
across different systems. Moreover, these mechanisms are rarely well integrated
with the available multithreading primitives. For example, a blocking read on a
socket may block the entire process rather than just the calling thread. We be-

140 Panda

lieve that our system, in which we have full control over thread scheduling and
communication, achieves the desired level of integration.

6.6.3 Upcall Models

We have described three message-handling models in which each message results
in a handler invocation at the receiving side. Nexus uses two of these models to
dispatch RSR handlers. Nexus either creates a new thread to run the handler or
else runs the handler in a preallocated thread. The first case corresponds to what
we call the popup threads model, the second to the active-messages model. In the
second case, the thread is not allowed to block.

A model closely related to popup threads is the optimistic active-messages
model [150]. This model removes some of the restrictions of the basic active-
messages model. It extends the class of handlers that can be executed as an
active-message handler —i.e., without creating a separate thread— with handlers
that can safely be aborted and restarted when they block. A stub compiler prepro-
cesses all handler code. When the stub compiler detects that a handler performs
a potentially blocking action, it generates code that aborts the handler when it
blocks. When aborted, the handler is re-run in the context of a first-class thread
(which is created on the fly). Thread-management costs are thus incurred only
if a handler blocks; otherwise the handler runs as efficiently as a normal active-
message handler.

Optimistic active messages are less powerful than popup threads. First, opti-
mistic active messages require that all potentially blocking actions be recognizable
to the stub compiler. Popup threads, in contrast, can be implemented without com-
piler support and do not rely on programmer annotations to indicate what parts of
a handler may block. Second, an optimistic active-messages handler can be re-
run safely only if it does not modify any global state before it blocks; otherwise
this state will be modified twice. The programmer is thus forced to avoid or undo
changes to global state until it is known that the handler cannot block any more.

The stack-splitting and return-address modification techniques we use to in-
voke message handlers efficiently are similar to the techniques used by Lazy
Threads [58]. Lazy Threads provide an efficient fork primitive that optimistically
runs a child on its parent’s stack. When the child suspends, its return address is
modified to reflect the new state. Also, future children will be allocated on differ-
ent stacks. In our case, a thread that finds a message —either because it polled or
because it received a signal— needs to fork a message handler for this message.
Unlike Lazy Threads, however, the parent thread (the thread that polled or that
was interrupted) does not wait for its child (the message handler) to terminate.
Also, we run all children, including the first child, on their own stack.

6.6 Related Work 141

6.6.4 Stream Messages

Stream messages were introduced in Illinois Fast Messages (version 2.0). Stream
messages in Fast Messages differ in several ways from stream messages in Panda.
The main difference is that Fast Messages requires that each incoming message
be consumed in the context of the message’s handler. This implies that the user
needs to copy the message if the message arrives at an inconvenient moment. LFC
allows a handler to put aside a stream message without copying that message.

This difference results from the way receive-packet management is imple-
mented in Fast Messages. Fast Messages appends incoming packets to a circular
queue of packet buffers in host memory. For each packet in this queue, Fast Mes-
sages invokes a handler function. When the handler function returns, Fast Mes-
sages recycles the buffer. This scheme is simple, because the host never needs
to communicate the identities of free buffers to the NI. Both the host and the NI
maintain a local index into the queue: the host’s index indicates which packet to
consume next and the NI’s counter indicates where to store the next packet.

LFC explicitly passes the identities of free buffers to the NI (see Section 3.6),
which has the advantage that the host can replace buffers. This is exactly what
happens when lfc upcall() does not allow LFC to recycle a packet immediately.
As a result, packets can be put aside without copying, which is convenient and
efficient. Clients should be aware, however, that packet buffers reside in pinned
memory and are therefore a relatively precious resource. If a client continues to
buffer packets and does not return them, then LFC will continue to add new packet
buffers to its receive ring and will eventually run out of pinnable memory. To
avoid this, clients should keep track of their resource usage and take appropriate
measures, either by implementing flow control or by copying packets when the
number of buffered packets exceeds a threshold.

6.6.5 Totally-Ordered Broadcast

Totally-ordered broadcast is a well known concept in distributed computing where
it is used to simplify the construction of distributed programs. However, totally-
ordered broadcast is not used much in parallel programming. As we shall see
in Section 7.1, though, the Orca shared object system uses this primitive in an
effective way to update replicated objects.

Many different totally-ordered broadcast protocols are described in the litera-
ture. Heinzle et al. describe the GSB protocol used by Panda on LFC [65]. The
main difference between GSB and Panda’s implementation is that Panda handles
(through LFC) sequence number requests on the programmable NI; this reduces
the number of network interrupts.

Kaashoek describes two other protocols, Point-to-point/Broadcast (PB) and

142 Panda

Broadcast/Broadcast (BB), which also rely on a central, dedicated sequencer node
[75]. In PB, the sender sends its message to the sequencer. The sequencer tags
the message with a sequence number and broadcasts the tagged message to all
destinations. In BB, the sender broadcasts its message to all destinations and
the sequencer. When the sequencer receives the message, it assigns a sequence
number to the message and then broadcasts a small message that identifies the
message and contains the sequence number. Receivers are not allowed to deliver
a message until they have received its sequence number and until all preceding
messages have been delivered.

The performance characteristics of GSB, PB, and BB depend on the type of
network they run on. PB and BB were developed on an Ethernet, where a broad-
cast has the same cost as a point-to-point message. On switched networks like
Myrinet, however, a (spanning-tree) broadcast is much more expensive than a
point-to-point message. Consequently, the performance of large messages will
be dominated by the cost of broadcasting the data, irrespective of the ordering
mechanism.

For small messages, BB’s separate sequence-number broadcast is unattractive,
because the worst-case latency of a totally-ordered broadcast becomes equal to
twice the latency of an unordered broadcast (one for the data and one for the
sequence number). Incidentally, BB was also considered unattractive for small
messages in an Ethernet setting, but for a different reason: BB generates more
interrupts than PB.

PB is much more attractive for small messages, because it adds only a single
point-to-point message to the broadcast of the data. GSB uses two messages to
obtain a sequence number. For large messages, however, PB has the disadvan-
tage that all data packets must travel to and through the sequencer, thus putting
more load on the network and on the sequencer. PB also puts more load on the
sequencer than GSB if many processors try to broadcast simultaneously. With PB,
the occupancy of the sequencer will be high, because the sequencer must broad-
cast every data packet. Which GSB, the occupancy will be lower, because the
sequencer need only respond to fetch-and-add requests. Finally, if all broadcasts
originate from the sequencer, there are fewer opportunities to piggyback acknowl-
edgements on multicast traffic.

6.7 Summary

This chapter described the implementation of Panda on LFC. Panda extends LFC
with multithreading, messages of arbitrary length, demultiplexing, remote pro-
cedure call, and totally-ordered broadcast. The efficient implementation of this
functionality is enabled by LFC’s performance and interface and by novel tech-

6.7 Summary 143

niques employed by Panda. LFC allows packets to be delivered through polling
and interrupts. Both mechanisms are useful, but manually switching between
them is tedious and error-prone. Panda hides the complexity of managing both
mechanisms. Panda clients need not poll, because Panda’s threading subsystem,
OpenThreads, transparently switches to polling when all client threads are idle.
All messages are delivered using asynchronous upcalls. Panda uses the single-
threaded upcall model. This model imposes fewer restrictions than the active-
messages model, but more than popup threads. Upcalls are dispatched efficiently
using thread inlining and lazy thread-creation.

Panda implements stream messages, an efficient message abstraction that en-
ables end-to-end pipelining of data transfers. Panda’s stream messages separate
notification and the consumption of message data, which allows clients to defer
message processing.

Finally, we discussed a simple but efficient implementation of totally-ordered
broadcasting. This implementation is enabled by LFC’s efficient multicast primi-
tive and its fetch-and-add primitive.

Chapter 7

Parallel-Programming Systems

This chapter focuses on the implementation of parallel-programming systems
(PPSs) on LFC and Panda. We will show that the communication mechanisms
developed in the previous chapters can be applied effectively to a variety of PPSs.
We consider four PPSs:

� Orca [9], an object-based DSM

� Manta, a parallel Java system [99]

� CRL [74], a region-based DSM

� MPICH [61], an implementation of the MPI message-passing standard [53]

These systems offer different parallel-programming models and their implemen-
tations stress different parts of the underlying communication systems.

This chapter is organized as follows. Section 7.1 to Section 7.4 describe the
programming model, implementation, and performance of, respectively, Orca,
Manta, CRL, and MPI. Section 7.5 discusses related work. Section 7.6 compares
the different systems and summarizes the chapter.

7.1 Orca

Orca is a PPS based on the shared-object programming model. This section de-
scribes this programming model, gives an overview of the Orca implementation,
and then zooms in on two important implementation issues: operation transfer and
operation execution. Finally, it discusses the performance of Orca.

145

146 Parallel-Programming Systems

7.1.1 Programming Model

In shared-memory and page-based DSM systems [78, 82, 92, 155], processes
communicate by reading and writing memory words. To synchronize processes,
the programmer must use mutual-exclusion primitives designed for shared mem-
ory, such as locks and semaphores. Orca’s programming model, on the other
hand, is based on high-level operations on shared data structures and on implicit
synchronization, which is integrated into the model.

Orca programs encapsulate shared data in objects, which are manipulated
through operations of an abstract data type. An object may contain any number of
internal variables and arbitrarily complex data structures (e.g., lists and graphs).
A key idea in Orca’s model is to make each operation on an object atomic, without
requiring the programmer to use locks. All operations on an object are executed
without interfering with each other. Each operation is applied to a single object,
but within this object the operation can execute arbitrarily complex code using
the object’s data. Objects in Orca are passive: objects do not contain threads that
wait for messages. Parallel execution is expressed through dynamically created
processes.

The shared-object model resembles the use of monitors. Both shared ob-
jects and monitors are based on abstract data types and for both models mutual-
exclusion synchronization is done by the system instead of the programmer. For
condition synchronization, however, Orca uses a higher-level mechanism [12],
based on Dijkstra’s guarded commands [44]. A guard is a boolean expression that
must be satisfied before the operation can begin. An operation can have multiple
guards, each of which has an associated sequence of statements. If the guards
of an operation are all false, the process that invoked the operation is suspended.
As soon as one or more guards become true, one true guard is selected nondeter-
ministically and its sequence of statements is executed. This mechanism avoids
the use of explicit wait and signal calls that are used by monitors to suspend and
resume processes, simplifying programming.

Figure 7.1 gives an example definition of an object type Int. The definition
consists of an integer instance variable x and two operations, inc() and await().
Operation inc() increments instance variable x and operation await() blocks until
x has reached at least the value of parameter v. Instances of type Int are initialized
by the initialization block that sets instance variable x to zero.

Figure 7.2 shows how Orca processes are defined and created and how objects
are shared between processes. At application-startup time, the Orca runtime sys-
tem (RTS) creates one instance of process type OrcaMain() on processor 0. In
this example, OrcaMain() creates 15 other processes —instances of process type
Worker()— on processors 1 to 15. To each of these processes OrcaMain() passes
a reference to object counter. When all processes have been forked, counter,

7.1 Orca 147

object implementation Int;
x: integer;

operation inc();
begin

x := x + 1;
end;

operation await(v : integer);
begin

guard x � v do
od;

end;

begin
x := 0;

end;
end;

Fig. 7.1. Definition of an Orca object type.

process Worker(counter: shared Int);
begin

counter$inc();
: : :

end;

process OrcaMain();
begin

counter: Int;

for i in 1..15 do
fork Worker(counter) on i;

od;
counter$await(15);
: : :

end;

Fig. 7.2. Orca process creation.

148 Parallel-Programming Systems

Compiled Orca program

Orca runtime system

Panda and OpenThreads

LFC

Myrinet and Linux

Fig. 7.3. The structure of the Orca shared object system.

which was originally local to OrcaMain(), is shared between OrcaMain() and all
Worker() processes. OrcaMain() waits until all Worker() processes have indicated
their presence by incrementing counter.

7.1.2 Implementation Overview

Figure 7.3 shows the software components that are used during the execution of
an Orca program. The Orca compiler translates the modules that make up an Orca
program. For portability, the compiler generates ANSI C. Since the Orca com-
piler performs many optimizations such as common-subexpression elimination,
strength reduction, and code motion, the C code it generates often performs as
well as equivalent, hand-coded C programs. The C code is compiled to machine
code by a platform-dependent C compiler. The resulting object files are linked
with the Orca RTS, Panda, LFC, and other support libraries. Below, we describe
how the compiler and the RTS support the efficient execution of Orca programs.

The Compiler

Besides translating sequential Orca code, the compiler supports an efficient im-
plementation of operations on shared objects in three ways. First, the compiler
distinguishes between read and write operations. Read operations do not mod-
ify the state of the object they operate on. Operation await() in Figure 7.1, for
example, is a read operation. If the compiler cannot tell if an operation is a read
operation, then it marks the operation as a write operation.

Second, the compiler tries to determine the relative frequency of read and write
operations [11]. The resulting estimates are passed to the RTS which uses them
to determine an appropriate replication strategy for the object. For example, if the
compiler estimates that an object is read much more frequently than it is written,
then the RTS will replicate the object, because read operations on a replicated
object do not require communication. The compiler’s estimates are used only as

7.1 Orca 149

a first guess. The RTS maintains usage statistics and may later decide to revise a
previous decision [87].

Third, the compiler generates operation-specific marshaling code. Marshaling
is discussed in Section 7.1.3.

The Runtime System

The Orca RTS implements process creation and termination, shared-object man-
agement, and operations on shared objects. Process creation occurs infrequently;
most programs create, at initialization time, as many processes as the number of
processors. Each Orca process is implemented as a Panda thread. To create a
process in response to an application-level FORK call, the RTS broadcasts a fork
message. Upon receiving this message, the processor on which the process is to
be created (the forkee) issues an RPC back to the forking processor. This RPC is
used to fetch copies of any shared objects that need to be stored on the forkee’s
processor. When the forkee receives the RPC’s reply, it creates a Panda thread
that executes the code for the new Orca process. The forker uses a totally-ordered
broadcast message rather than a point-to-point message to initiate the fork. Broad-
casting forks allows all processors to keep track of the number and type of Orca
processes; this information is used during object migration decisions.

The RTS implements two object-management strategies. The simplest strat-
egy is to store a single copy of an object in a single processor’s memory. To
decide in which processor’s memory the object must be stored, the RTS maintains
operation statistics for each shared object. The RTS uses these statistics and the
compiler-generated estimates to migrate each object to the processor that accesses
the object most frequently [87].

The second strategy is to replicate an object in the memories of all processors
that can access the object. In this case, the main problem is to keep the replicas in
a consistent state. Orca guarantees a sequentially consistent [86] view of shared
objects. Among others, sequential consistency requires that all processes agree
on the order of writes to shared objects. To achieve this, all write operations
are executed by means of a totally-ordered broadcast, which leads naturally to a
single order for all writes. Fekete et al. give detailed formal description of correct
implementation strategies for Orca’s memory model [52].

Most programs create only a small number of shared objects. Using the
compiler-generated hints and its runtime statistics, the RTS usually decides quickly
and correctly on which processor(s) it must store each object [87]. For these rea-
sons, object-management actions have not been optimized: replicating or migrat-
ing an object involves a totally-ordered broadcast and an RPC.

Operations are executed in one of three ways: through a local procedure call,
through a remote procedure call, or through a totally-ordered broadcast. Figure 7.4

150 Parallel-Programming Systems

RemoteWrite

Yes

call
Local procedure Totally-ordered

broadcast
Local procedure
call

Remote procedure
call

No

Read Local

Replicated object?

Local or remote object?Read or write operation?

Fig. 7.4. Decision process for executing an Orca operation.

shows how one of these methods is selected. A read operation on a replicated
object is executed locally, without communication. This is, of course, the purpose
of replication: to avoid communication. Write operations on replicated objects
require a totally-ordered broadcast. For operations on nonreplicated objects the
RTS does not distinguish between read and write operations, but consider only
the object’s location. If the object is stored in the memory of the processor that
invokes the operation, then the operation is executed by means of a local procedure
call; otherwise a remote procedure call is used.

The description so far is correct only for operations that have at most one
guard. With multiple guards, the compiler does not know in advance whether the
operation is a read or write operation: this depends on the guard alternative that is
selected. The compiler could conservatively classify operations that have at least
one write alternative as write operations. Instead, however, the compiler classifies
individual alternatives as read or write alternatives. When the RTS executes an
operation, it first tries to execute a read alternative, because for replicated objects
reads are less expensive than writes. The write alternatives are tried only if all
read alternatives fail. If the object is replicated, this involves a broadcast.

Operations that require communication are executed by means of function
shipping. Instead of moving the object to the invoker’s processor, the RTS moves
the invocation and its parameters to all processors that store the object. This is
done using an RPC or a totally-ordered broadcast, as explained above. Since all
processors run the same binary program, the code to execute an operation need
not be transported from one processor to another; a small operation identifier suf-
fices. In addition to this identifier the RTS marshals the object identity and the
operation’s parameters. In the case of an operation on a nonreplicated object, this
information is stored in the RPC’s request message. When the request arrives at
the processor that stores the object, this processor’s RTS executes the operation
and sends a reply that contains the operation’s output parameters and return value.
In the case of a write operation on a replicated object, the invoker’s RTS broad-
casts the operation identifier and the operation parameters to all processors that

7.1 Orca 151

type Person = record
age: integer;
weight: integer;

end;

type PersonList = array[integer] of Person;

Fig. 7.5. Orca definition of an array of records.

hold a replica. Since the RTS stores each replicated object on all processors that
reference it, the invoker’s processor always has a copy of the object. All proces-
sors that have a replica perform the operation when they receive the broadcast
message; other processors discard the message. On the invoker’s machine, the
RTS additionally passes the operation’s output parameters and return value to the
(blocked) invoker.

7.1.3 Efficient Operation Transfer

This section describes how the Orca RTS, the Orca compiler, Panda, and LFC
cooperate to transfer operation invocations as efficiently as possible.

Compiler and Runtime Support for Marshaling Operations

In earlier implementations of Orca, all marshaling of operations was performed
by the RTS. To marshal an operation, the RTS needed the following information:

� the number of parameters

� the parameter modes (IN, OUT, IN OUT, or SHARED)

� the parameter types

This information was stored in a recursive data structure in which each component
type of a complex type had its own type descriptor node. During operation execu-
tion, the RTS made two passes over this data structure: one to find the total size
of the data to be marshaled and one to copy the data into a message buffer. For an
array of records such as defined in Figure 7.5, for example, the RTS would inspect
each record’s type descriptor to determine the record’s size, even if all records had
the same, statically known size.

The current compiler determines object sizes at compile time whenever possi-
ble. (Orca supports dynamic arrays and a built-in graph data type, so object sizes
cannot always be computed statically.) For each operation defined as part of an

152 Parallel-Programming Systems

object type, the compiler generates operation-specific marshaling and unmarshal-
ing routines, which are invoked by the Orca RTS. In some cases, these routines
call back into the RTS to marshal dynamic data structures and object metastate.

Figure 7.6 shows the code generated to marshal and unmarshal the Orca type
defined in Figure 7.5; this code has been edited and slightly simplified for read-
ability. The figure shows only the routines that are used to construct and read an
operation request message. Another triple of routines is generated for RPC reply
messages that hold OUT parameters and return values.

The first routine, sizeof iovec array record(), computes the number of point-
ers in the I/O vector and is used by the RTS to allocate a sufficiently large I/O
vector. (The RTS caches I/O vectors, but has to check if there is a cached vector
that can hold as many pointers as needed.) The second routine, fill iovec array -
record(), generates a Panda I/O vector that contains pointers to the data items that
are to be marshaled. If the array is empty, the routine adds only a pointer to the
array descriptor; otherwise it adds a pointer to the array descriptor and a pointer
to the array data.

To transmit the operation, the RTS stores its header(s) in a header stack and
passes both the I/O vector and the header stack to one of Panda’s send routines.
Panda copies the data items referenced by the I/O vector into LFC send packets.

At the receiving side, Panda creates a stream message and passes this message
to the Orca RTS. The RTS looks up the target object and the descriptor for the
operation that is to be invoked, and then invokes unmarshal array record(), the
third routine in Figure 7.6. This operation-specific routine first unmarshals the
array descriptor and then decides if it needs to unmarshal any data.

Data Transfers

Above, we discussed the Orca part of operation transfers. This section discusses
the entire path, through all communication layers. All data transfers involved in
an operation on a remote object are shown in Figure 7.7. At the sending side,
Panda copies (using programmed I/O) data referenced by the I/O vector directly
from user data structures into LFC send packets. The second stage in the data
transfer pipeline consists of moving LFC send packets to the destination NI. In
the third stage, LFC uses DMA to move network packets from NI memory to host
memory. Panda organizes the packets in host memory into a stream message and
passes this message to the Orca RTS. In the fourth stage, the RTS allocates space
to hold the data stored in the message and unmarshals (i.e., copies) the contents
of the message into this space. All four stages operate concurrently. As soon as
Panda has filled a packet, for example, LFC transmits this packet, while Panda
starts filling the next packet.

At the sending side, one unnecessary data transfer occurs. Since LFC uses

7.1 Orca 153

int sizeof iovec array record(PersonListDesc �a)
f

if (a!a sz > 0) f
return 2; /� pointer to descriptor and to array data �/

g
return 1; /� pointer to descriptor; no data (empty array)�/

g

pan iovec p fill iovec array record(pan iovec p iov, PersonListDesc �a)
f

iov!data = a; /� add pointer to the array descriptor �/
iov!len = sizeof(�a);
iov++;

if (a!a sz > 0) f /� add pointer to array data �/
iov!data = (Person �) a!a data;
iov!len = a!a sz � sizeof(Person);
iov++;

g

return iov;
g

void unmarshal array record(pan msg p msg, PersonListDesc �a)
f

Person �r;

pan msg consume(msg, a, sizeof(�a)); /� unmarshal array descriptor �/
if (a!a sz > 0) f

r = malloc(a!a sz � sizeof(Person));
a!a data = r;
pan msg consume(msg, r, a!a sz � sizeof(Person));

g else f
a!a sz = 0;
a!a data = 0;

g
g

Fig. 7.6. Specialized marshaling code generated by the Orca compiler.

154 Parallel-Programming Systems

Orca data
structures

Orca data
structures

LFC

Panda

Orca runtime

Orca application

1
1

2
3

4 4I/O vector

Send packets
(in NI memory) Receive packets

(in NI memory)

Receive packets
(in host memory)

Message

2. Data transmission
1. Marshaling of Orca data into send packets

3. DMA transfer from NI to host memory
4. Unmarshaling of Panda stream message

Data transfer
Pointer

Fig. 7.7. Data transfer paths in Orca.

programmed I/O to move data into send packets, the data crosses the memory bus
twice: once from host memory to the processor registers and from those registers
to NI memory. By using DMA instead of PIO, the data would cross the memory
bus only once. The data in Figure 2.2 suggests that for messages of 1 Kbyte and
larger DMA will be faster than PIO. The use of DMA also frees the processor
to do other work while the transfer progresses. The same asynchrony, however,
also implies that a mechanism is needed to test if a transfer has completed. This
requires communication between the host and the NI. Either the host must poll a
location in NI memory, which slows down the data transfer, or the NI must signal
the end of the data transfer by means of a small DMA transfer to host memory,
which increases the occupancy of both the NI processor and the DMA engine.

Another problem with DMA is that it is necessary to pin the pages containing
the Orca data structures or to set up a dedicated DMA area. Unless the Orca
data structures can be stored in the DMA area, the latter approach requires a copy
to the DMA area. On-demand pinning of Orca data is feasible, but complex. To
avoid pinning and unpinning on every transfer, a caching scheme such as VMMC-
2’s UTLB is needed (see Section 2.3). For small transfers, such a scheme is less
efficient than programmed I/O.

At the receiving side, the optimal scenario would be for the NI to transfer data
from the network packets in NI memory to the data buffers allocated by the RTS
(i.e., to avoid the use of host receive packets). In practice, this is difficult. First,
the NI has to know to which message each incoming data packet belongs. This
implies that the NI has to maintain state for each message and look up this state for

7.1 Orca 155

RTS server
threads

Broadcast
queue

Orca processes

Thread

Upcall

RPC queue

Upcall threadPanda

RTS

Orca

Fig. 7.8. Orca with popup threads.

each incoming packet. Second, the NI has to find a sufficiently large destination
buffer in host memory into which the data can be copied. Third, after the data has
been copied, the NI has to notify the receiving process. Unless the host and the NI
perform a handshake to agree upon the destination buffer, this notification cannot
be merged with the data transfer as in LFC. A handshake, however, increases
latency.

Summarizing, eliminating all copies is difficult and it is doubtful whether do-
ing so will significantly improve performance. We therefore decided to use a
potentially slower, but simpler data path.

7.1.4 Efficient Implementation of Guarded Operations

This section describes an efficient implementation of Orca’s guarded operations
on top of Panda’s upcall model. When Panda receives an operation request, it
dispatches an upcall to the Orca RTS. It is not obvious how the RTS should execute
the requested operation in the context of this upcall. The problem is that the
operation may block on a guard. Panda’s upcall model, however, forbids message
handlers to block and wait for incoming messages. Such messages may have to
be received and processed to make a guard evaluate to true.

To solve this problem, an earlier version of the Orca RTS implemented its own
popup threads. The structure of this RTS, which we call RTS-threads, is shown
in Figure 7.8. In RTS-threads, Panda’s upcall thread does not execute incoming
operation requests, but merely stores them in one of two queues. RPC requests
for operations on nonreplicated objects are stored in the RPC queue and broadcast
messages for write operations on replicated objects are stored in the broadcast
queue. These queues are emptied by a pool of RTS-level server threads. When
all server threads are blocked, the RTS extends the thread pool with new server

156 Parallel-Programming Systems

threads. Since the server threads do not listen to the network, they can safely
block on a guard when they process an incoming operation request from the RPC
queue. (This blocking is implemented by means of condition variables.) Also, it
is now safe to perform synchronous communication while processing a broadcast
message. This type of nested communication occurs during the creation of Orca
processes and during object migration.

RTS-threads uses only one thread to service the broadcast queue. With mul-
tiple threads, incoming (totally-ordered) broadcast messages could be processed
in a different order than they were received. Using only a single thread, however,
implies (once again) that, without extra measures, write operations on replicated
objects cannot block.

Besides this ordering and blocking problem, RTS-threads suffers from prob-
lems related to the use of popup threads (see Section 6.2.3): increased thread
switching and increased memory consumption. Processing an incoming operation
request always requires at least one thread switch (from Panda’s upcall to a server
thread). In addition, when many incoming operation requests block, RTS-threads
is forced to allocate many thread stacks, which wastes memory. Finally, when
some operation modifies an object that many operations are blocked on, RTS-
threads will signal all threads associated with these operations. These threads will
then re-evaluate the guard they were blocked on, perhaps only to find that they
need to block again. This leads to excessive thread switching.

To solve these problems, we restructured the RTS so that all operation requests
can be processed directly by Panda’s upcall, without the use of server threads. The
new structure is shown in Figure 7.9. The new RTS employs only one RTS server
thread (not shown), which is used only during actions that occur infrequently, such
as process creation and object migration. In these cases, it is necessary to perform
an RPC (i.e., synchronous communication) in response to an incoming broadcast
message. This RPC is performed by the RTS server thread, just as in RTS-threads.

Blocking on guards is handled by exploiting the observation that Orca oper-
ations can block only at the very beginning. A blocked operation can therefore
always be represented by an object identifier, an operation identifier, and the op-
eration’s parameters. This invocation information is available to the RTS when it
invokes an operation. When an operation blocks, the compiler-generated code for
that operation returns an error status to the RTS. Instead of blocking the calling
thread on a condition variable, as in RTS-threads, the RTS creates a continuation.
In this continuation, the RTS stores the invocation information and the name of an
RTS function that, given the invocation information, can resume the blocked in-
vocation. Different resume functions are used, depending on the way the original
invocation took place. The resume function for an RPC invocation, for example,
differs from the resume function for a broadcast invocation, because it needs to
send a reply message to the invoking processor.

7.1 Orca 157

Upcall thread

Upcall

Thread

Panda

Orca processes
Orca

RTS

Fig. 7.9. Orca with single-threaded upcalls.

cont init(contqueue, lock)
cont clear(contqueue)
state ptr = cont alloc(contqueue, size, contfunc)
cont save(state ptr)
cont resume(contqueue)

Fig. 7.10. The continuations interface.

Each shared object has a continuation queue in which the RTS stores contin-
uations for blocked operations. When the object is later modified, the modifying
thread walks the object’s continuation queue and calls each continuation’s resume
function. If an operation fails again, its continuation remains on the queue, other-
wise it is destroyed.

Figure 7.10 shows the interface to the continuation mechanism. Queues of
continuations resemble condition variables, which are essentially queues of thread
descriptors. This similarity makes replacing condition variables with continua-
tions quite easy. Cont init() initializes a continuation queue; initially, the queue is
empty. Like a condition variable, each continuation queue has an associated lock
(lock) that ensures that accesses to the queue are atomic. Cont clear() destroys a
continuation queue. Cont alloc() heap-allocates a continuation structure and as-
sociates it with a continuation queue. (Continuations cannot be allocated on the
stack, because the stack is reused.) Cont alloc() returns a pointer to a buffer of
size bytes in which the client saves its state. After saving its state, the client calls
cont save() which appends the continuation to the queue. Together, cont alloc()
and cont save() correspond to a wait operation on a condition variable. In the case
of condition variables, however, no separate allocation call is needed, because the
system knows what state to save: the client’s thread stack. Finally, cont resume()

158 Parallel-Programming Systems

resembles a broadcast on a condition variable; it traverses the queue and resumes
all continuations.

Representing blocked operations by continuations instead of blocked threads
has three advantages.

1. Continuations consume very little memory. There is no associated stack,
just the invocation information.

2. Resuming a blocked invocation does not involve any signaling and switch-
ing to other threads, but only plain procedure calls.

3. Continuations are portable across communication architectures. With ap-
propriate system support (such as the fast handler dispatch described in
Section 6.2.3), popup threads can be implemented more efficiently than in
RTS-threads. Continuations do not require such support and they avoid
some of the disadvantages of popup threads.

Manual state saving with continuations is relatively easy if message handlers can
block only at the beginning (as with Orca operations), because the state that needs
to be saved consists essentially of the message that has been received. Manual
state saving is more difficult when handlers block after they have created new
state. In this case, the handler must be split in two parts: the code executed before
and after the synchronization point. For very large systems, this manual function
splitting becomes tedious. The difficulty lies in identifying the state that needs
to be communicated from the function’s first half to its second half (by means of
a continuation). This state may well include state stored in stack frames below
the frame that is about to block (assuming that stacks grow upward). In the worst
case, the entire stack must be saved.

A second complication arises if a handler performs synchronous communica-
tion. A synchronous communication call can only be split in two parts if there is a
nonblocking alternative for the synchronous primitive. Earlier versions of Panda,
for example, did not provide asynchronous message passing primitives, but only
a synchronous RPC primitive. In this case, true blocking cannot be avoided and
it is necessary to hand off state to a separate thread that can safely perform the
synchronous operation. In the continuation-based RTS, such cases are handled by
a single RTS server thread.

7.1.5 Performance

This section discusses only operation latency and throughput. An elaborate appli-
cation-performance study was performed using an Orca implementation that runs
on Panda (version 3.0) and FM/MC [9]. Application performance on Panda 4.0

7.1 Orca 159

0 200 400 600 800 1000
Message size (bytes)

0

50

100

R
ou

nd
tr

ip
 la

te
nc

y
(m

ic
ro

se
co

nd
s)

Orca
Panda
LFC

Fig. 7.11. Roundtrip latencies for Orca, Panda, and LFC.

and LFC is discussed in Chapter 8 which studies the application-level effects of
different LFC implementations. All measurements in this chapter were performed
on the experimental platform described in Section 1.6, unless noted otherwise.

Performance of Operations on Nonreplicated Objects

Figure 7.11 shows the execution time of an Orca operation on a remote, non-
replicated object. The operation takes an array of bytes as its only argument and
returns the same array. The horizontal axis specifies the number of bytes in the
array. The operation is performed using a Panda RPC to the remote machine. For
comparison, Figure 7.11 also shows roundtrip latencies for Panda and LFC using
messages that have the same size as the Orca array. In all three benchmarks, the
request and reply messages are received through polling.

Orca-specific processing costs approximately 15 µs. This includes the time to
lock the RTS, to read the RTS headers, to allocate space for the array parameter,
to look up the object, to execute the operation, to update the runtime object access
statistics, and to build the reply message.

We used the same test to measure operation throughput. The results of this
test, and the corresponding roundtrip throughputs for Panda and LFC with the
copy receive strategy, are shown in Figure 7.12. We define roundtrip throughput
as (2m)=RTT , where m is the size in bytes of the array transmitted in the request
and reply message and RT T the measured roundtrip time.

Compared to the throughput obtained by Panda and LFC, Orca’s throughput
is good. This is due to the use of I/O vectors and stream messages, which avoid

160 Parallel-Programming Systems

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

50

R
ou

nd
tr

ip
 th

ro
ug

hp
ut

 (
M

by
te

/s
ec

on
d)

LFC
Panda
Orca

Fig. 7.12. Roundtrip throughput for Orca, Panda, and LFC.

extra copying inside the Orca RTS. For all systems, throughput decreases when
messages no longer fit into the L2 cache (256 Kbyte).

Performance of Operations on Replicated Objects

Figure 7.13 shows the latency of a write operation on an object that has been
replicated on 64 processors. The operation takes an array of bytes as its only
argument and does not return any results. This operation is performed by means
of a totally-ordered Panda broadcast. For comparison, the figure also shows the
broadcast latencies for Panda (ordered and unordered) and LFC (unordered). In
all cases, the latency shown is the latency between the sender and the last receiver
of the broadcast. Orca adds approximately 18 µs (17%) to Panda’s totally-ordered
broadcast primitive.

Figure 7.14 shows the throughput obtained using the same write operation as
above. The loss in throughput relative to Panda (with ordering) is at most 15%.
This occurs when Orca sends two packets and Panda one (due to an extra Orca
header). In all other cases the loss is at most 8%.

The Impact of Continuations

Since we have no implementation of RTS-threads on Panda 4.0, we cannot directly
measure the gains of using continuations instead of popup threads. An earlier
comparison showed that operation latencies went from 2.19 ms in RTS-threads

7.1 Orca 161

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150

200

La
te

nc
y

(m
ic

ro
se

co
nd

s)

64 processors

Orca
Panda, ordered
Panda, unordered
LFC

Fig. 7.13. Broadcast latency for Orca, Panda, and LFC.

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

5

10

15

20

25

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

64 processors

LFC, unordered
Panda, unordered
Panda, ordered
Orca

Fig. 7.14. Broadcast throughput for Orca, Panda, and LFC.

162 Parallel-Programming Systems

Issue Orca Manta
Programming Object placement Transparent Explicit
model Mutual exclusion Per operation, Synchronized

implicit methods/blocks
Condition Guards Condition
synchronization variables
Garbage collection No Yes

Implementation Compilation To C To assembly
(x86 and SPARC)

Object replication Yes No
Object migration Yes No
Invocation Totally-ordered RMI
mechanisms bcast and RPC
Upcall models Panda upcalls Popup threads

Table 7.1. A comparison of Orca and Manta.

to 1.90 ms in the continuation-based RTS [14], an improvement of 13%. These
measurements were performed on 50 MHz SPARCClassic clones connected by
10 Mbps Ethernet. For communication we used Panda 2.0 on top of the datagram
service of the Amoeba operating system. Thread switching on the SPARC was
expensive, because it required a trap to the kernel. On the Pentium Pro, thread
switches are performed entirely in user space, so the gains of using continuations
instead of popup threads are smaller. Nevertheless, the costs of switching from a
Panda upcall to a popup thread are significant. In Manta, for example, dispatching
a popup thread costs 4 µs and accounts for 9% of the execution time of a null
operation on a remote object (see Section 7.2).

7.2 Manta

Manta is a parallel-programming system based on Java [60]. Java is a portable,
type-secure, and object-oriented programming language with automatic memory
management (i.e., garbage collection); these properties have made Java a very
popular programming language. Java is also an attractive (base) language for
parallel programming. Multithreading, for example, is part of the language and
an RPC-like communication mechanism is available in standard libraries.

Manta implements the JavaParty [117] programming model, which is based
on shared objects and resembles Orca’s shared-object model. The programming
model and its implementation on Panda and LFC are described below. A detailed
description of Manta is given in the MSc thesis of Maassen and van Nieuwpoort [98].

7.2 Manta 163

7.2.1 Programming Model

Manta extends Java with one keyword: remote. Java threads can share instances
of any class that the programmer tags with this keyword. Such instances are called
remote objects. In addition, Manta provides library routines to create threads on
remote processors. Threads that run on the same processor can communicate
through global variables; threads that run on different machines can communicate
only by invoking methods on shared remote objects.

This programming model resembles Orca’s shared-object model, but there are
several important differences, which are summarized in Table 7.1 and discussed
below. Section 7.2.2 discusses the implementation differences.

First, in Manta, object placement is not transparent to the programmer. When
creating a remote object, the programmer must specify explicitly on which proces-
sor the object is to be stored. Each object is stored on a single processor —Manta
does not replicate objects— and cannot be migrated to another processor.

Second, Orca and Java use different synchronization mechanisms. In Orca, all
operations on an object are executed atomically. In Java, individual methods can
be marked as ’synchronized.’ Two synchronized methods cannot interfere with
each other, but a nonsynchronized method can interfere with other (synchronized
and nonsynchronized) methods. Also, Java uses condition variables for condition
synchronization; Orca uses guards.

The last difference is that Java is a garbage-collected language, which has
some impact on communication performance (see Section 7.2.3).

7.2.2 Implementation

Like Orca, Manta does not use LFC directly, but builds on Panda. Manta benefits
from Panda’s multithreading support, Panda’s transparent mixing of polling and
interrupts, and Panda’s stream messages. Since Manta does not replicate objects,
it need not maintain multiple consistent copies of an object, and therefore does
not use Panda’s totally-ordered broadcast primitive.

Manta achieves high performance through a fast remote-object invocation mech-
anism and the use of compilation instead of interpretation. Both are discussed
below.

Remote-Object Invocation

Like Orca, Manta uses function shipping to access remote objects. Method in-
vocations on a remote object are shipped by means of an object-oriented variant
of RPC called Remote Method Invocation (RMI) [152]. Each Manta RMI is exe-
cuted by means of a Panda RPC.

164 Parallel-Programming Systems

Processing an RMI request consists of executing a method on a remote object.
All parameters except remote objects are passed by value. Method invocations
can block at any time on a condition variable. This is different from Orca where
blocking occurs only at the beginning of an operation. Due to this difference,
Manta cannot always use Panda upcalls and continuations to handle incoming
RMIs. If a method is executed by a Panda upcall and blocks halfway through,
then the Manta runtime system is not aware of the state created by that method
and cannot create a continuation.

To deal with blocking methods, Manta uses popup threads to process incoming
RMIs. When an RMI request is delivered by a Panda upcall, the Manta runtime
system passes the request to a popup thread in a thread pool. This thread exe-
cutes the method and sends the reply. When the method blocks, the popup thread
is blocked on a Panda condition variable; no continuations are created. In short,
Manta uses the same system structure as earlier Orca implementations (cf. Fig-
ure 7.8).

Compiler Support

Besides defining the Java language, the Java developers also defined the Java Vir-
tual Machine (JVM) [95], a virtual instruction set architecture. Java programs are
typically compiled to JVM bytecode; this bytecode is interpreted. This approach
allows Java programs to be run on any machine with a Java bytecode interpreter.
The disadvantage is that interpretation is slow. Current research projects are at-
tacking this problem by means of just-in-time (JIT) compilation of Java bytecode
for a specific architecture and by means of hardware support [104].

Manta includes a compiler that translates Java source code to machine code
for SPARC and Intel x86 architectures [145]. This removes the overhead of inter-
pretation for applications for which source code is available. For interoperability,
Manta can also dynamically load and execute Java bytecode [99]. The experi-
ments below, however, use only native binaries without bytecode.

The compiler also supports Manta’s RMI. For each remote class, the com-
piler generates method-specific marshaling and unmarshaling routines. Manta
marshals arrays in the same way as Orca (see Figure 7.6). At the sending side,
the compiler-generated code adds a pointer to the array data to a Panda I/O vec-
tor and Panda copies the data into LFC send packets. At the receiving side, the
compiler-generated code uses Panda’s pan msg consume() to copy data from LFC
host receive packets to a Java array.

For nonarray types, Manta makes an extra copy at the sending side. All nonar-
ray data that is to be marshaled is copied to a single buffer and a pointer to this
buffer is added to a Panda I/O vector. Since nonarray objects are often small, the
extra copying costs may outweigh the cost of I/O vector manipulations.

7.2 Manta 165

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150

R
ou

nd
tr

ip
 la

te
nc

y
(m

ic
ro

se
co

nd
s)

Manta RMI
Orca
Panda
LFC

Fig. 7.15. Roundtrip latencies for Manta, Orca, Panda, and LFC.

7.2.3 Performance

Figures 7.15 and 7.16 show Manta’s RMI (roundtrip) latency and throughput, re-
spectively. These numbers were measured by repeatedly performing an RMI on a
remote object. The method takes a single array parameter and returns this parame-
ter; the horizontal axes of Figure 7.15 and Figure 7.16 specify the size of the array.
For comparison, the figure shows also the roundtrip latencies and throughputs for
LFC, Panda, and Orca. All four systems make the same number of data copies.

The null latency for an empty array is 76 µs. This high latency is due to
unoptimized array manipulations. With zero parameters instead of an empty array
parameter, the null latency drops to 48 µs. The thread switch from Panda’s upcall
to a popup thread in the Manta runtime system costs 4 µs. For nonempty arrays,
Manta’s latency increases faster than the latency of Orca, Panda and LFC. This is
not due to extra copying, but to the cache effect described below.

Figure 7.16 shows the roundtrip throughput for LFC, Panda, Orca, and Manta.
Manta’s RMI peak throughput is much lower than the peak throughput for Orca,
Panda, and LFC. The reason is that Manta does not free the data structures into
which incoming messages are unmarshaled until the garbage collector is invoked.
In this test, the garbage collector is never invoked, so each incoming message
is unmarshaled into a fresh memory area, which leads to poor cache behavior.
Specifically, each time a message is unmarshaled into a buffer, the contents of
receive buffers used in previous iterations is flushed from the cache to memory.
This problem does not occur in the other tests (Orca, Panda, and LFC), because
they reuse the same receive buffer in each iteration.

166 Parallel-Programming Systems

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

50

60

R
ou

nd
tr

ip
 th

ro
ug

hp
ut

 (
M

by
te

/s
ec

on
d)

LFC
Panda
Orca
Manta RMI

Fig. 7.16. Roundtrip throughput for Manta, Orca, Panda, and LFC.

If Manta can see that the data objects contained in a request message are no
longer reachable after completion of the remote method that is invoked, then it
can immediately reuse the message buffer without waiting for the garbage col-
lector to recycle it. At present, the Manta compiler is able to perform the re-
quired escape analysis [36] for simple methods, including the method used in our
throughput benchmark. Since we wish to illustrate the garbage collection problem
and since escape analysis works only for simple methods, we show the unopti-
mized throughput. With escape analysis enabled, Manta tracks Panda’s through-
put curve.

7.3 The C Region Library

The C Region Library (CRL) is a high-performance software DSM system which
was developed at MIT [74]. Using CRL, processes can share regions of memory
of a user-defined size. The CRL runtime system implements coherent caching for
these regions. This section discusses CRL’s programming model, its implementa-
tion on LFC, and the performance of this implementation.

7.3.1 Programming Model

CRL requires the programmer to store shared data in regions. A region is a con-
tiguous chunk of memory of a user-defined size; a region can neither grow nor

7.3 The C Region Library 167

shrink. Processes can map regions into their address space and access them using
memory-reference instructions.

To make changes visible to other processes, and to observe changes made
by other processes, each process must enclose its region accesses by calls to the
CRL runtime system. (CRL is library-based and has no compiler.) A series of
read accesses to a region r should be bracketed by calls to rgn start read(r) and
rgn end read(r), respectively. If a series of accesses includes an instruction that
modifies a region r, then rgn start write(r) and rgn end write(r) should be used.
Rgn start read() locks a region for reading and rgn start write() locks a region
for writing. Both calls block if another process has already locked the region in a
conflicting way. (A conflict occurs whenever at least on write access is involved.)
Rgn end read() and rgn end write() release the read and write lock, respectively.
If all region accesses in a program are properly bracketed, then CRL guarantees a
sequentially consistent [86] view of all regions. However, the CRL library cannot
verify that users indeed bracket their accesses properly.

7.3.2 Implementation

Although CRL uses a sharing model that is similar to Orca’s shared objects, the
implementation is different. First, CRL runs directly on LFC and does not use
Panda. Second, CRL uses a different consistency protocol for replicated shared
objects. Orca updates shared objects by means of function shipping. CRL, in con-
trast, uses invalidation and data shipping. (A function-shipping implementation
of CRL exists [67], but the LFC implementation of CRL is based on the original,
data-shipping variant.) CRL uses a protocol similar to the cache coherence proto-
cols used in scalable multiprocessors such as the Origin2000 [151] and the MIT
Alewife [1]. The protocol treats every shared region as a cache line and runs a
directory-based cache coherence protocol to maintain cache consistency.

The core of CRL’s runtime system is a state machine that implements the
consistency protocol. The runtime system maintains (meta)state for each region
on all nodes that cache the region. The state machine is implemented as a set
of handler routines that are invoked when a specific event occurs. An event is
either the invocation of a CRL library routine that brackets a region access (e.g.,
rgn start write()) or the arrival of a protocol message. A detailed description of
the state machine is given in Johnson’s PhD thesis [73].

When a process creates a region on a processor P, then P becomes the region’s
home node. The home node stores the region’s directory information; it maintains
a list of all processors that are caching the region. It is the location where nodes
that are not caching the region can obtain a valid copy of the region. It is also a
central point at which conflicting region accesses are serialized so that consistency
is maintained.

168 Parallel-Programming Systems

In
va

lid
at

e

Read miss

ACK

ACK

ACK + data

(a) Clean read miss (b) Dirty read miss

Read miss

ACK + data ACK + data

Invalidate

InvalidateWrite miss

ACK + data ACK + data

Write miss

ACK + data

P H

R

R

P H

HP

R

R

HP W

W

(c) Clean write miss (d) Dirty write miss

Invalidate

Fig. 7.17. CRL read and write miss transactions.

CRL Transactions

Communication in CRL is caused mainly by read and write misses. Figure 7.17
shows the communication patterns that result from different types of misses. A
miss is a clean miss if the home node H has an up-to-date copy of the region that
process P is trying to access, otherwise the miss is a dirty miss. In the case of a
clean miss, the data travels across the network only once (from H to P). For a
clean write miss, the home node sends invalidations to all nodes R that recently
had read access to the region. The region is not shipped to P until all readers
R have acknowledged these invalidations. In the case of a dirty miss the data is
transferred twice, once from the last writer W to home node H and once from H
to the requesting process P. The CRL version we used does not implement the
three-party optimization that avoids this double data transfer. (Later versions did
implement this optimization).

7.3 The C Region Library 169

Polling and Interrupts

CRL uses both polling and interrupts to deliver messages. The implementation
is single-threaded. All messages, whether they are received through polling or
interrupts, are handled in the context of the application thread.

The runtime system normally enables network interrupts so that nodes can
be interrupted to process incoming requests (misses, invalidations, and region-
map requests) even if they happen to be executing application code. For some
applications, interrupts are necessary to guarantee forward progress. For other
applications, they improve performance by reducing response time.

In many cases, though, interrupts can be avoided. All transactions in Fig-
ure 7.17 start with a request from node P to home node H and end with a reply
from H to P. While waiting for the reply from H, P is idle. Similarly, if H sends
out invalidations then H will be idle until the first acknowledgement arrives and
in between subsequent acknowledgements. In these idle periods, CRL disables
network interrupts and polls. This way the expected reply message is received
through polling rather than interrupts, which reduces the receive overhead.

This behavior is a good match to LFC’s polling watchdog which works well
for clients that mix polling and interrupts. Interrupts are used to handle request
messages unless the destination node happens to be waiting (and polling) for a
reply to one of its own requests. By delaying interrupts, LFC increases the proba-
bility that this happens.

Message Handling

CRL sends two types of messages. Data messages are used to transfer regions
containing user data (e.g., when a region is replicated). These messages consist of
a small header followed by the region data. Control messages are small messages
used to request copies of regions, to invalidate regions, to acknowledge requests,
etc. Both data and control messages are point-to-point messages; CRL does not
make significant use of LFC’s multicast primitive.

Each CRL message carries a small header. Each header contains a demulti-
plexing key that distinguishes between control messages, data messages, and other
(less frequently used) message types. For control messages, the header contains
the address of a handler function and up to four integer-sized arguments for the
handler. A data message consists of a region pointer, a region offset, and a few
more fields. The region pointer identifies a mapped region in the requesting pro-
cess’s address space. Since regions can have any size, they may well be larger than
an LFC packet. The offset is used to reassemble large data messages; it indicates
where in the region to store the data that follows the header.

Incoming packets are always processed immediately. The data contained in

170 Parallel-Programming Systems

0 200 400 600 800 1000
Region size (bytes)

0

50

100

150

M
is

s
la

te
nc

y
(m

ic
ro

se
co

nd
s)

CRL, 8 readers
CRL, 4 readers
CRL, 1 reader
CRL, 0 readers
LFC

Fig. 7.18. Write miss latency.

data packets is always copied to its destination without delay. Protocol-message
handlers, in contrast, cannot always be invoked immediately; in that case the pro-
tocol message is copied and queued. (This copy is unnecessary, but protocol mes-
sages consist of only a few words.) Since no process can initiate more than one
coherence transaction, the amount of buffering required to store blocked protocol
handlers is bounded.

7.3.3 Performance

CRL programs send many control messages and are therefore sensitive to send and
receive overhead. Moreover, several CRL applications use small regions, which
yields small data messages. Since many CRL actions use a request-reply style of
communication, communication latencies also have an impact on performance.

Figures 7.18 and 7.19 show the performance of clean write misses for various
numbers of readers. The home node H sends an invalidation to each reader and
awaits all readers’ acknowledgements before sending the data to requesting pro-
cess P (see Figure 7.17(c)). The LFC curve shows the performance of a raw LFC
test program that sends request and reply messages that have the same size as the
messages sent by CRL in the case of zero readers (i.e., when no invalidations are
needed).

For small regions, CRL adds approximately 5 µs (22%) to LFC’s roundtrip
latency (see Figure 7.18). CRL’s throughput curves are close to the throughput
curve of the LFC benchmark.

7.4 MPI — The Message Passing Interface 171

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Region size (bytes)

0

10

20

30

40

50

60
M

is
s

th
ro

ug
hp

ut
 (

M
by

te
/s

ec
on

d)

LFC
CRL, 0 readers
CRL, 1 reader
CRL, 4 readers
CRL, 8 readers

Fig. 7.19. Write miss throughput.

7.4 MPI — The Message Passing Interface

The Message Passing Interface (MPI) is a standard library interface that defines a
large variety of message-passing primitives [53]. MPI is likely the most frequently
used implementation of the message-passing programming model.

Several MPI implementations exist. Major vendors of parallel computers (e.g.,
IBM and Silicon Graphics) have built implementations that are optimized for their
hardware and software. A popular alternative to these vendor-specific implemen-
tations is MPI Chameleon (MPICH) [61]. MPICH is free and widely used in
workstation environments. We implemented MPI on LFC by porting MPICH to
Panda. The following subsections describe this MPI/Panda/LFC implementation
and its performance.

7.4.1 Implementation

MPICH consists of three layers. At the bottom, platform-specific device chan-
nels implement reliable, low-level send and receive functions. The middle layer,
the application device interface (ADI), implements various send and receive fla-
vors (e.g., rendezvous) using downcalls to the current device channel. The top
layer implements the MPI interface. The ADI and the device channels have fixed
interfaces. We ported MPICH version 1.1 and ADI version 2.0 to Panda by imple-
menting a new device channel. This Panda device channel implements the basic
send and receive functions using Panda’s message-passing module.

Since MPICH is not a multithreaded system, the Panda device channel uses

172 Parallel-Programming Systems

a stripped-down version of Panda that does not support multithreading and that
receives all messages through polling. We refer to this simpler Panda version as
Panda-ST (Panda-SingleThreaded). The multithreaded version of Panda described
in Chapter 6 is referred to as Panda-MT (PandaMultiThreaded).

By assuming that the Panda client is single-threaded, Panda-ST eliminates all
locking inside Panda. Panda-ST also disables LFC’s network interrupts. MPICH
does not need interrupts, because all communication is directly tied to send and
receive actions in user processes. It suffices to poll when a receive statement is
executed (either by the user program or as part of the implementation of a complex
function). Message handlers do not execute, not even logically, in the context of
a dedicated upcall thread. Instead, they execute in the context of the application’s
main thread, both physically (on the same stack) and logically.

MPICH provides its own spanning-tree broadcast implementation. Unlike
LFC’s multicast implementation, however, MPICH forwards messages rather than
packets. This way, the multicast primitive can be implemented easily in terms of
MPI’s unicast primitives which also operate on messages. An obvious disadvan-
tage of this implementation choice is the loss of pipelining at processors that are
internal nodes of a multicast tree and that have to forward messages. Given a
large multicast message, such a processor will not start forwarding before it has
received the entire message. If done on a per-packet basis, as in LFC, forwarding
can begin as soon as the first packet has arrived at the forwarding processor’s NI.
We experimented both with MPICH’s default broadcast implementation and with
an implementation that uses Panda’s unordered broadcast on top of LFC’s broad-
cast. The performance of these two broadcast implementations, MPI-default and
MPI-LFC, is discussed in the next section.

7.4.2 Performance

Below, we discuss the unicast and broadcast performance of MPICH on Panda
and LFC.

Unicast Performance

Figure 7.20 and Figure 7.21 show MPICH’s one-way latency and throughput, re-
spectively. Both tests were performed using MPI’s MPI Send() and MPI Recv()
functions. For comparison, the figures also show the results of the corresponding
tests at the Panda and LFC level.

Figure 7.20 shows MPI’s unicast latency and, for comparison, the unicast la-
tencies of Panda and LFC. MPICH is a heavyweight system and adds 6 µs (42%)
to Panda’s 0-byte one-way latency.

Except for small messages, MPICH attains the same throughput as Panda and

7.4 MPI — The Message Passing Interface 173

0 200 400 600 800 1000
Message size (bytes)

0

10

20

30

40

50

La
te

nc
y

(m
ic

ro
se

co
nd

s)

MPI
Panda (no threads)
LFC

Fig. 7.20. MPI unicast latency.

LFC. The reason is that MPICH makes no extra passes over the data that is trans-
ferred. MPICH simply constructs an I/O vector and hands it to Panda, which then
fragments the message. As a result, the MPICH layer does not incur any per-byte
costs and throughput is good.

Broadcast Performance

Figure 7.22 shows multicast latency on 64 processors for LFC, Panda, and three
MPI implementations. Both MPI-default results were obtained using MPICH’s
default broadcast implementation, which forwards broadcast messages as a whole
rather than packet by packet. MPI-default normally uses binomial broadcast trees.
Since LFC uses binary trees, we added an option to MPICH that allows MPI-
default to use both binomial and binary trees. The MPI-LFC results were obtained
using LFC’s broadcast primitive (i.e., with binary trees).

As in the unicast case, we find that MPICH adds considerable overhead to
Panda. Binary and binomial trees yield no large differences in MPI-default’s
broadcast performance, because 64-node binary and binomial trees have the same
depth. There is a large difference between the MPI-default versions and MPI-
LFC. With binary trees, MPI-default adds 67 µs (77%) to MPI-LFC’s latency for
a 64-byte message; with binomial trees, the overhead is 59 µs (68%). In this la-
tency test it is not possible to pipeline multipacket messages. The cause of the
performance difference is that MPI-default adds at least two extra packet copies
to the criticial path at each internal node of the multicast tree: one copy from the
network interface to the host and one copy per child from the host to the network
interface.

174 Parallel-Programming Systems

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

10

20

30

40

50

60

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

LFC
Panda (no threads)
MPI

Fig. 7.21. MPI unicast throughput.

0 200 400 600 800 1000
Message size (bytes)

0

100

200

300

La
te

nc
y

(m
ic

ro
se

co
nd

s)

64 processors

MPI-default, binary
MPI-default, binomial
MPI-LFC
Panda (unordered, no threads)
LFC

Fig. 7.22. MPI broadcast latency.

7.5 Related Work 175

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

5

10

15

20

25

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

64 processors

LFC
Panda, unordered, no threads
MPI-LFC
MPI-default, binary
MPI-default, binomial

Fig. 7.23. MPI broadcast throughput.

Figure 7.23 compares the throughput of the same configurations. The differ-
ence between the MPI-default curves is caused by the difference in tree shape:
binomial trees have a higher fanout than binary trees, which reduces throughput.
Both MPI-default versions performs worse than MPI-LFC, not so much due to
extra data copying, but because MPI-default does not forward multipacket multi-
cast messages in a pipelined manner. In addition, host-level, message-based for-
warding has a larger memory footprint than packet-based forwarding. When the
message no longer fits into the L2 cache, MPI-default’s throughput drops notice-
ably (from 20 to 9 Mbyte/s for binary trees and from 10 to 5 Mbyte/s for binomial
trees). The problem is that the use of MPI-default results in one copying pass over
the entire message for each child that a processor has to forward the message to.
If the message does not fit in the cache, then these copying passes trash the L2
cache.

7.5 Related Work

We consider related work in two areas: operation transfer and operation execution.

7.5.1 Operation Transfer

Orca’s operation-specific marshaling routines eliminate interpretation overhead
by exploiting compile-time knowledge. In addition, they do not copy to inter-
mediate RTS buffers, but generate an I/O vector which is passed to Panda’s send

176 Parallel-Programming Systems

routines. The same approach is taken in Manta [99] (see Section 7.2), which gen-
erates specialized marshaling code for Java methods.

In their implementation of Optimistic Orca [66] by means of Optimistic Active
Messages (OAMs), Hsieh et al. use compiler support to optimize the transfer of
simple operations of simple object types (see also Section 6.6.3). For such oper-
ations, Optimistic Orca avoids the generic marshaling path and copies arguments
directly into an (optimistic) active message. At the receiving side, these optimistic
active messages are dispatched in a special way (see Section 7.5.2). We optimize
marshaling for all operations, using a generic compilation strategy. To attain the
performance of Optimistic Orca, however, further optimization would be neces-
sary. For example, we would have to eliminate Panda’s I/O vectors (which are
expensive for simple operations).

Muller et al. optimized marshaling in Sun’s RPC protocol by means of a pro-
gram specialization tool, Tempo, for the C programming language [109]. Given
the stubs generated by Sun’s nonspecializing stub compiler this tool automatically
generates specialized marshaling code by removing many tests and indirections.
We use the Orca compiler instead of a general-purpose specialization tool to gen-
erate operation-specific code.

As described in Section 7.1.3, there are redundant data transfer operations on
Orca’s operation transfer path. These transfers can be removed by using DMA
instead of PIO at the sending side, and by removing the receiver-side copy (from
LFC packets to Orca data structures). Chang and von Eicken describe a zero-copy
RPC architecture for Java, J-RPC, that removes these two data transfers [35]. J-
RPC is a connection-oriented system in which receivers associate pinned pages
with individual (per-sender) endpoints. Once a sender has filled these pages, the
receiver unpins them and allocates new pages. The address of the new receive
area is piggybacked on RPC replies.

J-RPC suffers from two problems. First, as noted by its designers, allocating
pinned memory for each endpoint does not scale well to large numbers of proces-
sors. Second, J-RPC relies on piggybacking to return information about receive
areas to a sender. This works well for RPC, but not for one-way multicasting.

7.5.2 Operation Execution

Whereas our approach has been to avoid expensive thread switches by hand,
OAMs [66, 150], Lazy Task Creation [105], and Lazy Threads [58] all rely on
compiler support. OAMs transform an AM handler that runs into a locked mutex
into a true thread. The overhead of creating a thread is paid only when the lock
operation fails. Hsieh et al. used OAMs to improve the performance of one of the
first Panda-based Orca implementations. Like RTS-threads, this implementation
used popup threads. On the CM-5, the implementation based on OAMs reduced

7.6 Summary 177

the latency of Orca object invocation by an order of magnitude by avoiding thread
switching and by avoiding the CM-5’s bulk transfer mechanism for small mes-
sages. In contrast with our approach, OAMs use compiler support and require
that all locks be known in advance.

Draves and Bershad used continuations inside an operating system kernel to
speed up thread switching [46]. Instead of blocking a kernel thread, a continuation
is created and the same stack is used to run the next thread. We use the same tech-
nique in user space for the same reasons: to reduce thread switching overhead and
memory consumption. Orca’s continuation-based RTS uses continuations in the
context of upcalls and accesses them through a condition-variable like interface.

Rühl and Bal use continuations in a collective-communication module im-
plemented on top of Panda [123]. Several collective-communication operations
combine results from different processors using a reverse spanning tree. Rather
than assigning to one particular thread (e.g., the local computation thread) the
task of waiting for, combining, and propagating data, the implementation stores
intermediate results in continuations. Subresults are created either by the local
computation thread or by an upcall thread. The first thread that creates a subresult
creates a continuation and stores its subresult in this continuation. When another
thread later delivers a new subresult, it merges its subresult with the existing sub-
result by invoking the continuation’s resume function. This avoids thread switches
to a dedicated thread.

7.6 Summary

This chapter has shown that the communication mechanisms developed in the
previous chapters can be applied effectively to a variety of PPSs.

We described portable techniques to transfer and execute Orca operations effi-
ciently. Operation transfer is optimized by letting the compiler generate operation-
specific marshaling code. Also, the Orca RTS does not copy data to intermediate
buffers: data is copied directly between LFC packets and Orca data structures.
Operation execution is optimized by representing blocked invocations compactly
by continuations instead of blocked threads. The use of continuations allows oper-
ations to be executed directly by Panda upcalls, saves memory, and avoids thread
switching during the re-evaluation of the guards of blocked operations.

The Orca RTS exploits all communication mechanisms of Panda and LFC.
Panda’s transparent switching between polling and interrupts and LFC’s polling
watchdog work well for messages that carry operation requests or replies. An
interrupt is generated when the receiver of a request is engaged in a long-running
computation and does not respond to the request. RPC replies are usually received
through polling.

178 Parallel-Programming Systems

Panda’s totally-ordered broadcast is used to update replicated objects. This
broadcast is implemented efficiently using LFC’s NI-supported fetch-and-add and
multicast primitives. LFC’s NI-level fetch-and-add does not generate interrupts
on the sequencer node. LFC’s multicast may generate interrupts on the receiving
nodes, but these interrupts are not on the multicast-packet forwarding path.

Panda’s stream messages allow the RTS to marshal and unmarshal data with-
out making unnecessary copies. Finally, Panda’s upcall model works well for
Orca, even though blocking upcalls occur frequently in Orca programs.

Manta has a similar programming model as Orca (shared objects) and also
uses some of Orca’s implementation techniques, in particular function shipping
and compiler-generated, method-specific marshaling routines. The communica-
tion requirements of Manta and Orca are different, though. First, Manta does not
replicate objects and therefore does not need multicast support. Second, Manta
uses popup threads to process incoming operation requests, because Java meth-
ods can create new state before they block, which makes it difficult to represent
a blocked invocation by a continuation (as in Orca). In the current implementa-
tion, the use of popup threads adds a thread switch to the execution path of all
operations on remote objects.

In terms of its communication requirements, CRL is the simplest of the PPSs
discussed in this chapter. CRL runs directly on top of LFC and benefits from
LFC’s efficient packet interface and its polling watchdog.

The implementation of MPI uses Panda’s stream messages and Panda’s broad-
cast. As in Orca and Manta, Panda’s stream messages allow data to be copied
directly between LFC packets and application data structures. Panda’s broadcast
is much more efficient than MPICH’s default broadcast. MPICH performs all for-
warding on the host, rather than on the NI. What is worse, however, is that MPICH
forwards message-by-message rather than packet-by-packet, and therefore incurs
the full message latency at each hop in its multicast tree.

All PPSs have the same data transfer behavior. At the sending side, each client
copies data from client-level objects into LFC send packets in NI memory. At the
receiving side, each client copies data from LFC receive packets in host memory
to client-level objects.

Table 7.2 summarizes the minimum latency and the maximum throughput of
characteristic PPS-level operations on PPS-level data. The table also shows the
cost of the communication pattern induced by these operations, at all software lev-
els below the PPS level. The performance results for different levels are separated
by slashes; differences in these results are caused by layer-specific overheads. Re-
call that Panda can be configured with (Panda-MT) or without (Panda-ST) threads.

For CRL, Table 7.2 shows the cost of a clean write miss. The communication
pattern consists of a small, fixed-size control message to the home node which
replies with a data message containing a region. For MPI, the table shows the cost

7.6 Summary 179

PPS Latency (µs) Throughput (Mbyte/s)
Unicast Broadcast Unicast Broadcast

LFC/CRL 23/28 �/� 60/56 �/�
LFC/Panda-ST/MPI 12/15/21 72/78/87 63/61/60 28/27/27
LFC/Panda-MT/Orca 24/31/46 72/103/121 58/56/52 28/28/27
LFC/Panda-MT/Manta 24/31/76 �/�/� 58/56/35 �/�/�

Table 7.2. PPS performance summary. All broadcast measurements were taken
on 64 processors.

of a one-way message and the cost of a broadcast. For Orca, it shows the cost
of an operation on a remote, nonreplicated object (which results in a RPC) and
the cost of an operation on a replicated object (which results in an F&A operation
followed by a broadcast). Finally, for Manta, the table shows the cost of a remote
method invocation on a remote object.

The results in Table 7.2 show that our PPSs add significant overhead to an
LFC-level implementation of the same communication pattern. These overheads
stem from several sources.

1. Demultiplexing. All clients perform one or more demultiplexing operations.
In Orca, for example, an operation request carries an object identifier and an
operation identifier. In CRL, each message carries the address of a handler
function and the name of a shared region. In MPI, each message carries a
user-specified tag. MPI and Orca are both layered on top of Panda, which
performs additional demultiplexing.

2. Fragmentation and reassembly. Both Panda and CRL implement fragmen-
tation and reassembly. This requires extra header fields and extra protocol
state.

3. Locking. Orca has a multithreaded runtime system that uses a single lock
to achieve mutual exclusion. To avoid recursion deadlocks, this lock is
released when the Orca runtime system invokes another software module
(e.g., Panda) and acquired again when the invocation returns. Panda-MT
also uses locks to protect global data structures.

4. Procedure calls. Although all PPSs and Panda use inlining inside software
modules and export inlined versions of simple functions, many procedure
calls remain. This is due to the layered structure of the PPSs. Layering
is used to manage the complexity and to enhance the portability of these
systems: most systems are fairly large and have been ported to multiple
platforms.

180 Parallel-Programming Systems

The overheads added by the various software layers running on top of LFC are
large compared to, for example, the roundtrip latency at the LFC level (e.g., an
empty-array roundtrip for Manta adds 217% to an LFC roundtrip). Consequently,
we expect that these overheads will dampen the application-level performance
differences between different LFC implementations. Application performance is
studied in the next chapter.

Chapter 8

Multilevel Performance Evaluation

The preceding chapters have shown that the LFC implementation described in
Chapter 3 and Chapter 4 provides effective and efficient support for several PPSs.
This implementation, however, is but one point in the design space outlined in
Chapter 2. This chapter discusses alternative designs of two key components of
LFC: reliable point-to-point communications by means of NI-level flow control
and reliable multicast communication by means of NI-level forwarding. Both
services are critically important for PPSs and their applications. Existing and
proposed communication architectures take widely different approaches to these
two issues (see Chapter 2), yet there have been few attempts to compare these
architectures in a systematic way.

A key idea in this chapter is to use multiple implementations of LFC’s point-
to-point, multicast, and broadcast primitives. This allows us to evaluate the deci-
sions made in the original design and implementation. We focus on assumptions
1 and 3 stated in Chapter 4: reliable network hardware and the presence of an
intelligent NI. The alternative implementations all relax one or both of these as-
sumptions. The use of a single programming interface is crucial; existing studies
compare communication architectures with different functionality and different
programming interfaces [5], which makes it difficult to isolate the effects of par-
ticular design decisions.

We compare the performance of five implementations at multiple levels. First,
we perform direct comparisons between the systems by means of microbench-
marks that run directly on top of LFC’s programming interface. Second, we com-
pare the performance of parallel applications by running them on all five LFC im-
plementations. Each of these applications uses one of four different PPSs: Orca,
CRL, MPI, and Multigame. Orca, CRL, and MPI were described in the previous
chapter; Multigame will be introduced later in this chapter. Our performance com-
parison thus involves three levels of software: the different LFC implementations,
the PPSs, and the applications. A key contribution of this chapter is that it ties

181

182 Multilevel Performance Evaluation

together low-level design issues, the communication style induced by particular
PPSs, and characteristics of parallel applications.

This chapter is organized as follows. Section 8.1 gives an overview of all LFC
implementations. Section 8.2 and Section 8.3 present, respectively, the point-to-
point and multicast parts of the implementations and compare the different im-
plementations using microbenchmarks. Section 8.4 describes the communication
style and performance of the PPSs used by our application suite. Section 8.5 dis-
cusses application performance. Section 8.6 classifies applications according to
their performance on different LFC implementations. Section 8.7 studies related
work.

8.1 Implementation Overview

LFC’s programming interface and one implementation were described in Chap-
ter 3 and Chapter 4. This section gives an overview of all implementations and
describes those implementation components that are shared by all implementa-
tions.

8.1.1 The Implementations

We developed three point-to-point reliability schemes and two multicast schemes.
Each LFC implementation consists of a combination of one reliability scheme
and one multicast scheme. One of these LFC implementations corresponds to the
system described in Chapters 3 and 4; we refer to this system as the default LFC
implementation.

The point-to-point schemes are no retransmission (Nrx), host-level retransmis-
sion (Hrx), and NI-level retransmission (Irx). Some systems, including the NI-level
protocols described in Chapter 4, assume that the network hardware and software
behave and are controlled as in an MPP environment. These systems exploit the
high reliability of many modern networks and use nonretransmitting communi-
cation protocols [26, 32, 106, 113, 141, 154]. Such protocols are called careful
protocols [106], because they may never drop packets, which requires careful
resource management. The no-retransmission (Nrx) scheme represents these pro-
tocols; it assumes that the network hardware never drops or corrupts network
packets and will fail if this assumption is violated.

Systems intended to operate outside an MPP environment usually implement
retransmission. Retransmission used to be implemented on the host, but sev-
eral research systems (e.g., VMMC-2 [49]) implement retransmission on a pro-
grammable NI. Our retransmitting schemes, Hrx and Irx, represent these two types
of systems.

8.1 Implementation Overview 183

Forwarding
Retransmission Host forwards (Hmc) Interface forwards (Imc)
No retransmission (Nrx) NrxHmc NrxImc (default)
Interface retransmits (Irx) IrxHmc IrxImc

Host retransmits (Hrx) HrxHmc Not implemented

Table 8.1. Five versions of LFC’s reliability and multicast protocols.

The multicast schemes are host-level multicast (Hmc) and NI-level multicast
(Imc). On scalable, switched networks, multicasting is usually implemented by
means of spanning-tree protocols that forward multicast data. Most communica-
tion systems implement these forwarding protocols on top of point-to-point prim-
itives. Other systems use the NI to forward multicast traffic, which results in
fewer data transfers and interrupts on the critical path from sender to receivers
[16, 56, 68, 146]. Hmc and Imc represent both types of systems.

The point-to-point reliability and the multicast schemes can be combined in
six different ways (see Table 8.1). We implemented five out of these six combina-
tions. The combination of host-level retransmission and interface-level multicast
forwarding has not been implemented for reasons described in Section 8.3.1. The
implementation described in Chapter 3 and Chapter 4 is essentially NrxImc. There
are, however, some small differences between the implementation described ear-
lier and the one described here. (NrxImc recycles send descriptors in a slightly
different way than the default LFC implementation.)

Table 8.2 summarizes the high-level differences between the five LFC imple-
mentations. We have already discussed reliability and multicast forwarding. All
implementations use the same polling-watchdog implementation. The retransmit-
ting implementations use retransmission and acknowledgement timers. IrxImc and
IrxHmc use Myrinet’s on-board timer to implement these timers. HrxHmc uses both
Myrinet’s on-board timer and the Pentium Pro’s timestamp counter. All protocols
except HrxHmc implement LFC’s fetch-and-add operation on the NI. Since HrxHmc

represents conservative protocols that make little use of the programmable NI, it
stores fetch-and-add variables in host memory and handles fetch-and-add mes-
sages on the host.

8.1.2 Commonalities

The LFC implementations share much of their code. All implementations transmit
data in variable-length packets. Hosts and NIs store packets in packet buffers
which all have the same maximum packet size. Each NI has a send buffer pool
and a receive buffer pool; hosts only have a receive buffer pool.

We distinguish four packet types: unicast, multicast, acknowledgement, and

184 Multilevel Performance Evaluation

Function NrxImc NrxHmc IrxImc IrxHmc HrxHmc

Reliability NI NI NI NI Host
Mcast forwarding NI Host NI Host Host
Polling watchdog NI + host NI + host NI + host NI + host NI + host
Fine-grain timer — — NI NI NI + host
Fetch-and-add NI NI NI NI host

Table 8.2. Division of work in the LFC implementations.

synchronization. Unicast and multicast packets contain client data. Acknowl-
edgements are used to implement reliability. Synchronization packets carry fetch-
and-add (F&A) requests and replies. An F&A operation is implemented as an
RPC to the node holding the F&A variable. Depending on the implementation,
this variable is stored either in host or NI memory.

All implementations organize multicast destinations in a binary tree with the
sender as its root and forward multicast packets along this tree, in parallel. One of
the problems in implementing a multicast forwarding scheme is the potential for
buffer deadlock. Several strategies can be used to deal with this problem: reser-
vation in advance [56, 146], deadlock-free routing, and deadlock recovery [16].

To send a packet, LFC’s send routines store one or more transmission requests
in send descriptors in NI memory (using PIO). Each descriptor identifies a send
packet, the packet’s destination, the packet’s size, and protocol-specific informa-
tion such as a sequence number. Multiple descriptors can refer to the same packet,
so that the same data can be transmitted to multiple destinations.

LFC clients use PIO to copy data that is to be transmitted into LFC send pack-
ets (which are stored in NI memory). To speed up these data copies, all implemen-
tations mark NI memory as a write-combined memory region (see Section 3.3).

Each host maintains a pool of free receive buffers. The addresses of free host
buffers are passed to the NI control program through a shared queue in NI mem-
ory. When the NI has received a packet in one of its receive buffers, it copies the
packet to a free host buffer (using DMA). The host can poll a flag in this buffer to
test whether the packet has been filled.

The NI control program’s event loop processes the following events:

1. Host transmission request. The host enqueued a packet for retransmis-
sion. The NI tries to move the packet to its packet transmission queue.
In some protocols, however, the packet may have to wait until an NI-level
send window opens up. If the window is closed, the packet is stored on
a per-destination blocked-sends queue. Incoming acknowledgements will
later open the window and move the packet from this queue to the packet
transmission queue.

8.1 Implementation Overview 185

Parameter Meaning Unit
P #processors that participate in the application Processors
PKTSZ Maximum payload of a packet Bytes
ISB NI send pool size Packet buffers
IRB NI receive pool size Packet buffers
HRB Host receive pool size Packet buffers
W Maximum send window size Packets
INTD Polling watchdog’s network interrupt delay µs
TGRAN Timer granularity µs

Table 8.3. Parameters used by the protocols.

2. Packet transmitted. The NI hardware completed the transmission of a packet.
If the packet transmission queue is not empty, the NI starts a network DMA
to transmit the next packet. For each outgoing packet, Myrinet computes (in
hardware) a CRC checksum and appends it to the packet. The receive hard-
ware recomputes and verifies the checksum and appends the result (check-
sum verification succeeded or failed) to the packet. This result is checked
in software.

3. Packet received. The NI hardware received a packet from the network. The
NI checks the checksum of the packet just received. If the checksum fails,
the NI drops the packet or signals an error to the host. (The retransmit-
ting protocols drop the packet, forcing the sender to retransmit. The non-
retransmitting protocols signal an error.) Otherwise, if the packet is a uni-
cast or multicast packet, then the NI enqueues it on its NI-to-host DMA
queue. Some protocols also enqueue multicast packets for forwarding on
the packet transmission queue or, if necessary, on a blocked-sends queue.
Acknowledgement and synchronization packets are handled in a protocol-
specific way.

4. NI-to-host DMA completion. If the NI-to-host DMA queue is not empty,
then a DMA is started for the next packet.

5. Timeout. All implementations use timeouts to implement the NI-level polling
watchdog described in Section 3.7. Some implementations also use time-
outs to trigger retransmissions or acknowledgements.

Each implementation is configured using the parameters shown in Table 8.3.

186 Multilevel Performance Evaluation

8.2 Reliable Point-to-Point Communication

To compare different point-to-point protocols, we have implemented LFC’s reli-
able point-to-point primitive in three different ways. The retransmitting protocols
(Hrx and Irx) assume unreliable network hardware and can recover from lost, cor-
rupted, and dropped packets by means of time-outs, retransmissions, and CRC
checks. In Hrx, reliability is implemented by the host processor; in Irx, it is im-
plemented by the NI. As explained above, the three implementations have much
in common; below, we discuss how the three implementations differ from one
another.

8.2.1 The No-Retransmission Protocol (Nrx)

Nrx assumes reliable network hardware and correct operation of all connected NIs.
Nrx does not detect lost packets and treats corrupted packets as a fatal error. Nrx

never retransmits any packet and can therefore avoid the overhead of buffering
packets for retransmission and timer management.

To avoid buffer overflow, Nrx implements flow control between each pair of
NIs (see the UCAST protocol described in Section 4.1). At initialization time,
each NI reserves W = bIRB=Pc receive buffers for each sender. The number of
buffers (W) is the window size for the sliding window protocol that operates be-
tween sending and receiving NIs. Each NI transmits a packet only if it knows that
the receiving NI has free buffers. If a packet cannot be transmitted due to a closed
send window, then the NI queues the packet on a blocked-sends queue for that des-
tination. Blocked packets are dequeued and transmitted during acknowledgement
processing (see below).

Each NI receive buffer is released when the packet contained in it has been
copied to host memory. The number of newly released buffers is piggybacked on
each packet that flows back to the sender. If there is no return traffic, then the
receiving NI sends an explicit half-window acknowledgement after releasing W=2
buffers. (That is, the credit refresh threshold discussed in Section 4.1 is set to
W=2.)

8.2.2 The Retransmitting Protocols (Hrx and Irx)

The two retransmission schemes make different tradeoffs between send and re-
ceive overhead on the host processor and complexity of the NI control program.
We first describe the protocols in general terms and then explain protocol-specific
modifications. In the following, the terms sender and receiver refer to NIs in the
case of Irx and to host processors in the case of Hrx.

Each sender maintains a send window to each receiver. A sender that has

8.2 Reliable Point-to-Point Communication 187

filled its send window to a particular destination is not allowed to send to that
destination until some of the packets in the window have been acknowledged by
the receiver. Each packet carries a sequence number which is used to detect lost,
duplicated, and out-of-order packets. After transmitting a packet, the sender starts
a retransmission timer for the packet. When this timer expires, all unacknowl-
edged packets are retransmitted. This go-back-N protocol [115, 138] is efficient
if packets are rarely dropped or corrupted (as is the case with Myrinet).

Retransmission requires that packets be buffered until an acknowledgement
is received. With asynchronous message passing, this normally requires a copy
on the sending host. However, since the Myrinet hardware can transmit only
packets that reside in NI memory, all protocols must copy data from host memory
to NI memory. The retransmitting protocols use the packet in NI memory for
retransmission and therefore do not make more memory copies than Nrx. This
optimization is hardware-specific; it does not apply to NIs that use FIFOs into the
network (e.g., several ATM interfaces).

Receivers accept a packet only if it carries the next-expected sequence number;
otherwise they drop the packet. In addition, NIs drop incoming packets that have
been corrupted —i.e., packets that yield a CRC error— or that cannot be stored
due to a shortage of NI receive buffers.

Since send packets cannot be reused until they have been acknowledged and
since NI memory is relatively small, senders can run out of send packets when ac-
knowledgements do not arrive promptly. To prevent this, receivers acknowledge
incoming data packets in three ways. As in Nrx, receivers use piggybacked and
half-window acknowledgements. In addition, each receiver sets an acknowledge-
ment timer whenever a packet arrives. When the timer expires and the receiver
has not yet sent any acknowledgement, the receiver sends an explicit delayed ac-
knowledgement.

In Irx, receiving NIs keep track of the amount of buffer space available. When
a packet must be dropped due to a buffer space shortage, the NI registers this.
When more buffer space becomes available, the NI sends a NACK to the sender
of the dropped packet. When a NACK is received, the sender retransmits all un-
acknowledged packets. Without the NACKs, packets would not be retransmitted
until the sender’s timer expired.

8.2.3 Latency Measurements

Figure 8.1 shows the one-way latency for Nrx, Hrx, and Irx. All messages fit in a
single network packet and are received through polling. Nrx outperforms the re-
transmitting protocols, which must manage timers and which perform more work
on outstanding send packets when an acknowledgement is received. All curves
have identical slopes, indicating that the protocols have identical per-byte costs.

188 Multilevel Performance Evaluation

0 200 400 600 800 1000
Message size (bytes)

0

10

20

30

40

La
te

nc
y

(m
ic

ro
se

co
nd

s)

Hrx
Irx
Nrx

Fig. 8.1. LFC unicast latency.

Protocol os or L g os +or +L
Nrx 1.5 2.3 7.2 6.7 11.0
Irx 1.4 2.3 8.3 9.7 12.0
Hrx 2.4 5.3 6.5 8.3 14.2

Table 8.4. LogP parameter values (in microseconds) for a 16-byte message.

Table 8.4 shows the values of the LogP [40, 41] parameters and the end-to-end
latency (os +or +L) of the three protocols. The LogP parameters were defined in
Section 5.1.2. Nrx and Irx perform the same work on the host, so they have (almost)
identical send and receive overheads (os and or, respectively). Irx, however, runs
a retransmission protocol on the NI, which is reflected in the protocol’s larger gap
(g = 9:7 versus g = 6:7) and latency (L = 8:3 versus L = 7:2). Hrx runs a similar
protocol on the host and therefore has larger send and receive overheads than Nrx

and Irx.
Table 8.5 shows the F&A latencies for the different protocols. Again, Nrx is

the fastest protocol (18 µs). Hrx is the slowest protocol (31 µs); it is the only
protocol in which F&A operations are handled by the host processor of the node
that stores the F&A variable. In an application, handling F&A requests on the
host processor can result in interrupts. In this benchmark, however, Hrx receives
all F&A requests through polling.

8.2.4 Window Size and Receive Buffer Space

To obtain maximum throughput, acknowledgements must flow back to the sender
before the send window closes. To avoid sender stalls, all protocols therefore

8.2 Reliable Point-to-Point Communication 189

Protocol Latency (µs)
Nrx 18
Irx 25
Hrx 31

Table 8.5. Fetch-and-add latencies.

5 10 15
Send-window size (packets)

0

20

40

60

P
ea

k
th

ro
ug

hp
ut

 (
M

by
te

/s
)

1 Kbyte packets,
with receiver copy

Nrx
Irx
Hrx

5 10 15
Send-window size (packets)

0

20

40

60

2 Kbyte packets,
with receiver copy

Nrx
Irx
Hrx

Fig. 8.2. Peak throughput for different window sizes.

need sufficiently large send windows and receive buffer pools. Figure 8.2 shows
the measured peak throughput for various window sizes and for two packet sizes.
To speed up sequence number computations for Irx, we use only power-of-two
window sizes. In this benchmark, the receiving process copies data from incoming
packets to a receive buffer. This is not strictly necessary, but all LFC clients
perform such a copy while processing the data they receive. Throughput without
this receiver-side copy is discussed later.

For 1 Kbyte packets, Nrx and Irx need only a small window (W � 4) to attain
high throughput. Hrx’s throughput still increases noticeably when we grow the
window size from W = 4 (45 Mbyte/s) to W = 8 (56 Mbyte/s). A small window
is important for Nrx, because each NI allocates W receive buffers per sender. In
the retransmitting protocols (Irx and Hrx) NI receive buffers are shared between
senders and we need only W receive buffers to allow any single sender to achieve
maximum throughput.

Surprisingly, Irx’s throughput decreases for W > 8. The reason is that NI-level
acknowledgement processing in Irx involves canceling all outstanding retransmis-
sion timers. With a larger window, more (virtual) timers must be canceled. (Irx

multiplexes multiple virtual timers on a single physical timer; canceling a virtual
timers consists of a dequeue operation.) At some point, the slow NI can no longer

190 Multilevel Performance Evaluation

hide this work behind the current send DMA transfer. The effect disappears when
we switch to 2 Kbyte packets — that is, when the send DMA transfers take more
time.

Figure 8.3 shows one-way throughput for 1-Kbyte and 2-Kbyte packets, with
and without receiver-side copying. For all three protocols, the window size was
set to W = 8.

With 1 Kbyte packets and without copying, we see clear differences in through-
put between the three protocols. Performing retransmission administration on the
host (Hrx) increases the per-packet costs and reduces throughput. When the re-
transmission work is moved from the host to the NI (Irx), throughput is reduced
further. The NI performs essentially the same work as the host in Hrx, but does so
more slowly. The LogP measurements in Table 8.4 confirm this: Irx has a larger
gap (g) than the other protocols. Increasing the packet size to 2 Kbyte reduces
the number of times per-packet costs are incurred and increases the throughput
of all protocols, but most noticeably for Irx. For Hrx and Nrx, the improvement is
smaller and comes mainly from faster copying at the sending side. Irx, however,
is now able to hide more of its per-packet overhead in the latency of larger DMA
transfers.

Throughput is reduced when the receiving process copies data from incoming
packets to a destination buffer, especially when the message is large and does not
fit into the L2 cache. This is important, because all LFC clients do this. Since
the maximum memcpy() speed on the Pentium Pro (52 Mbyte/s) is less than the
maximum throughput achieved by our protocols (without copying), the copying
stage becomes a bottleneck. In addition, memory traffic due to copying interferes
with the DMA transfers of incoming packets.

With copying, the throughput differences between the three protocols are fairly
small. To a large extent, this is due to the use of the NI memory as ’retransmission
memory,’ which eliminates a copy at the sending side.

8.2.5 Send Buffer Space

While NI receive buffer space is an issue for Nrx, send buffer space is just as
important for Irx and Hrx. First, however, we consider the send buffer space re-
quirements for Nrx. Nrx can reuse send buffers as soon as their contents have
been put on the wire, so only a few send buffers are needed to achieve maximum
throughput between a single sender-receiver pair. With more receivers it is useful
to have a larger send pool, in case some receiver does not consume incoming pack-
ets promptly. Transmissions to that receiver will be suspended and extra packets
are then needed to allow transmissions to other receivers.

In the retransmitting protocols, send buffers cannot be reused until an ac-
knowledgement confirms the receipt of their contents. (This is a consequence of

8.2 Reliable Point-to-Point Communication 191

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

20

40

60

80

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

1 Kbyte packets; no copy

Nrx
Hrx
Irx

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

20

40

60

80

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

1 Kbyte packets; copy

Nrx
Hrx
Irx

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

20

40

60

80

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

2 Kbyte packets; no copy

Nrx
Hrx
Irx

64 25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

20

40

60

80

T
hr

ou
gh

pu
t (

M
by

te
/s

ec
on

d)

2 Kbyte packets; copy

Nrx
Hrx
Irx

Fig. 8.3. LFC unicast throughput.

192 Multilevel Performance Evaluation

using NI memory as retransmission memory.) Since we do not acknowledge each
packet individually, a sender that communicates with many receivers may run out
of send buffers. One of our applications, a Fast Fourier Transform (FFT) program,
illustrates this problem. In FFT, each processor sends a unique message to every
other processor. With 64 processors, these messages are of medium size (2 Kbyte)
and fill less than half a window. If the number of send buffers is small, a sender
may run out of send buffers before any receiver’s half-window acknowledgement
has been triggered.

If the number of send buffers is large relative to the number of receivers, the
sender will trigger half-window acknowledgements before running out of send
buffers. In general, we cannot send more than P � (W=2� 1) packets without
triggering at least one half-window acknowledgement, unless packets are lost.

To avoid unnecessary retransmissions when the number of send buffers is
small, Irx and Hrx could acknowledge packets individually, but this will lead to
increased network occupancy, NI occupancy, and (in the case of Hrx) host occu-
pancy. Instead, Irx and Hrx start an acknowledgement timer for incoming packets.
Each receiver maintains one timer per sender. The timer for sender S is started
whenever a data packet from S arrives and the timer is not yet running. The timer
is canceled when an acknowledgement (possibly piggybacked) travels back to S.
If the timer expires, the receiver sends an explicit acknowledgement.

This scheme requires small timeout values for the acknowledgement timer, be-
cause a sender needs only a few hundred microseconds to allocate all send buffers.
Using OS timer signals to implement the timer on Hrx does not work, because the
granularity of OS timers is often too coarse (10 ms is a common value). The Myri-
net NI, however, provides access to a clock with a granularity of 0.5 µs and is able
to send signals to the user process. We therefore use the NI as an intelligent clock,
as follows. We choose a clock period T GRAN and let the NI generate an interrupt
every T GRAN µs.

To reduce the number of clock signals, we use two optimizations. First, be-
fore generating a clock interrupt, the NI reads a flag in host memory that indicates
whether any timers are running. No interrupt is generated when no timers are
running. Second, each time the host performs a timer operation it records the
current time by reading the Pentium Pro’s timestamp counter (see Section 1.6.2).
This counter is incremented every clock cycle (5 ns). If necessary, the host in-
vokes timeout handlers. Before generating a clock interrupt, the NI reads the time
recorded by the host to decide whether the host recently read its clock. If so, no
interrupt is generated.

8.3 Reliable Multicast 193

8.2.6 Protocol Comparison

An important difference between the retransmitting (Irx and Hrx) and the non-
retransmitting (Nrx) protocols is that the retransmitting protocols do not reserve
buffer space for individual senders. In Irx and Hrx, NI receive buffers can be
shared by all sending NIs, because an NI that runs out of receive buffers can drop
incoming packets, knowing that the senders will eventually retransmit. In Irx and
Hrx, a single sender can fill all of an NI’s receive buffers. Nrx, in contrast, may
never drop packets and therefore allocates a fixed number of NI receive buffers to
each sender. In most cases this is wasteful, but since the small bandwidth-delay
product of Nrx allows small window sizes, this strategy does not pose problems in
medium-size clusters. Nevertheless, this static buffer allocation scheme prevents
Nrx from scaling to very large clusters, unless NI memory scales as well.

Acknowledgements in Nrx have a different meaning than in Irx and Hrx. Nrx

implements flow control (at the NI level), while Irx and Hrx implement only relia-
bility. In Nrx, an acknowledgement consists of a count of buffers released since the
last acknowledgement. In Irx and Hrx, an acknowledgement consists of a sequence
number. (A count instead of a sequence number fails when an acknowledgements
is lost.) The sequence number indicates which packets have arrived at the receiver
(host or NI), but does not indicate which packets have been released.

An obvious disadvantage of Nrx is that it cannot recover from lost or corrupted
packets. On Myrinet, we have observed both types of errors, caused by both
hardware and software bugs. On the positive side, careful protocols are easier
to implement than retransmitting protocols. There is no need to buffer packets
for retransmission, to maintain sequence numbers, or to deal with timers. For the
same reasons, the nonretransmitting LFC implementations achieve better latencies
than the retransmitting implementations. With 1 Kbyte packets there is also a
throughput advantage, but this is partly obscured by the memory-copy bottleneck.

In spite of these differences, the microbenchmarks indicate that all three pro-
tocols can be made to perform well, including protocols that perform most of their
work on the NI. The keys to good performance are to use NI buffers for retrans-
mission and to overlap DMA transfers with useful work.

8.3 Reliable Multicast

We consider two multicast schemes, which differ in where they implement the
forwarding of multicast packets. In the Hmc protocols, multicast packets are for-
warded by the host processor. In the Imc protocols, the NI forwards multicast pack-
ets. In Section 8.3.1, we first compare host-level and interface-level forwarding.
Section 8.3.2 compares individual implementations in more detail. Section 8.3.3

194 Multilevel Performance Evaluation

Host Host

Network interfaceNetwork interface

Fig. 8.4. Host-level (left) and interface-level (right) multicast forwarding.

discusses deadlock issues. Finally, Section 8.3.4 analyzes the performance of all
multicast implementations.

8.3.1 Host-Level versus Interface-Level Packet Forwarding

Host-level forwarding using a spanning tree is the traditional approach for net-
works without hardware multicast. The sender is the root of a multicast tree and
transmits a packet to each of its children. Each receiving NI passes the packet to
its host, which reinjects the packet to forward it to the next level in the multicast
tree (see Figure 8.4). All host-level forwarding protocols reinject each multicast
packet at most once. Instead of making a separate host-to-NI copy for each for-
warding destination, the host creates multiple transmission requests for the same
packet.

Host-level forwarding has three disadvantages. First, since each reinjected
packet was already available in the NI’s memory, host-level forwarding results in
an unnecessary host-to-NI data transfer at each internal tree node of the multi-
cast tree, which wastes bus bandwidth and processor time. Second, no forwarding
takes place unless the host processes incoming packets. If one host does not poll
the network in a timely manner, all its children will be affected. Instead of rely-
ing on polling, the NI can raise an interrupt, but interrupts are expensive. Third,
the critical sender-receiver path includes the host-NI interactions of all the nodes
between the sender and the receiver. For each multicast packet, these interac-
tions consist of copying the packet to the host, host processing, and reinjecting
the packet.

The NI-level multicast implementations address all three problems. In the Imc

protocols, the host does not reinject multicast packets into the network (which
saves a data transfer), forwarding takes place even if the host is not polling, and
the host-NI interactions are not on the critical path.

Host-level and NI-level multicast forwarding can be combined with the three
point-to-point reliability schemes described in the previous section. We imple-
mented all combinations except the combination of interface-level forwarding

8.3 Reliable Multicast 195

with host-level retransmission. In such a variant we expect the host to maintain
the send and receive window administration, as in Hrx. However, if an NI needs
to forward an incoming packet then it needs a sequence number for each of the
forwarding destinations. To make this scheme work we would have to duplicate
sequence number information (in a consistent way).

8.3.2 Acknowledgement Schemes

For reliability, multicast packets must be acknowledged by their receivers, just
like unicast packets. To avoid an acknowledgement implosion, most multicast
forwarding protocols use a reverse acknowledgement scheme in which acknowl-
edgements flow back along the multicast tree.

Our protocols use two reverse acknowledgement schemes: ACK-forward and
ACK-receive. ACK-forward is used by NrxImc(the default implementation), IrxImc,
and HrxHmc. In these protocols, acknowledgements are sent at the level (NI or
host) at which multicast forwarding takes place. The main characteristic of ACK-
forward is that it does not allow a receiver to acknowledge a multicast packet to its
parent in the multicast tree until that packet has been forwarded to the receiver’s
children.

ACK-forward cannot easily be used by NrxHmc or IrxHmc, because in these
protocols acknowledgements are sent by the NI and forwarding is performed by
the host. NrxHmc and IrxHmc therefore use a simpler scheme, ACK-receive, which
acknowledges multicast packets in the same way as unicast packets (i.e., without
waiting for forwarding). In the case of NrxHmc, multicast packets can be acknowl-
edged as soon as they have been delivered to the local host. In the case of IrxHmc,
multicast packets can be acknowledged as soon as they have been received by the
NI.

A potential problem with ACK-receive is that it creates a flow-control loop-
hole that cannot easily be closed by an LFC client. In NrxHmc and IrxHmc, a host
receive buffer containing a multicast packet is not released until the packet has
been delivered to the client and has been forwarded to all children. Consequently,
after processing a packet, the client cannot be sure that the packet is available for
reuse, because it may still have to be forwarded. This makes it difficult for the
client to implement a fool-proof flow-control scheme (when needed).

8.3.3 Deadlock Issues

With a spanning-tree multicast protocol, it is easy to create a buffer deadlock cycle
in which all NIs (or hosts) have filled their receive pools with packets that need
to be forwarded to the next NI (or host) in the cycle which also has a full receive
pool. Such deadlocks can be prevented or recovered from in several ways. The

196 Multilevel Performance Evaluation

0 200 400 600 800 1000
Message size (bytes)

0

50

100

150

200

250

La
te

nc
y

(m
ic

ro
se

co
nd

s)

64 processors, 1 Kbyte packets,
no receiver copy

IrxHmc
HrxHmc
NrxHmc
IrxImc
NrxImc

Fig. 8.5. LFC multicast latency.

NI-level flow control protocol of NrxImc(the default implementation), for example,
allows deadlock-free multicasting for a certain class of multicast trees (including
binary trees).

Our other protocols do not implement true flow control at the multicast for-
warding level and may therefore suffer from deadlocks. For certain types of mul-
ticast trees, including binary trees, the ACK-forward scheme prevents buffer dead-
locks if sufficient buffer space is available at the forwarding level. Buffer space
is sufficient if each receiver can store a full send window from each sender (see
Appendix A). NrxImc’s NI-level flow control scheme satisfies this requirement.
Unfortunately, reserving buffer space for each sender destroys one of the advan-
tages of retransmission: better utilization of receive buffers (see Section 8.2.4).

NrxHmc and IrxHmc do not provide any flow control at the forwarding (i.e.,
host) level and are therefore susceptible to deadlock. With our benchmarks and
applications, however, the number of host receive buffers is sufficiently large that
deadlocks do not occur.

8.3.4 Latency and Throughput Measurements

Multicast latency for 64 processors is shown in Figure 8.5. We define multicast
latency as the time it takes to reach the last receiver. The top three curves in the
graph correspond to the Hmc protocols, which perform multicast forwarding on
the host processor. These protocols clearly perform worse than those that perform
multicast forwarding on the NI. The reason is simple: with host-level forward-
ing two extra data copies occur on the critical path at each internal node of the
multicast tree.

8.4 Parallel-Programming Systems 197

25
6 1K 4K 16

K
64

K
25

6K 1M

Message size (bytes)

0

5

10

15

20
T

hr
ou

gh
pu

t (
M

by
te

/s
ec

on
d)

64 processors, 1 Kbyte packets,
with receiver copy

NrxImc
NrxHmc
HrxHmc
IrxImc
IrxHmc

Fig. 8.6. LFC multicast throughput.

Figure 8.6 shows multicast throughput on 64 processors, using 1 Kbyte pack-
ets and copying at the receiver side. Throughput in this graph refers to the sender’s
outgoing data rate, not to the summed receiver-side data rate. In contrast with the
latency graph (Figure 8.5), this graph shows that interface-level forwarding does
not always yield the best results: for message sizes up to 128 Kbyte, for example,
HrxHmc achieves higher throughput than IrxImc.

The dip in the HrxHmc curve is the result of HrxHmc’s higher receive overhead
and a cache effect. For larger messages, the receive buffer no longer fits in the
L2 cache, and so the copying of incoming packets becomes more expensive, be-
cause these copies now generate extra memory traffic. In HrxHmc, these increased
copying costs turn the receiving host into the bottleneck: due to its higher receive
overhead, HrxHmc does not manage to copy a packet completely before the next
packet arrives. In the other protocols, the receive overhead is lower, so there is
enough time to copy an incoming packet before the next packet arrives.

8.4 Parallel-Programming Systems

All applications discussed in this chapter run on one of the following PPSs: Orca,
CRL, MPI, or Multigame. Orca, CRL, and MPI were discussed in Chapter 7;
Multigame is introduced below. This section describes the communication style
of all PPSs and discusses PPS-level performance.

198 Multilevel Performance Evaluation

8.4.1 Communication Style

Each of our PPSs implements a small number of communication patterns, which
are executed in response to actions in the application. For each PPS, we summa-
rize its main communication patterns and discuss the interactions between these
patterns and the communication system.

CRL

In CRL, most communication results from read and write misses. The resulting
communication patterns were described in Section 7.3.2 (see Figure 7.17).

CRL’s invalidation-based coherence protocol does not allow applications to
multicast data. (CRL uses LFC’s multicast primitive only during initialization and
barrier synchronization). Also, since CRL’s single-threaded implementation does
not allow a requesting process to continue while a miss is outstanding, applica-
tions are sensitive to roundtrip performance. Roundtrip latency is more important
than roundtrip throughput, because CRL mainly sends small messages. Control
messages are always small and data messages are small because most applications
use fairly small regions.

The roundtrip nature of CRL’s communication patterns and the small region
sizes used in most CRL applications lead to low acknowledgement rates for the
Nrx protocols. The roundtrips make piggybacking effective and due to the small
data messages few half-window acknowledgements are needed. Finally, NrxImc

and NrxHmc never send delayed acknowledgements. This is important: for one of
our applications (Barnes, see Section 8.5), for example, HrxHmc sends 31 times as
many acknowledgements as NrxImc, the default LFC implementation.

MPI

Since MPI is a message-passing sysytem, programmers can express many differ-
ent communication patterns. MPI’s main restriction is that incoming messages
cannot be processed asynchronously, which occasionally forces programmers to
insert polling statements into their programs. The sensitivity of an MPI program
to the parameters of the communication architecture depends largely on the appli-
cation’s communication rate and communication pattern.

All our MPI applications (QR, ASP, and SOR) use MPI’s collective-commu-
nication operations. Internally, these operations (broadcast and reduce-to-all) all
use broadcasting.

All MPI measurements in this chapter were performed using the same MPICH-
based MPI implementation as described in Section 7.4. Recall that MPICH pro-
vides a default spanning-tree broadcast implementation built on top of unicast

8.4 Parallel-Programming Systems 199

Nrx
Im

c

M
PIC

H
0.0

0.5

1.0

1.5
N

or
m

al
iz

ed
 e

xe
cu

tio
n

tim
e

ASP/MPI

Nrx
Im

c

M
PIC

H
0.0

0.5

1.0

1.5
QR/MPI

Fig. 8.7. Application-level impact of efficient broadcast support.

primitives. This default implementation can be replaced with a more efficient ’na-
tive’ implementation. All MPI measurements in Section 8.5 were performed with
a native implementation that uses Panda’s broadcast which, in turn, uses one of
our implementations of LFC’s broadcast. In Section 7.4, we used microbench-
marks to show that this native implementation is more efficient than MPICH’s
default implementation. Figure 8.7 shows that this difference is also visible at
the application level. The figure shows the relative performance of two broad-
casting MPI applications, ASP and QR, which we will discuss in more detail in
Section 8.5. The MPICH-default measurements were performed using unicast
primitives on top of the default LFC implementation (NrxImc). For both ASP and
QR, this default broadcast is significantly slower than the implementation that
uses the broadcast of NrxImc: ASP runs 25% slower and QR runs 50% slower.

MPICH’s default broadcast implementation suffers from two problems. First,
MPICH forwards entire messages rather than individual packets. For large mes-
sages, this eliminates pipelining and reduces throughput. ASP pipelines multiple
broadcast messages, each of which consists of multiple packets. In QR, there is
no such pipelining of messages; only the packets within a single message can be
pipelined. Second, the default implementation cannot reuse NI packet buffers. At
each internal node of the multicast tree, the message will be copied to the network
interface once for each child. The LFC implementations reuse NI packet buffers
to avoid this repeated copying.

Orca

Orca programs can perform two types of communication patterns: RPC and totally-
ordered broadcast. In their communication behavior, Orca programs resemble
message-passing programs, except in that there is no asynchronous one-way mes-
sage send primitive. Such a primitive can be simulated by means of multithread-

200 Multilevel Performance Evaluation

ing, but none of our applications does this. (Our Orca applications are dominated
by multicast traffic.) In Orca, messages carry the parameters and results of user-
defined operations, so programmers have control over message size and message
rate.

Multigame

Multigame (MG) is a parallel game-playing system developed by Romein [122].
Given the rules of a board game and a board evaluation function, Multigame au-
tomatically searches for good moves, using one of several search strategies (e.g.,
IDA*). During a search, processors push search jobs to each other. A job consists
of (recursively) evaluating a board position. To avoid re-searching positions, po-
sitions are cached in a distributed hash table. When a process needs to read a table
entry, it sends the job to the owner of the table entry [122]. The owner looks up
the entry and continues to work on the job until it needs to access a remote table
entry.

Multigame’s job descriptors are small (32 bytes). To avoid the overhead of
sending and receiving many small messages, Multigame aggregates job messages.
The communication granularity depends on the maximum number of jobs per
message.

Multigame runs on Panda-ST and receives all messages through polling. Al-
most all communication consists of small to medium-size one-way messages,
which are sent to random destinations. The maximum message size depends
on the message aggregation limit. The message rate also depends on this limit
and, additionally, on the application-specific cost of evaluating a board position.
Senders need not wait for replies, so as long as each process has a sufficient
amount of work to do, latency (in the LogP sense) is unimportant. Communi-
cation overhead is dominated by send and receive overhead.

8.4.2 Performance Issues

Table 7.2 summarizes the minimum latency and the maximum throughput of char-
acteristic operations for Orca, CRL, and MPI. Rules in Multigame specifications
are not easily tied to communication patterns. The most important pattern, how-
ever, consists of sending a number of jobs in a single message to a remote proces-
sor. All communication consists of Panda-ST point-to-point messages.

Table 7.2 shows that our PPSs add significant overhead to an LFC-level imple-
mentation of the same communication pattern, so we expect that these overheads
will reduce the application-level performance differences between different LFC
implementations.

8.5 Application Performance 201

Client-level optimizations form another dampening factor. Two optimizations
are worth mentioning: message combining and latency hiding.

As described above, Multigame performs message combining by aggregating
search jobs in per-processor buffers. Instead of sending out a search job as soon as
it has been generated, the Multigame runtime system stores jobs in an aggregation
queue for the destination processor. The contents of this queue is not transmitted
until a sufficient number of jobs has been placed into the queue. The difference
in packet rate between Puzzle-4 and Puzzle-64 in Figure 8.8 shows that message
combining significantly reduces the packet rate for all protocols. Of course, the
resulting performance gain (see Figure 8.9) is larger for protocols with higher
per-packet costs.

CRL and Orca implement latency hiding. Both systems perform RPC-style
transactions: a processor sends a request to another machine and waits for the
reply. Both systems then start polling the network and process incoming pack-
ets while waiting for the reply. Consequently, protocols can compensate high
latencies by processing other packets in their idle periods. (This holds only if the
increased latency is not the result of increased host processor overhead.)

8.5 Application Performance

This section analyzes the performance of several applications on all five LFC im-
plementations. Section 8.5.1 summarizes the performance results. Sections 8.5.2
to 8.5.10 discuss and analyze the performance of individual applications.

8.5.1 Performance Results

Table 8.6 lists, for each application, the PPS it runs on, its input parameters, se-
quential execution time, speedup, and parallel efficiency. (Parallel efficiency is
defined as speedup divided by the number of processors: E64 = S64=64.) The se-
quential execution time and parallel efficiency were measured using the default
implementation (NrxImc). Sequential execution times range from a few seconds
to several minutes; speedups on 64 processors range from poor (Radix) to super-
linear (ASP). While we use small problems that easily fit into the memories of
64 processors, 7 out of 10 applications achieve an efficiency of at least 50%. Su-
perlinear speedup occurs because we use fixed-size problems and because 64 pro-
cessors have more cache memory at their disposal than a single processor.

With the exception of Awari and the Puzzle programs, all programs imple-
ment well-known parallel algorithms that are frequently used to benchmark PPSs.
All CRL applications (Barnes, FFT, and Radix), for example, are adaptations of
programs from the SPLASH-2 suite of parallel benchmark programs [153].

202 Multilevel Performance Evaluation

Application PPS Problem size T1 S64 E64

ASP MPI 1024 nodes 49.32 74.73 1.17
Awari Orca 13 stones 448.90 31.81 0.50
Barnes CRL 16,384 bodies 123.24 23.25 0.36
FFT CRL 1,048,576 complex floats 4.46 49.56 0.77
LEQ Orca 1000 equations 610.90 30.12 0.47
Puzzle-4 MG 15-puzzle, � 4 jobs/message 281.00 45.32 0.71
Puzzle-64 MG 15-puzzle, � 64 jobs/message 281.00 53.63 0.84
QR MPI 1024�1024 doubles 54.16 45.51 0.71
Radix CRL 3,000,000 ints, radix 128 3.20 10.32 0.16
SOR MPI 1536�1536 doubles 30.91 51.52 0.80

Table 8.6. Application characteristics and timings. T1 is the execution time (in
seconds) on one processor; S64 is the speedup on 64 processors; E64 is the effi-
ciency on 64 processors.

We performed the application measurements using the following parameter
settings: 64 processors (P = 64), a packet size of 1 Kbyte (PKTSZ = 1), 4096
host receive buffers (HRB = 4096), a send window of 8 packet buffers (W = 8), an
interrupt delay of 70 µs (INTD = 70), and a timer granularity of 5000 µs (TGRAN
= 5000). For the retransmitting protocols (IrxImc, IrxHmc, and HrxHmc), we use
256 NI send buffers and 386 NI receive buffers (ISB + IRB = 256 + 384 = 640).
For the careful protocols (NrxImc and NrxHmc), we use ISB + IRB = 128 + 512 =
640. With these settings, the control program occupies approximately 900 Kbyte
of the NI’s memory (1 Mbyte). The remaining space is used by the control pro-
gram’s runtime stack.

Communication statistics for all applications are summarized in Figure 8.8,
which gives per-processor data and packet rates, broken down according to packet
type. The figure distinguishes unicast data packets, multicast data packets, ac-
knowledgements, and synchronization packets. Data and packet rates refer to
incoming traffic, so a broadcast is counted as many times as the number of desti-
nations (63).

The goal of the figure is to show that the applications exhibit diverse communi-
cation patterns. Compare, for example, Barnes, Radix, and SOR. Barnes has high
packet rates and low data rates (i.e., packets are small). Radix, in contrast, has
both high packet and data rates. SOR has a low packet rate and a high data rate
(i.e., packets are large). These rates were all measured using HrxHmc; the rates
on other implementations are different, of course, but show similar differences
between applications.

Figure 8.9 shows application performance of the alternative implementations

8.5 Application Performance 203

0 2 4 6
Data rate (Mbyte/processor/s)

0 2 4 6
Data rate (Mbyte/processor/s)

0 2 4 6
Data rate (Mbyte/processor/s)

 SOR/MPI
 Radix/CRL
 QR/MPI
 Puzzle-64/MG
 Puzzle-4/MG
 LEQ/Orca
 FFT/CRL
 Barnes/CRL
 Awari/Orca
 ASP/MPI

Unicast
Multicast

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

0 5000 10000 15000 20000 25000
Packet rate (packets/processor/s)

 SOR/MPI
 Radix/CRL
 QR/MPI
 Puzzle-64/MG
 Puzzle-4/MG
 LEQ/Orca
 FFT/CRL
 Barnes/CRL
 Awari/Orca
 ASP/MPI

Unicast
Multicast
Ack
Sync

Fig. 8.8. Data and packet rates of NrxImc on 64 nodes.

204 Multilevel Performance Evaluation

relative to the performance of the default implementation (NrxImc). None of the
alternative implementations is faster than the default implementation. In several
cases, however, the alternatives are slower. Below, these slowdowns are discussed
in more detail.

8.5.2 All-pairs Shortest Paths (ASP)

ASP solves the All-pairs Shortest Path (ASP) problem using an iterative algorithm
(Floyd-Warshall). ASP finds the shortest path between all nodes in a graph. The
graph is represented as a distance matrix which is row-wise distributed across all
processors. In each iteration, one processor broadcasts one of its 4 Kbyte rows.
The algorithm iterates over all of this processor’s rows before switching to another
processor’s rows. Consequently, the current sender can pipeline the broadcasts of
its rows.

Figure 8.9 shows that both protocols that use interface-level multicast for-
warding perform better than the protocols that use host-level forwarding. This
is surprising, because Figure 8.6 showed that IrxImc achieves the worst multicast
throughput. Indeed, ASP revealed several problems with host-level forwarding
that do not show up in microbenchmarks. First, in ASP, it is essential that the
sender can pipeline its broadcasts. Receivers, however, are often still working on
one iteration when broadcast packets for the next iteration arrive. These pack-
ets are not processed until the receivers invoke a receive primitive. (This is a
property of our MPI implementation, which uses only polling; see Section 7.4.)
Consequently, the sender is stalled, because acknowledgements do not flow back
in time. In the interface-level forwarding protocols, acknowledgements are sent
by the NI, not by the host processor. As long as the host supplies a sufficiently
large number of free host receive buffers, NIs can continue to deliver and forward
broadcast packets.

We augmented the Hmc versions of ASP with application-level polling state-
ments (MPI probe()), which improved the performance of the host-level proto-
cols. Figure 8.9 shows the improved numbers. Nevertheless, the Hmc protocols
do not attain the same performance as the Imc protocols. The remaining difference
is due to the processor overhead caused by failed polls and host-level forwarding.
The effect of forwarding-related processor overhead is visible in the multicast la-
tency benchmark (see Figure 8.5).

8.5.3 Awari

Awari creates an endgame database for Awari, a two-player board game, by means
of parallel retrograde analysis [8]. In contrast with top-down search techniques
like α-β search, retrograde analysis proceeds bottom-up by making unmoves,

8.5 Application Performance 205

1.0 1.1 1.2 1.3 1.4 1.5
Slowdown relative to NrxImc

 SOR/MPI

 Radix/CRL

 QR/MPI

 Puzzle-64/MG

 Puzzle-4/MG

 LEQ/Orca

 FFT/CRL

 Barnes/CRL

 Awari/Orca

 ASP/MPI

NrxHmc
IrxImc
IrxHmc
HrxHmc

Fig. 8.9. Normalized application execution times.

206 Multilevel Performance Evaluation

starting with the end positions of Awari. The Orca program creates an endgame
database DBn, which can be used by a game-playing program. Each entry in
the database represents a board position’s hash and the board’s game-theoretical
value. The game-theoretical value represents the outcome of the game in the case
that both players make best moves only. DBn contains game-theoretical values for
all boards that have at most n stones left on the board. The game-theoretical value
is a number between�n and n that indicates the number of pieces that can be won
(or lost). We ran Awari with n = 13.

Parallel Awari operates as follows. Each processor stores part of the database.
The parents of a board are the boards that can be reached by applying a legal
unmove to the board. When a processor updates a board’s game-theoretical value
it must also update the board’s parents. Since the boards are randomly distributed
across all processors, it is likely that a parent is located on another processor. A
single update may thus result in several remote update operations that are executed
by RPCs.

To avoid excessive communication overhead, remote updates are delayed and
stored in a queue for their destination processor. As soon as a reasonable number
of updates has accumulated, they are transferred to their destination with a single
RPC. The performance of Awari is determined by these RPCs; broadcasts do not
play a major role in this application.

The updates are transferred by a single communication thread, which can run
in parallel with the computation thread. Application-level statistics, however, in-
dicate that most updates are transmitted when there is no work for the computation
thread. As a result, performance is dominated by the speed at which work can be
distributed. Queued updates that must be sent to different destination processors
cannot be sent out at a rate that is higher than the rate at which the communication
thread can perform RPCs.

Although Awari’s data rate appears low (see Figure 8.8), communication takes
place in specific program phases. In these phases, communication is bursty and
most messages are small despite message combining. Performance is therefore
dominated by occupancy rather than roundtrip latency. The LogP parameters in
Table 8.4 show that Irx has the highest gap (g = 9:7 µs), followed by Hrx (g =
8:3 µs) and then Nrx (g = 6:7 µs). This ranking is reflected in the application’s
performance.

8.5.4 Barnes-Hut

Barnes simulates a galaxy using the hierarchical Barnes-Hut N-body algorithm.
The program organizes all simulated bodies in a shared oct-tree. Each node in this
tree and each body (stored in a leaf) is represented as a small CRL region (88–108
bytes). Each processor owns part of the bodies. Most communication takes place

8.5 Application Performance 207

during the phase that computes the gravitational forces that bodies exert on one
another. In this phase, each processor traverses the tree to compute for each of its
bodies the interaction with other bodies or subtrees. Barnes has a relatively high
packet rate, but due to the small regions the data rate is low (see Figure 8.8).

Even though Barnes runs on a different PPS, its performance profile in Fig-
ure 8.9 is similar to that of Awari. Since CRL makes little use of LFC’s multicast,
there is no large difference between interface-level and host-level forwarding. Re-
transmission support, however, leads to decreased performance. This effect is
strongest for Irx, which has the highest interpacket gap (g= 9:7 µs) and is therefore
more likely to suffer from NI occupancy under high loads. These high loads occur
because Barnes has a high packet rate (see Figure 8.8). Due to CRL’s roundtrip
communication style (see Section 7.3), Barnes is sensitive to this increase in oc-
cupancy.

8.5.5 Fast Fourier Transform (FFT)

FFT performs a Fast Fourier transform on an array of complex numbers. These
numbers are stored in a matrix which is partitioned into P2 square blocks (where
P is the number of processors). Each processor owns a vertical stripe of P blocks
and each block is stored in a 2 Kbyte CRL region. The main communication
phases consist of matrix transposes. During a transpose a personalized all-to-all
exchange of all blocks takes place: each processor exchanges each of its blocks
(except the block on the diagonal) with a block owned by another processor. Each
block transfer is the result of a write miss. The node that generates the write miss
sends a small request message to the block’s home node, which replies with a data
message that contains the block.

As explained in Section 8.2.5, this communication pattern puts pressure on
the number of send buffers for the retransmitting implementations. Since we have
configured these implementations with a fairly large number of send buffers (ISB
= 256), however, this poses no problems.

The performance results in Figure 8.9 show no large differences between dif-
ferent LFC implementations. The retransmitting protocols perform slightly worse
than the careful protocols. Occasionally, these protocols send delayed acknowl-
edgements. If we increase the delayed acknowledgement timeout, no delayed
acknowledgements are sent, and the differences become even smaller.

8.5.6 The Linear Equation Solver (LEQ)

LEQ is an iterative solver for linear systems of the form Ax = b. Each iteration
refines a candidate solution vector xi into a better solution xi+1. This is repeated
until the difference between xi+1 and xi becomes smaller than a specified bound.

208 Multilevel Performance Evaluation

In each iteration, each processor produces a part of xi+1, but needs all of xi as its
input. Therefore, all processors exchange their 128-byte partial solution vectors at
the end of each iteration (6906 total). Each processor broadcasts its part of xi+1 to
all other processors. After this exchange, all processors synchronize to determine
whether convergence has occurred.

In LEQ, HrxHmc suffers from its host-level fetch-and-add implementation.
Processing F&A requests on the host rather than on the NI increases the response
time (see Table 8.5) and the occupancy of the processor that stores the F&A vari-
able (processor 0).

Although LEQ is dominated by broadcast traffic, the cost of executing a re-
transmission protocol appears to be the main performance factor: increased host
and NI occupancy lead to decreased performance. This is due to LEQ’s communi-
cation behavior. All processes broadcast at the same time, congesting the network
and the NIs. In ASP and QR, processes broadcast one at a time.

8.5.7 Puzzle

Puzzle performs a parallel IDA* search to solve the 15-puzzle, a well-know single-
player sliding-tile puzzle. We experimented with two versions of Puzzle: in
Puzzle-4, Multigame aggregates at most 4 jobs before pushing these jobs to an-
other processor, while in Puzzle-64 up to 64 jobs are accumulated. Both programs
solve the same problem, but Puzzle-4 sends many more messages than Puzzle-64.

In Puzzle, all communication is one-way and processes do not wait for incom-
ing messages. As a result, send and receive overhead are more important than
NI-level latency and occupancy. HrxHmc has the worst send and receive overheads
of our LFC implementations (see Table 8.4) and therefore performs worse than
the other implementations. In Puzzle-4, the difference between HrxHmc and the
other protocols is larger than in Puzzle-64, because Puzzle-4 needs to send more
messages to transfer the same amount of data. Consequently, the higher send and
receive overheads are incurred more often during the program’s execution.

8.5.8 QR Factorization

QR is a parallel implementation of QR factorization [59] with column distribu-
tion. In each iteration, one column, the Householder vector H, is broadcast to all
processors, which update their columns using H. The current upper row and H are
then deleted from the data set so that the size of H decreases by 1 in each of the
1024 iterations. The vector with maximum norm becomes the Householder vector
for the next iteration. This is decided with a Reduce-To-All collective operation
to which each processor contributes two integers and two doubles.

8.5 Application Performance 209

The performance characteristics of QR are similar to those of ASP (see Fig-
ure 8.9): the implementations based on host-level forwarding perform worse than
those based on interface-level forwarding. The performance of QR is dominated
by the broadcasts of column H. As in ASP, host-level forwarding leads to in-
creased processor overhead. In addition, the implementations based on host-level
forwarding are sensitive to their higher broadcast latency. At the start of each iter-
ation, each receiving processor must wait for an incoming broadcast. In contrast
with ASP, the broadcasting processor cannot get ahead of the receivers by pipelin-
ing multiple broadcasts, because the Reduce-to-All synchronizes all processors in
each iteration. (Also, due to pivoting, the identity of the broadcasting processor
changes in almost every iteration.)

8.5.9 Radix Sort

Radix sorts a large array of (random) integers using a parallel version of the radix
sort algorithm. Each processor owns a contiguous part of the array and each part
is further subdivided into CRL regions, which act as software cache lines. Com-
munication is dominated by the algorithm’s permutation phase, in which each
processor moves integers in its partition to some other partition of the array. If
the keys are distributed uniformly, each processor accesses all other processors’
partitions. We chose a region size (1 Kbyte) that minimizes write sharing in this
phase. After the permutation phase each processor reads the new values in its par-
tition and starts the next sorting iteration. Radix has the highest unicast data rate
of all our applications (see Figure 8.8). In each of the three permutation phases,
most of the array to be sorted is transferred across the network.

Although Radix sends larger messages than Awari, Barnes, and LEQ, it has
a similar performance profile as these applications. Radix’s messages are still
relatively small (at most 1 Kbyte of region data) and each message requires at
most two LFC packets, a full packet and a nearly empty packet. Consequently,
Radix remains sensitive to the small-message bottleneck, so that NI-level retrans-
mission (IrxImc and IrxHmc) performs worst, followed by host-level retransmission
(HrxHmc).

8.5.10 Successive Overrelaxation (SOR)

SOR is used to solve discretized Laplace equations. The SOR program uses red-
black iteration to update a 1536� 1536 matrix. Each processor owns an equal
number of contiguous rows of the matrix. In each of the 42 iterations, processors
exchange neighboring border rows (12 Kbyte) and perform a single-element (one
double) reduction to determine whether convergence has occurred.

210 Multilevel Performance Evaluation

Class Applications NrxImc NrxHmc IrxImc IrxHmc HrxHmc

Roundtrip Barnes, Radix, Awari + + �� �� �
Multicast ASP, QR + � + � ��
One-way Puzzle-4, Puzzle-64 + + + + �

Table 8.7. Classification of applications.

For SOR, HrxHmc performs worse than the other implementations. With the
HrxHmc implementation, the host processor suffers from sliding-window stalls.
Each 12 Kbyte message that is sent to a neighbor requires 13 LFC packets, while
the window size is only 8 packets. If the destination process is actively polling
when the sender’s packets arrive, it will send a half-window acknowledgement
before the sender is stalled. In SOR, however, all processes send out their mes-
sages at approximately the same time, first to their higher-numbered neighbor,
then to their lower-numbered neighbor. The destination process will therefore not
poll until one of its own sends blocks (due to a closed send window). At that point,
the sender has already been stalled.

The implementations that implement NI-level reliability do not suffer from
this problem, because they implement the sliding window on the NI. Even if the
NI’s send window to another NI closes, the host processor can continue to post
packets until the supply of free send descriptors is exhausted. Also, if the NI’s
send window to one NI fills up, it can still send packets to other NIs if the host
supplies packets for other destinations.

The performance of HrxHmc improves significantly if the boundary row ex-
change code is modified so that not all processes send in the same direction at the
same time. In practice, this improves the probability that acknowledgements can
be piggybacked and reduces the number of window stalls.

8.6 Classification

Based on the performance analysis of the individual applications, we have identi-
fied three classes of applications with distinct behavior. These classes and an indi-
cation of the relative performance of each LFC implementation for each class are
shown in Table 8.7. In this table, a ’+’ indicates that an implementation performs
well for a class of applications; a ’�’ indicates a modest decrease in performance;
and ’��’ indicates a significant decrease in performance.

The performance of roundtrip applications is dominated by roundtrip latency.
Since multicast plays no important role in these applications, performance dif-
ferences between the LFC implementations are determined by differences in the
reliability schemes. This class of applications shows that the robustness of re-

8.7 Related Work 211

transmission has a price. Both the host-level retransmission schemes and the
interface-level retransmission schemes perform worse than the no-retransmission
scheme, but for different reasons. Host-level retransmission (HrxHmc) suffers from
its higher send and receive overhead and is up to 11% slower than the default im-
plementation (NrxImc). NI-level retransmission (IrxImc and IrxHmc) suffers from
increased (NI) occupancy and latency. These implementations are up to 16%
slower than the default implementation. For this class of applications, the LogP
measurements presented earlier in this chapter give a good indication of the causes
of differences in application-level performance.

The performance of the multicast applications is determined by the efficiency
of the multicast implementation. The performance results show the advantages
of NI-level multicast forwarding. HrxHmc, IrxHmc, and NrxHmc all suffer from
host-level forwarding overhead which takes away time from the application. Host-
level forwarding is up to 38% slower than interface-level forwarding in the default
implementation.

The ’class’ of one-way applications contains both variants of the Puzzle appli-
cation. In contrast with roundtrip applications, one-way applications do not wait
for reply messages, so latency and NI occupancy can be tolerated fairly well. Send
and receive overhead, on the other hand, cannot be hidden. As a result, HrxHmc

suffers from its increased send and receive overhead; this leads to a performance
loss of up to 16% relative to the default implementation.

The remaining applications (FFT, LEQ, and SOR) do not fit into any of these
categories.

8.7 Related Work

This chapter has concentrated on NI protocol issues and their relationship with
properties of PPSs and applications. Figure 8.10 classifies several existing Myri-
net communication systems along two protocol design axes: reliability and multi-
cast. Most systems do not implement retransmission. We assume that this is partly
due to the prototype nature of research systems. The figure also shows that few
systems provide multicast or broadcast support. Below, we first discuss related
work in these two areas. Next, we discuss other NI-related application studies.

8.7.1 Reliability

Only a few studies have compared careful and retransmitting protocols. The ear-
liest study that we are aware of is by Mosberger and Peterson [106], which com-
pares a careful and a retransmitting protocol implementation for FiberChannel.
They note the scalability problems of static buffer reservation (as in Nrx). This

212 Multilevel Performance Evaluation

FM/MC

Hamlyn
FM
BIP (large)

VMMC
Trapeze VMMC-2 AM-II

U-Net
BIP (small)

Host retransmitsNo retransmission NI retransmits

Host forwards

NI forwards

PM

Fig. 8.10. Classification of communication systems for Myrinet based on the
multicast and reliability design issues.

problem exists, but the low bandwidth-delay product of modern networks (and
protocols) allows the use of static reservation in medium-size clusters. (Another,
dynamic solution, used in PM’s NI protocol, is described below.) Mosberger and
Peterson used only one application, Jacobi. That application shows much larger
benefits for careful protocols than we find with our application suite. This may
be due to extra copying in their retransmitting protocol. As explained in Sec-
tion 8.2.2, our retransmitting protocols do not make more copies than our careful
protocols.

Some of the protocols in Figure 8.10 combine the strategies used by Nrx, Hrx,
and Irx. Like Nrx, for example, PM assumes that the hardware never drops or
corrupts packets. Like Irx, though, PM lets senders share NI receive buffers and
drops incoming data packets when all buffers are full. When a data packet is
dropped, a negative acknowledgement is sent to its sender. PM never drops ac-
knowledgements (negative or positive). Since it is assumed that the hardware
delivers all packets correctly, senders always know when one of their packets has
been dropped and can retransmit that packet without having to set a retransmission
timer.

Active Messages II combines an NI-level (alternating-bit) reliability protocol
with a host-level sliding window protocol which is used both for reliability and
flow control [37].

Our NI-supported fine-grain timer implementation is similar to the soft timer
scheme described by Aron and Druschel [6] —developed independently— who
also use polling to implement a fine-grain timer. They optimize kernel-level timers
and poll the host’s timestamp counter on system calls, exceptions, and interrupts
to amortize the state-saving overhead of these events over multiple actions (e.g.,
network interrupt processing and timer processing). Soft timers use the kernel’s
clock interrupt as a backup mechanism. This interrupt often has a granularity of
at least several milliseconds. Hrx uses the NI’s timer as a backup. This timer has a
0:5 µs granularity and is polled in each iteration of the NI’s main loop. Our backup

8.7 Related Work 213

mechanism is therefore more precise and can generate an interrupt at a time close
to the desired timer expiration time in case the host’s timestamp counter is not
polled frequently enough. This is only a modest advantage, because it does not
address the interrupt overhead problem that can result from infrequent polling of
the timestamp counter.

8.7.2 Multicast

To the best of our knowledge, this is the first study that compares a high-perfor-
mance NI-level and high-performance host-level multicast and their respective
impact on application performance. Several papers describe multicast protocols
that use NI-level multicast forwarding [16, 56, 68, 80, 146]. This work was de-
scribed in Section 4.5.3. Some of these papers (e.g., [146]) compare host-level
forwarding and NI-level forwarding, but most of these comparisons use a host-
level forwarding scheme that copies data to the NI multiple times. We are not
aware of any previous study that studies the application-level impact of both for-
warding strategies.

8.7.3 NI Protocol Studies

Araki et al. used microbenchmarks and the LogP performance model to com-
pare the performance of Generic Active Messages, Illinois Fast Messages (version
2), BIP, PM, and VMMC-2 [5]. Their study compares communication systems
with programming interfaces that are sometimes fundamentally different (e.g.,
memory-mapped communication in VMMC-2 versus message-based communi-
cation in PM and rendezvous-style communication in BIP versus asynchronous
message passing in Fast Messages). In our study, we compare five different
implementations of the same interface. The most important difference with the
work described in this chapter, however, is that Araki et al. do not consider the
application-level impact of their results.

In another study [102], Martin et al. do focus on applications, but evaluate
only a single communication architecture (Active Messages) and a single pro-
gramming system (Split-C). Where Martin et al. vary the performance charac-
teristics (the LogGP parameters) of a single communication system, we use five
different systems which have different performance characteristics due to the way
they divide protocol work between the host processor and the NI. An important
contribution of our work is the evaluation of different network interface protocols
using a wide variety of parallel applications (fine-grain to medium-grain, uni-
cast and multicast) and PPSs (distributed search, message passing, update-based
DSM, and invalidation-based DSM). Each system has its own, fairly large and
complex runtime system, which imposes significant communication overheads

214 Multilevel Performance Evaluation

(see Table 7.2). In addition, three out of four systems do not run immediately on
top of one NI protocol layer (LFC), but on an intermediate message-passing layer
(Panda).

Bilas et al. discuss NI support for shared virtual memory systems (SVMs) [21].
They study NI support for fetching data from remote memories, for depositing
data into remote memories, and for distributed locks. They find that these mecha-
nisms significantly improve the performance of SVM implementations and claim
that they are more widely applicable. Using these mechanisms, and by restruc-
turing their SVM, they eliminated all asynchronous host-level protocol process-
ing in their SVM. As a result, interrupts are not needed and polling is used only
when a message is expected. This result, however, depends on the ability to push
asynchronous protocol processing to the NI. Bilas et al. use a PPS in which asyn-
chronous processing consists of accessing data at a known address or accessing a
lock. These actions are relatively simple and can be performed by the NI. PPSs
such as Orca and Manta, however, must execute incoming user-defined operations,
which cannot easily be handled by the NI.

In a simulation study, Bilas et al. identify bottlenecks in software shared-
memory systems [20]. This study is structured around the same three layers as
we used in this chapter: low-level communication software and hardware, PPS,
and application. Both the communication layer and the PPSs are different from
the ones studied in this thesis. Bilas et al. assume a communication layer based
on virtual memory-mapped communication (see Chapter 2) and analyze the per-
formance of page-based and fine-grained DSMs. Our work uses a communication
layer based on low-level message passing and PPSs that implement message pass-
ing or object-based sharing. (CRL uses a similar cache coherence protocol as fine-
grained DSMs, but relies on the programmer to define ’cache lines’ and to trigger
coherence actions. Fine-grained DSMs such as Tempest [119] and Shasta [125]
require little or no programmer intervention.)

8.8 Summary

In this chapter, we have studied the performance of five implementations of LFC’s
communication interface. Each implementation is a combination of one reliability
scheme (no retransmission, host-level retransmission, or NI-level retransmission)
and one multicast forwarding scheme (host-level forwarding or NI-level forward-
ing). These five implementations represent different assumptions about the capa-
bilities of network interfaces (availability of a programmable NI processor and its
speed) and the operating environment (reliability of the network hardware). We
compared the performance of all five implementations at multiple levels. We used
microbenchmarks for direct comparisons between the different implementations

8.8 Summary 215

and for comparisons at the PPS level. We used four different PPSs, which repre-
sent different programming paradigms and which exhibit different communication
patterns. Most importantly, we also performed an application-level comparison.

These performance comparisons reveal several interesting facts. First, al-
though performance differences are visible, all five LFC implementations can be
made to perform well on most LFC-level microbenchmarks. Multicast latency
forms an exception: NI-level multicast forwarding yields better multicast latency
than host-level forwarding.

Second, all PPSs add large overheads to LFC implementations. Measuring es-
sentially the same communication pattern at multiple levels shows large increases
in latency and large reductions in throughput. While this is a logical consequence
of the layered structure of the PPSs, it is important to make this observation,
because one would expect that these overheads, and not the relative small per-
formance differences between LFC implementations, will dominate application
performance.

Third, in spite of the previous observation, running applications on the differ-
ent LFC implementations yields significant differences in application execution
time. Most of our applications exhibited one of three communication patterns:
roundtrip, one-way, or multicast. For each of these patterns, the relative perfor-
mance of the LFC implementations is similar:

� The roundtrip applications perform best on the nonretransmitting LFC im-
plementations. Retransmission support adds sufficient overhead that it can-
not be hidden by applications in this class. The overheads have a larger
impact when retransmission is implemented on the NI.

� The multicast applications perform best on the implementations that per-
form NI-level forwarding. NI-level forwarding yields lower multicast la-
tency and does not waste host-processor cycles on packet forwarding.

� The one-way applications —really two variants of the same applications—
perform well on all implementations, except on the implementations that
implement host-level retransmission. This implementation suffers from its
larger send and receive overheads.

Our original implementation of LFC, NrxImc, performs best for all patterns.
This implementation, however, optimistically assumes the presence of reliable
network hardware and an intelligent NI.

Chapter 9

Summary and Conclusions

The implementation of a high-level programming model consists of multiple lay-
ers: a runtime system or parallel-programming system that implements the pro-
gramming model and one or more communication layers that have no know-
ledge of the parallel-programming model, but that provide efficient communica-
tion mechanisms. This thesis has concentrated on the lower communication lay-
ers, in particular on the network interface (NI) protocol layer. A key contribution
of this thesis, however, is that it also addresses the interactions of the NI proto-
col layer with higher-level communication layers and applications. The following
sections summarize our work as it relates to each layer and draw conclusions.

9.1 LFC and NI Protocols

We have implemented our ideas in and on top of LFC, a new user-level commu-
nication system. In several ways, LFC resembles a hardware device: communi-
cation is packet-based and all packets are delivered to a single upcall. However,
LFC adds two services that are usually not provided by network hardware: reli-
able point-to-point and multicast communication. The efficient implementation
of both services has been the key to LFC’s success.

Efficient communication is of obvious importance to parallel-programming
systems (PPSs). While many communication systems provide low-latency, high-
throughput point-to-point primitives, very few systems provide efficient multicast
implementations. In fact, many do not provide multicast at all. This is unfortunate,
because PPSs such as Orca and MPI rely on multicasting to update replicated ob-
jects and to implement collective-communication operations, respectively. More-
over, multicast is not an add-on feature: multicasts layered on top of point-to-point
primitives perform considerably worse than multicasts that are supported by the
bottom-most communication layer (see Chapters 7 and 8).

217

218 Summary and Conclusions

The presence of reliable communication greatly reduces the effort needed to
implement a PPS. Compared to fragmentation and demultiplexing —services not
provided by LFC— reliability protocols are difficult to implement correctly and
efficiently. Nevertheless, all PPSs must deliver data reliably.

For efficiency, the default implementation of LFC uses NI support. The NI
performs four tasks: flow control for reliability, multicast forwarding, interrupt
management, and fetch-and-add processing. The following paragraphs discuss
these tasks in more detail.

The default implementation assumes reliable network hardware and imple-
ments reliable communication channels by means of a simple, NI-level flow con-
trol protocol. This protocol, UCAST, is also the basis of MCAST and RECOV,
LFC’s NI-supported multicast protocols. Since these protocols assume reliable
hardware, however, they can operate only in a controlled environment such as a
cluster of computers dedicated to running high-performance parallel jobs.

MCAST is simple and efficient, but does not work for all multicast tree topolo-
gies. RECOV works for all topologies, but is more complex and requires addi-
tional NI buffer space. Both MCAST and RECOV perform fewer data transfers
than host-level store-and-forward multicast protocols, which reduces the number
of host cycles spent on multicast processing. The performance measurements in
Chapter 8 show that host-level multicasting reduces application performance by
up to 38%. These measurements compared the performance of an NI-supported
multicast to an agressive host-level multicast. In practice, host-level multicast
implementations are frequently implemented on top of unicast primitives, which
further increases the number of redundant data transfers.

Network interrupts form an important source of overheads in communication
systems. To reduce the number of unnecessary interrupts, LFC implements a
software polling watchdog on the NI. This mechanism delays network interrupts
for incoming packets for a certain amount of time. In addition, LFC’s polling
watchdog monitors host-level packet processing progress to determine whether a
network interrupt should be generated.

We have implemented an NI-supported fetch-and-add operation. Panda com-
bines LFC’s fetch-and-add with LFC’s broadcast to implement a totally-ordered
broadcast, which, in turn, is used by Orca. Fetch-and-add also has other applica-
tions. Karamcheti and Chien, for example, have used fetch-and-add to implement
pull-based messaging [76].

Other types of synchronization primitives can als benefit from NI support. Bi-
las et al. use the NI to implement distributed locking in a shared virtual memory
system [21]. These examples indicate that NI support for synchronization prim-
itives is a good idea. Without such support, synchronization requests generate
expensive interrupts. It is not clear yet, however, which primitives exactly must
be supported. Different systems require different primitives and, in spite of the

9.2 Panda 219

generality claimed by the implementors of some mechanisms [21], it is unlikely
that one primitive will satisfy every system. Another problem is the virtualization
of NI-supported primitives. LFC, for example, supports only one fetch-and-add
variable per NI. This constraint was introduced to bound the space occupied by
NI variables and to avoid introducing an extra demultiplexing step. Ideally, this
type of constraint would be hidden from users. Active Messages II virtualizes NI-
level communication endpoints by using host memory as backing storage for NI
memory [37]. This strategy is general, but increases the complexity and decreases
the efficiency of the implementation.

It is frequently claimed that programmable NIs are ’too slow’; such claims are
often accompanied with references to the failure of I/O channels. LFC performs
four different tasks on the NI: flow control for reliability, multicast forwarding,
interrupt management, and fetch-and-add processing. Nevertheless, LFC is an
efficient communication system. The main issue is not whether NIs should be
programmable, but which mechanisms the lowest communication layer should
supply and where they should be implemented. Programmable NIs can be consid-
ered one tool in a spectrum of tools that help answer this type of questions; others
include formal analysis and simulation. In this thesis, we studied reliability, mul-
ticast, synchronization and interrupt management. Others have investigated NI
support for address translation in zero-copy protocols [13, 49, 142], distributed
locking [21], and remote memory access [51, 83]). Some of these mechanisms
(e.g., remote memory access) have recently found their way into industry stan-
dards (the Virtual Interface Architecture) and commercial products.

9.2 Panda

Many parallel-programming systems are sufficiently complex that they can benefit
from an intermediate communication layer that provides higher-level communica-
tion services than a system like LFC. Panda provides threads, messages, message
passing, RPC, and group communication. These services are used in the imple-
mentation of three of the four PPSs described in Chapter 7.

Panda’s thread package, OpenThreads, dynamically switches between polling
and interrupts. By default, interrupts are enabled, but when all threads are idle,
OpenThreads disables interrupts and polls the network. This strategy is simple but
effective. When a message is expected, it will often be received through polling,
which is more efficient than receiving it by means of an interrupt. Unexpected
messages generate an interrupt, unless the receiving process polls before LFC’s
polling watchdog generates the interrupt.

Panda’s stream messages allow Panda clients to transmit and receive a mes-
sage in a pipelined manner: the receiver can start processing an incoming mes-

220 Summary and Conclusions

sage before it has been fully received. Stream messages are implemented on top
of LFC’s packet-based interface without introducing extra data copies.

Blocking in message handlers is a difficult problem. Creating a (popup) thread
per message allows message handlers to block whenever convenient, but it also
removes the ordering between messages, introduces scheduling anomalies, and
wastes (stack) space. Disallowing all handlers to block (as in active messages)
forces programmers to use asynchronous primitives and continuations whenever
any form of blocking (e.g., acquiring a lock) is required. Panda uses single-
threaded upcalls to process incoming messages. Message handlers are allowed
to block on locks, but cannot wait for the arrival of other messages. If the re-
ceiver of a message can decide early that waiting for another message will not be
necessary, then the message can be processed without creating a new thread. In
other cases, blocking can be avoided by using nonblocking primitives instead of
blocking primitives or by using continuations.

Panda and LFC work well together. Panda’s thread scheduler uses LFC’s in-
terrupt support to switch dynamically between polling and interrupts. Stream
messages pipeline the transmission and consumption of LFC packets. Finally,
Panda’s totally-ordered broadcast combines LFC’s fetch-and-add and broadcast
primitives.

9.3 Parallel-Programming Systems

Different PPSs have different communication styles and are therefore sensitive to
different aspects of the underlying communication system. This is illustrated by
the four PPSs studied in Chapter 7.

Orca uses two communication primitives to implement operations on shared
objects: remote procedure call and asynchronous, totally-ordered broadcast. The
performance of the Orca applications that we studied in Chapter 8 depends on one
of the two. Orca operations may block on guards. Since guards occur only at the
beginning of an operation, it is easy to suspend the operation without blocking.
Without blocking and thread switching, the Orca runtime system creates a small
continuation that represents the blocked operation.

Like Orca, the Java-based Manta system provides multithreading and shared
objects. Since Manta does not replicate objects, it requires only RPC to implement
operations on shared objects. In contrast with Orca, Manta operations can block
halfway through. This makes it difficult for the RTS to use small continuations
to represent the blocked operation. The RTS therefore creates a popup thread
for each operation, unless the compiler can prove that the operation will never
block. Another complication in Manta is the presence of a garbage collector.
The space occupied by unmarshaled parameters usually cannot be reused until

9.4 Performance Impact of Design Decisions 221

the parameters have been garbage collected. Consequently, unmarshaling leaves
a large memory footprint and pollutes large parts of the data cache.

In CRL, most communication patterns are roundtrips. When invalidations are
needed, nested RPCs occur. On average, CRL’s RPCs are smaller than those of
Manta and Orca, because CRL frequently sends small control messages (region
requests, invalidations, and acknowledgements). Manta and Orca generate some
control traffic, but far less than CRL.

MPI has the simplest programming model of the four PPSs studied in this the-
sis. In most cases, communication at the MPI level corresponds in a straightfor-
ward way with communication at lower levels. MPI’s collective-communication
operations form an important exception. These high-level primitives are usually
implemented by a combination of point-to-point and multicast messages.

While these PPSs generate different communication patterns, they often rely
on the same communication mechanisms. All PPSs require reliable communi-
cation. Several low-level communication systems (e.g., U-Net and BIP) do not
provide reliable communication primitives.

Orca, Manta, and CRL all benefit from LFC’s and Panda’s mechanisms to re-
duce the number of network interrupts. Orca and Manta rely on Panda’s thread
package, OpenThreads, to poll when all threads are idle. In, CRL the same opti-
mization has been hardcoded.

Orca and MPI benefit from an efficient multicast implementation. Orca’s
totally-ordered broadcast is layered (in Panda) on top of LFC’s broadcast and
fetch-and-add. MPI’s collective-communication operations use (through Panda)
LFC’s broadcast.

Orca, Manta, and MPI all use Panda’s stream messages. Stream messages
provide a convenient and efficient message interface without introducing interme-
diate data copies. The Orca and Manta compilers generate operation-specific code
to marshal to and from stream messages.

9.4 Performance Impact of Design Decisions

Chapter 8 studied the impact of different reliability and multicast protocols on
application performance and showed that the LFC implementation described in
Chapters 3 and 4 (NrxImc) performs better than alternative implementations. This
implementation, however, is agressive in two ways. First, it assumes reliable hard-
ware, which means it can be used only in dedicated environments. Second, it del-
egates some tasks (flow control, multicast, fetch-and-add, and interrupt manage-
ment) to the NI. These tasks are performed by the NI-level protocols described in
Chapter 4. Additional robustness can be obtained by means of retransmission. We
investigated both host-level and NI-level retransmission. The unicast-dominated

222 Summary and Conclusions

applications of Chapter 8 show that both types of retransmission have a modest
application-level cost. The largest overhead (up to 16%) is incurred by applica-
tions in the ’roundtrip’ class. The performance cost of moving NI-level compo-
nents to the host can be large. Performing multicast forwarding on the host rather
than on the NI slows down applications by up to 38%.

Chapter 8 also revealed interesting interactions between the structure of appli-
cations and the implementation of the underlying communication system(s). In
SOR, the exact location (host or NI) of the sliding window protocol had a notice-
able impact on performance. In ASP, we added polling statements to reduce the
delays that resulted from synchronous host-level multicast forwarding. In some
cases, applications can be restructured to work around the weaknesses of a partic-
ular communication system. The Puzzle application, for example, can be config-
ured to use a larger aggregation buffer on top of a host-level reliability protocol
to reduce the impact of increased send and receive overhead. The performance of
SOR was improved by changing the boundary exchange phase.

9.5 Conclusions

Based on our experiences with LFC and the systems layered on top of LFC, we
draw the following conclusions:

1. Low-level communication systems should support both polling and interrupt-
driven message delivery. We studied four PPSs. All of them use polling and
three of them use interrupts (Orca, Manta, and CRL). Transparent emula-
tion of interrupt-driven message delivery is nontrivial —several systems use
binary rewriting— or relies on interrupts as a backup mechanism.

2. Low-level communication systems should support multicast. Multicast plays
an important role in two of the four PPSs studied (Orca and MPI). Multi-
cast implementations are often layered on top of point-to-point primitives.
This always introduces unnecessary data transfers that consume cycles that
could have been used by the application. Moreover, if multicast forwarding
is implemented at the message rather than the packet level, then this strategy
also reduces throughput by removing intramessage pipelining.

3. A variety of PPSs can be implemented efficiently on a simple communi-
cation system if all layers cooperate to avoid unnecessary interrupts, thread
switches, and data copies. LFC provides a simple interface: reliable, packet-
based point-to-point and multicast communication and interrupt manage-
ment. These mechanisms are used to implement abstractions that preserve
efficiency. In Panda, they are used to implement OpenThreads’s automatic

9.6 Limitations and Open Issues 223

switching between polling and interrupts, message streams, and totally-
ordered multicast. Orca, Manta, and MPI are all built on top of Panda. In
addition, Orca and Manta use operation-specific marshaling in combination
with stream messages to avoid making extra data copies.

4. An aggressive, NI-supported communication system can yield better per-
formance than a traditional communication system without NI support. We
have experimented with a reliability protocol (UCAST), two multicast pro-
tocols (MCAST and RECOV), a polling watchdog (INTR), and a fetch-and-
add primitive. Additional robustness and simplicity can be obtained by sys-
tems that implement all functionality on the host, but these systems perform
worse, both at the level of microbenchmarks and at the level of applications.

9.6 Limitations and Open Issues

Although this thesis has a broad scope, several important issues have not been
addressed and some issues that have been addressed require further research.

First, LFC lacks zero-copy support. Zero-copy mechanisms are based on
DMA rather than PIO and, for sufficiently large transfers, give better through-
put than PIO (see Chapter 2). Sender-side zero-copy support is relatively easy
to implement and use. For optimal performance, however, data should also be
moved directly to its final destination at the receiver side. Some systems (e.g.,
Hamlyn [32]) achieve this by having the sender specify a destination address in
the receiver’s address space. PPSs need to be restructured in nontrivial ways to
determine this address without introducing extra messages [21, 35]. While zero-
copy communication support for PPSs warrants further investigation, we are not
aware of any study that shows significant application-level performance advan-
tages of zero-copy communication mechanisms over message-based mechanisms.
There are studies that show that parallel applications are relatively insensitive to
throughput [102].

Second, more consideration needs to be given to different buffer and timer
configurations for the various LFC implementations studied in Chapter 8. We
selected buffer and timer settings that yield good performance for each imple-
mentation. It is not completely clear how sensitive the different implementations
are to different settings.

Finally, the evaluation in Chapter 8 focused on the impact of alternative relia-
bility and multicast schemes. Additional work is needed to determine the impact
of NI-supported synchronization and interrupt delivery (i.e., the polling watch-
dog). Some of our results (not presented in this thesis), however, show a good
qualitative match with those presented by Maquelin et al. [101].

Bibliography

[1] A. Agarwal, R. Bianchini, D. Chaiken, K.L. Johnson, D. Kranz, J. Kubi-
atowicz, B.H. Lim, K. MacKenzie, and D. Yeung. The MIT Alewife Ma-
chine: Architecture and Performance. In Proc. of the 22nd Int. Symp. on
Computer Architecture, pages 2–13, Santa Margherita Ligure, Italy, June
1995.

[2] A. Agarwal, J. Kubiatowicz, D. Kranz, B.H. Lim, D. Yeung, G. D’Souza,
and M. Parkin. Sparcle: An Evolutionary Processor Design for Large-Scale
Multiprocessors. IEEE Micro, 13(3):48–61, June 1993.

[3] A. Alexandrov, M.F. Ionescu, K.E. Schauser, and C. Scheiman. LogGP:
Incorporating Long Messages into the LogP Model – One Step Closer To-
wards a Realistic Model for Parallel Computation. In Proc. of the 1995
Symp. on Parallel Algorithms and Architectures, pages 95–105, Santa Bar-
bara, CA, July 1995.

[4] K.V. Anjan and T.M. Pinkston. An Efficient, Fully Adaptive Deadlock
Recovery Scheme: DISHA. In Proc. of the 22nd Int. Symp. on Computer
Architecture, pages 201–210, Santa Margherita Ligure, Italy, June 1995.

[5] S. Araki, A. Bilas, C. Dubnicki, J. Edler, K. Konishi, and J. Philbin. User-
Space Communication: A Quantitative Study. In Supercomputing’98, Or-
lando, FL, November 1998.

[6] M. Aron and P. Druschel. Soft Timers: Efficient Microsecond Software
Timer Support for Network Processing. In Proc. of the 17th Symp. on Op-
erating Systems Principles, pages 232–246, Kiawah Island Resort, SC, De-
cember 1999.

[7] H.E. Bal. Programming Distributed Systems. Prentice Hall International
Ltd., Hemel Hempstead, UK, 1991.

[8] H.E. Bal and L.V. Allis. Parallel Retrograde Analysis on a Distributed
System. In Supercomputing ’95, San Diego, CA, December 1995.

225

226 Bibliography

[9] H.E. Bal, R.A.F. Bhoedjang, R.F.H. Hofman, C. Jacobs, K.G. Langendoen,
T. Rühl, and M.F. Kaashoek. Performance Evaluation of the Orca Shared
Object System. ACM Trans. on Computer Systems, 16(1):1–40, February
1998.

[10] H.E. Bal, R.A.F. Bhoedjang, R.F.H. Hofman, C. Jacobs, K.G. Langen-
doen, and K. Verstoep. Performance of a High-Level Parallel Language
on a High-Speed Network. Journal of Parallel and Distributed Computing,
40(1):49–64, February 1997.

[11] H.E. Bal and M.F. Kaashoek. Object Distribution in Orca using Compile-
time and Run-Time Techniques. In Conf. on Object-Oriented Programming
Systems, Languages and Applications, pages 162–177, Washington, DC,
September 1993.

[12] H.E. Bal, M.F. Kaashoek, and A.S. Tanenbaum. Orca: A Language for
Parallel Programming of Distributed Systems. IEEE Trans. on Software
Engineering, 18(3):190–205, March 1992.

[13] A. Basu, M. Welsh, and T. von Eicken. Incorporating Memory Manage-
ment into User-Level Network Interfaces. In Hot Interconnects’97, Stan-
ford, CA, April 1997.

[14] R.A.F. Bhoedjang and K.G. Langendoen. Friendly and Efficient Message
Handling. In Proc. of the 29th Annual Hawaii Int. Conf. on System Sci-
ences, pages 121–130, Maui, HI, January 1996.

[15] R.A.F. Bhoedjang, J.W. Romein, and H.E. Bal. Optimizing Distributed
Data Structures Using Application-Specific Network Interface Software. In
Proc. of the 1998 Int. Conf. on Parallel Processing, pages 485–492, Min-
neapolis, MN, August 1998.

[16] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. Efficient Multicast on Myrinet
Using Link-Level Flow Control. In Proc. of the 1998 Int. Conf. on Parallel
Processing, pages 381–390, Minneapolis, MN, August 1998.

[17] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. LFC: A Communication Sub-
strate for Myrinet. In 4th Annual Conf. of the Advanced School for Com-
puting and Imaging, pages 31–37, Lommel, Belgium, June 1998.

[18] R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. User-Level Network Interface
Protocols. IEEE Computer, 31(11):53–60, November 1998.

Bibliography 227

[19] R.A.F. Bhoedjang, T. Rühl, R.F.H. Hofman, K.G. Langendoen, H.E. Bal,
and M.F. Kaashoek. Panda: A Portable Platform to Support Parallel Pro-
gramming Languages. In Proc. of the USENIX Symp. on Experiences with
Distributed and Multiprocessor Systems (SEDMS IV), pages 213–226, San
Diego, CA, September 1993.

[20] A. Bilas, D. Jiang, Y. Zhou, and J.P. Singh. Limits to the Performance
of Software Shared Memory: A Layered Approach. In Proc. of the 5th
Int. Symp. on High-Performance Computer Architecture, pages 193–202,
Orlando, FL, January 1999.

[21] A. Bilas, C. Liao, and J.P. Singh. Using Network Interface Support to Avoid
Asynchronous Protocol Processing in Shared Virtual Memory Systems. In
Proc. of the 26th Int. Symp. on Computer Architecture, pages 282–293,
Atlanta, GA, May 1999.

[22] K.P. Birman. The Process Group Approach to Reliable Distributed Com-
puting. Communications of the ACM, 36(12):37–53, December 1993.

[23] A.D. Birrell and B.J. Nelson. Implementing Remote Procedure Calls. ACM
Trans. on Computer Systems, 2(1):39–59, February 1984.

[24] M.A. Blumrich, R.D. Alpert, Y. Chen, D.W. Clark, S.N. Damianakis, E.W.
Felten, L. Iftode, K. Li, M. Martonosi, and R.A. Shillner. Design Choices
in the SHRIMP System: An Empirical Study. In Proc. of the 25th Int.
Symp. on Computer Architecture, pages 330–341, Barcelona, Spain, June
1998.

[25] M.A. Blumrich, C. Dubnicki, E.W. Felten, and K. Li. Protected, User-level
DMA for the SHRIMP Network Interface. In Proc. of the 2nd Int. Symp. on
High-Performance Computer Architecture, pages 154–165, San Jose, CA,
February 1996.

[26] M.A. Blumrich, K. Li, R. Alpert, C. Dubnicki, E.W. Felten, and J. Sand-
berg. Virtual Memory Mapped Network Interface for the SHRIMP multi-
computer. In Proc. of the 21st Int. Symp. on Computer Architecture, pages
142–153, Chicago, IL, April 1994.

[27] N.J. Boden, D. Cohen, R.E. Felderman, A.E. Kulawik, C.L. Seitz, J.N.
Seizovic, and W. Su. Myrinet: A Gigabit-per-second Local Area Network.
IEEE Micro, 15(1):29–36, February 1995.

228 Bibliography

[28] E.A. Brewer, F.T. Chong, L.T. Liu, S.D. Sharma, and J.D. Kubiatowicz.
Remote Queues: Exposing Message Queues for Optimization and Atomic-
ity. In Proc. of the 1995 Symp. on Parallel Algorithms and Architectures,
pages 42–53, Santa Barbara, CA, July 1995.

[29] A. Brown and M. Seltzer. Operating System Benchmarking in the Wake of
Lmbench: A Case Study of the Performance of NetBSD on the Intel x86
Architecture. In Proc. of the 1997 Conf. on Measurement and Modeling
of Computer Systems (SIGMETRICS), pages 214–224, Seattle, WA, June
1997.

[30] J. Bruck, L. De Coster, N. Dewulf, C.-T. Ho, and R. Lauwereins. On the
Design and Implementation of Broadcast and Global Combine Operations
Using the Postal Model. IEEE Trans. on Parallel and Distributed Systems,
7(3):256–265, March 1996.

[31] M. Buchanan. Private communication, 1997.

[32] G. Buzzard, D. Jacobson, M. MacKey, S. Marovich, and J. Wilkes. An Im-
plementation of the Hamlyn Sender-managed Interface Architecture. In
2nd USENIX Symp. on Operating Systems Design and Implementation,
pages 245–259, Seattle, WA, October 1996.

[33] J. Carreira, J. Gabriel Silva, K.G. Langendoen, and H.E. Bal. Implementing
Tuple Space with Threads. In 1st Int. Conf. on Parallel and Distributed
Systems, pages 259–264, Barcelona, Spain, June 1997.

[34] C.-C. Chang, G. Czajkowski, C. Hawblitzel, and T. von Eicken. Low La-
tency Communication on the IBM RS/6000 SP. In Supercomputing ’96,
Pitssburgh, PA, November 1996.

[35] C.-C. Chang and T. von Eicken. A Software Architecture for Zero-Copy
RPC in Java. Technical Report 98-1708, Dept. of Computer Science, Cor-
nell University, Ithaca, NY, September 1998.

[36] J.-D. Choi, M. Gupta, M. Serrano, V.C. Sreedhar, and S. Midkiff. Escape
Analysis for Java. In Conf. on Object-Oriented Programming Systems, Lan-
guages and Applications, pages 1–19, Denver, CO, November 1999.

[37] B. Chun, A. Mainwaring, and D.E. Culler. Virtual Network Transport Pro-
tocols for Myrinet. In Hot Interconnects’97, Stanford, CA, April 1997.

[38] D.D. Clark. The Structuring of Systems Using Upcalls. In Proc. of the 10th
Symp. on Operating Systems Principles, pages 171–180, Orcas Island, WA,
December 1985.

Bibliography 229

[39] D.E. Culler, A. Dusseau, S.C. Goldstein, A. Krishnamurty, S. Lumetta,
T. von Eicken, and K. Yelick. Parallel Programming in Split-C. In Super-
computing ’93, pages 262–273, Portland, OR, November 1993.

[40] D.E. Culler, R. Karp, D. Patterson, A. Sahay, K.E. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of
Parallel Computation. In 4th Symp. on Principles and Practice of Parallel
Programming, pages 1–12, San Diego, CA, May 1993.

[41] D.E. Culler, L.T. Liu, R.P. Martin, and C.O. Yoshikawa. Assessing Fast
Network Interfaces. IEEE Micro, 16(1):35–43, February 1996.

[42] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for Shared-
Memory Programming . IEEE Computational Science and Engineering,
5(1):46–55, January/March 1998.

[43] W.J. Dally and C.L. Seitz. Deadlock-Free Message Routing in Multiproces-
sor Interconnection Networks. IEEE Trans. on Computers, 36(5):547–553,
May 1987.

[44] E.W. Dijkstra. Guarded Commands. Communications of the ACM,
18(8):453–457, August 1975.

[45] J.J. Dongarra, S.W. Otto, M. Snir, and D.W. Walker. A Message Pass-
ing Standard for MPP and Workstations. Communications of the ACM,
39(7):84–90, July 1996.

[46] R.P. Draves, B.N. Bershad, R.F. Rashid, and R.W. Dean. Using Continua-
tions to Implement Thread Management and Communication in Operating
Systems. In Proc. of the 13th Symp. on Operating Systems Principles, pages
122–136, Asilomar, Pacific Grove, CA, October 1991.

[47] P. Druschel and G. Banga. Lazy Receiver Processing (LRP): A Network
Subsystem Architecture for Server Systems. In 2nd USENIX Symp. on
Operating Systems Design and Implementation, pages 261–275, Seattle,
WA, October 1996.

[48] P. Druschel, L.L. Peterson, and B.S. Davie. Experiences with a High-Speed
Network Adaptor: A Software Perspective. In Proc. of the 1994 Conf. on
Communications Architectures, Protocols, and Applications (SIGCOMM),
pages 2–13, London, UK, September 1994.

[49] C. Dubnicki, A. Bilas, Y. Chen, S. Damianakis, and K. Li. VMMC-2:
Efficient Support for Reliable, Connection-Oriented Communication. In
Hot Interconnects’97, Stanford, CA, April 1997.

230 Bibliography

[50] C. Dubnicki, A. Bilas, K. Li, and J. Philbin. Design and Implementation of
Virtual Memory-Mapped Communication on Myrinet. In 11th Int. Parallel
Processing Symp., pages 388–396, Geneva, Switzerland, April 1997.

[51] D. Dunning, G. Regnier, G. McAlpine, D. Cameron, B. Shubert, F. Berry,
A.M. Merritt, E. Gronke, and C. Dodd. The Virtual Interface Architecture.
IEEE Micro, 18(2):66–76, March–April 1998.

[52] A. Fekete, M. F. Kaashoek, and N. Lynch. Implementing Sequentially
Consistent Shared Objects Using Broadcast and Point-to-Point Commu-
nication. In Proc. of the 15th Int. Conf. on Distributed Computing Systems,
pages 439–449, Vancouver, Canada, May 1995.

[53] MPI Forum. MPI: A Message Passing Interface Standard. Int. Journal of
Supercomputing Applications, 8(3/4), 1994.

[54] I. Foster, C. Kesselman, and S. Tuecke. The NEXUS Approach to Inte-
grating Multithreading and Communication. Journal of Parallel and Dis-
tributed Computing, 37(2):70–82, February 1996.

[55] M. Frigo, C.E. Leiserson, and K.H. Randall. The Implementation of the
Cilk-5 Multithreaded Language. In Proc. of the Conf. on Programming
Language Design and Implementation, pages 212–223, Montreal, Canada,
June 1998.

[56] M. Gerla, P. Palnati, and S. Walton. Multicasting Protocols for High-Speed,
Wormhole-Routing Local Area Networks. In Proc. of the 1996 Conf. on
Communications Architectures, Protocols, and Applications (SIGCOMM),
pages 184–193, Stanford University, CA, August 1996.

[57] R.B. Gillett. Memory Channel for PCI. IEEE Micro, 15(1):12–18, February
1996.

[58] S.C. Goldstein, K.E. Schauser, and D.E. Culler. Lazy Threads: Implement-
ing a Fast Parallel Call. Journal of Parallel and Distributed Computing,
37(1):5–20, August 1996.

[59] G.H. Golub and C. F. van Loan. Matrix Computations. The John Hopkins
University Press, 3rd edition, 1996.

[60] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, Reading, MA, 1996.

Bibliography 231

[61] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A High-Performance,
Portable Implementation of the MPI Message Passing Interface Standard.
Parallel Computing, 22(6):789–828, September 1996.

[62] The Panda group. The Panda 4.0 Interface Document. Dept. of Mathe-
matics and Computer Science, Vrije Universiteit, April 1998. On-line at
http://www.cs.vu.nl/panda/panda4/panda.html.

[63] M.D. Haines. An Open Implementation Analysis and Design of
Lightweight Threads. In Conf. on Object-Oriented Programming Systems,
Languages and Applications, pages 229–242, Atlanta, GA, October 1997.

[64] M.D. Haines and K.G. Langendoen. Platform-Independent Runtime Op-
timizations Using OpenThreads. In 11th Int. Parallel Processing Symp.,
pages 460–466, Geneva, Switzerland, April 1997.

[65] H.P. Heinzle, H.E. Bal, and K.G. Langendoen. Implementing Object-
Based Distributed Shared Memory on Transputers. In Transputer Appli-
cations and Systems ’94, pages 390–405, Villa Erba, Cernobbio, Como,
Italy, September 1994.

[66] W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, D.A. Wallach, and W.E. Weihl.
Efficient Implementation of High-Level Languages on User-Level Com-
munication Architectures. Technical Report MIT/LCS/TR-616, MIT Lab-
oratory for Computer Science, May 1994.

[67] W.C. Hsieh, M.F. Kaashoek, and W.E. Weihl. Dynamic Computation Mi-
gration in DSM Systems. In Supercomputing ’96, Pitssburgh, PA, Novem-
ber 1996.

[68] Y. Huang and P.M. McKinley. Efficient Collective Operations with ATM
Network Interface Support. In Proc. of the 1996 Int. Conf. on Parallel
Processing, volume I, pages 34–43, Bloomingdale, IL, August 1996.

[69] G. Iannello, M. Lauria, and S. Mercolino. Cross-Platform Analysis of Fast
Messages for Myrinet. In Proc. of the Workshop on Communication, Ar-
chitecture, and Applications for Network-based Parallel Computing (LNCS
1362), pages 217–231, Las Vegas, NV, January 1998.

[70] Intel Corporation. Pentium Pro Family Developer’s Manual, 1995.

[71] Intel Corporation. Pentium Pro Family Developer’s Manual, Volume 3:
Operating System Writer’s Guide, 1995.

232 Bibliography

[72] SPARC International. The SPARC Architecture Manual: Version 8, 1992.

[73] K.L. Johnson. High-Performance All-Software Distributed Shared Mem-
ory. PhD thesis, MIT Laboratory for Computer Science, Cambridge, USA,
December 1995. Technical Report MIT/LCS/TR-674.

[74] K.L. Johnson, M.F. Kaashoek, and D.A. Wallach. CRL: High-Performance
All-Software Distributed Shared Memory. In Proc. of the 15th Symp. on
Operating Systems Principles, pages 213–226, Copper Mountain, CO, De-
cember 1995.

[75] M.F. Kaashoek. Group Communication in Distributed Computer Systems.
PhD thesis, Vrije Universiteit Amsterdam, 1992.

[76] V. Karamcheti and A.A. Chien. A Comparison of Architectural Support for
Messaging in the TMC CM-5 and the Cray T3D. In Proc. of the 22nd Int.
Symp. on Computer Architecture, pages 298–307, Santa Margherita Ligure,
Italy, June 1995.

[77] R.M. Karp, A. Sahay, E.E. Santos, and K.E. Schauser. Optimal Broadcast
and Summation in the LogP Model. In Proc. of the 1993 Symp. on Parallel
Algorithms and Architectures, pages 142–153, Velen, Germany, June 1993.

[78] P. Keleher, A.L. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating Sys-
tems. In Proc. of the Winter 1994 Usenix Conf., pages 115–131, San Fran-
cisco, CA, January 1994.

[79] D. Keppel. Register Windows and User Space Threads on the SPARC.
Technical Report UWCSE 91-08-01, Dept. of Computer Science and En-
gineering, University of Washington, Seattle, WA, August 1991.

[80] R. Kesavan and D.K. Panda. Optimal Multicast with Packetization and
Network Interface Support. In Proc. of the 1997 Int. Conf. on Parallel
Processing, pages 370–377, Bloomingdale, IL, August 1997.

[81] C.H. Koelbel, D.B. Loveman, R. Schreiber, Jr G.L. Steele, and M.E. Zosel.
The High Performance Fortran Handbook. MIT Press, Cambridge, MA,
1994.

[82] L.I. Kontothanassis and M.L. Scott. Using Memory-Mapped Network In-
terface to Improve the Performance of Distributed Shared Memory. In Proc.
of the 2nd Int. Symp. on High-Performance Computer Architecture, pages
166–177, San Jose, CA, February 1996.

Bibliography 233

[83] A. Krishnamurthy, K.E. Schauser, C.J. Scheiman, R.Y. Wang, D.E. Culler,
and K. Yelick. Evaluation of Architectural Support for Global Address-
Based Communication in Large-Scale Parallel Machines. In Proc. of the
7th Int. Conf. on Architectural Support for Programming Languages and
Operating Systems, pages 37–48, Cambridge, MA, October 1996.

[84] V. Kumar, A. Grama, A. Gupta, and G. Karypsis. Introduction to Parallel
Computing: Design and Analysis of Algorithms. The Benjamin/Cummings
Publishing Company, Inc., Redwood City, CA, 1994.

[85] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni, K. Gharachorloo,
J. Chapin, D. Nakahira, J. Baxter, M. Horowitz, A. Gupta, M. Rosenblum,
and J. Hennessy. The Stanford FLASH Multiprocessor. In Proc. of the 21st
Int. Symp. on Computer Architecture, pages 302–313, Chicago, IL, April
1994.

[86] L. Lamport. How to Make a Multiprocessor Computer That Correctly Ex-
ecutes Multiprocess Programs. IEEE Trans. on Computers, C-28(9):690–
691, September 1979.

[87] K. Langendoen, R.A.F. Bhoedjang, and H.E. Bal. Automatic Distribution
of Shared Data Objects. In Third Workshop on Languages, Compilers and
Run-Time Systems for Scalable Computers, Troy, NY, May 1995.

[88] K.G. Langendoen, R.A.F. Bhoedjang, and H.E. Bal. Models for Asyn-
chronous Message Handling. IEEE Concurrency, 5(2):28–37, April–June
1997.

[89] K.G. Langendoen, J. Romein, R.A.F. Bhoedjang, and H.E. Bal. Integrat-
ing Polling, Interrupts, and Thread Management. In The 6th Symp. on
the Frontiers of Massively Parallel Computation, pages 13–22, Annapolis,
MD, October 1996.

[90] M. Lauria and A.A. Chien. MPI-FM: High Performance MPI on Worksta-
tion Clusters. Journal of Parallel and Distributed Computing, 40(1):4–18,
January 1997.

[91] C.E. Leiserson, Z.S. Abuhamdeh, D.C. Douglas, C.R. Feynman, M.N. Gan-
mukhi, J.V. Hill, W.D. Hillis, B.C. Kuszmaul, M.A. St. Pierre, D.S. Wells,
M.C. Wong-Chan, S.-W. Yang, and R. Zak. The Network Architecture of
the Connection Machine CM-5. In Proc. of the 1992 Symp. on Parallel
Algorithms and Architectures, pages 272–285, San Diego, CA, June 1992.

234 Bibliography

[92] K. Li and P. Hudak. Memory Coherence in Shared Virtual Memory Sys-
tems. ACM Trans. on Computer Systems, 7(4):321–359, November 1989.

[93] C. Liao, D. Jiang, L. Iftode, M. Martonosi, and D.W. Clark. Monitoring
Shared Virtual Memory Performance on a Myrinet-based PC Cluster. In
Supercomputing’98, Orlando, FL, November 1998.

[94] J. Liedtke. On Micro-Kernel Construction. In Proc. of the 15th Symp.
on Operating Systems Principles, pages 237–250, Copper Mountain, CO,
December 1995.

[95] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, MA, 1997.

[96] P. López, J.M. Martı́nez, and J. Duato. A Very Efficient Distributed Dead-
lock Detection Mechanism for Wormhole Networks. In Proc. of the 4th
Int. Symp. on High-Performance Computer Architecture, pages 57–66, Las
Vegas, NV, February 1998.

[97] H. Lu, S. Dwarkadas, A.L. Cox, and W. Zwaenepoel. Quantifying the Per-
formance Differences between PVM and TreadMarks. Journal of Parallel
and Distributed Computing, 43(2):65–78, June 1997.

[98] J. Maassen and R. van Nieuwpoort. Fast Parallel Java. Master’s thesis,
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amster-
dam, The Netherlands, August 1998.

[99] J. Maassen, R. van Nieuwpoort, R. Veldema, H.E. Bal, and A. Plaat. An Ef-
ficient Implementation of Java’s Remote Method Invocation. In 7th Symp.
on Principles and Practice of Parallel Programming, pages 173–182, At-
lanta, GA, May 1999.

[100] A.M. Mainwaring, B.N. Chun, S. Schleimer, and D.S. Wilkerson. System
Area Network Mapping. In Proc. of the 1997 Symp. on Parallel Algorithms
and Architectures, pages 116–126, Newport, RI, June 1997.

[101] O. Maquelin, G.R. Gao, H.H.J. Hum, K.B. Theobald, and X. Tian. Polling
Watchdog: Combining Polling and Interrupts for Efficient Message Han-
dling. In Proc. of the 23rd Int. Symp. on Computer Architecture, pages
179–188, Philadelphia, PA, May 1996.

[102] R.P. Martin, A.M. Vahdat, D.E. Culler, and T.E. Anderson. Effects of Com-
munication Latency, Overhead, and Bandwidth in a Cluster Architecture.
In Proc. of the 24th Int. Symp. on Computer Architecture, pages 85–97,
Denver, CO, June 1997.

Bibliography 235

[103] M. Martonosi, D. Ofelt, and M. Heinrich. Integrating Performance Mon-
itoring and Communication in Parallel Computers. In Proc. of the 1996
Conf. on Measurement and Modeling of Computer Systems (SIGMET-
RICS), pages 138–147, Philadelphia, PA, May 1996.

[104] H. McGhan and M. O’Connor. PicoJava: A Direct Execution Engine for
Java Bytecode. IEEE Computer, 31(10):22–30, October 1998.

[105] E. Mohr, D.A. Kranz, and R.H. Halstead. Lazy Task Creation: A Tech-
nique for Increasing the Granularity of Parallel Programs. IEEE Trans. on
Parallel and Distributed Systems, 2(3):264–280, July 1991.

[106] D. Mosberger and L.L. Peterson. Careful Protocols or How to Use Highly
Reliable Networks. In Proc. of the Fourth Workshop on Workstation Oper-
ating Systems, pages 80–84, Napa, CA, October 1993.

[107] S.S. Mukherjee, B. Falsafi, M.D. Hill, and D.A. Wood. Coherent Network
Interfaces for Fine-Grain Communication. In Proc. of the 23rd Int. Symp.
on Computer Architecture, pages 247–258, Philadelphia, PA, May 1996.

[108] S.S. Mukherjee and M.D. Hill. The Impact of Data Transfer and Buffering
Alternatives on Network Interface Design. In Proc. of the 4th Int. Symp.
on High-Performance Computer Architecture, pages 207–218, Las Vegas,
NV, February 1998.

[109] G. Muller, R. Marlet, E.-N. Volanschi, C. Consel, C. Pu, and A. Goel. Fast,
Optimized Sun RPC Using Automatic Program Specialization. In Proc.
of the 18th Int. Conf. on Distributed Computing Systems, pages 240–249,
Amsterdam, The Netherlands, May 1998.

[110] B. Nichols, B. Buttlar, and J. Proulx Farrell. Pthreads Programming.
O’Reilly & Associates, Inc., Newton, MA, 1996.

[111] M. Oey, K. Langendoen, and H.E. Bal. Comparing Kernel-Space and User-
Space Communication Protocols on Amoeba. In Proc. of the 15th Int. Conf.
on Distributed Computing Systems, pages 238–245, Vancouver, Canada,
May 1995.

[112] S. Pakin, V. Karamcheti, and A.A. Chien. Fast Messages (FM): Efficient,
Portable Communication for Workstation Clusters and Massively Parallel
Processors. IEEE Concurrency, 5(2):60–73, April–June 1997.

[113] S. Pakin, M. Lauria, and A.A. Chien. High Performance Messaging on
Workstations: Illinois Fast Messages (FM) for Myrinet. In Supercomputing
’95, San Diego, CA, December 1995.

236 Bibliography

[114] D. Perkovic and P.J. Keleher. Responsiveness without Interrupts. In Proc.
of the Int. Conf. on Supercomputing, pages 101–108, Rhodes, Greece, June
1999.

[115] L.L. Peterson and B.S. Davie. Computer Networks: A Systems Approach.
Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

[116] L.L. Peterson, N. Hutchinson, S. O’Malley, and H. Rao. The x-kernel: A
Platform for Accessing Internet Resources. IEEE Computer, 23(5):23–33,
May 1990.

[117] M. Philippsen and M. Zenger. JavaParty — Transparent Remote Objects in
Java. Concurrency: Practice and Experience, pages 1225–1242, November
1997.

[118] L. Prylli and B. Tourancheau. Protocol Design for High Performance Net-
working: A Myrinet Experience. Technical Report 97-22, LIP-ENS Lyon,
July 1997.

[119] S.K. Reinhardt, J.R. Larus, and D.A. Wood. Tempest and Typhoon: User-
Level Shared Memory. In Proc. of the 21st Int. Symp. on Computer Archi-
tecture, pages 325–337, Chicago, IL, April 1994.

[120] S.H. Rodrigues, T.E. Anderson, and D.E. Culler. High-Performance Local-
Area Communication With Fast Sockets. In USENIX Technical Conf.,
pages 257–274, Anaheim, CA, January 1997.

[121] J.W. Romein, H.E Bal, and D. Grune. An Application Domain Specific
Language for Describing Board Games. In Parallel and Distributed Pro-
cessing Techniques and Applications, volume I, pages 305–314, Las Vegas,
NV, July 1997.

[122] J.W. Romein, A. Plaat, H.E. Bal, and J. Schaeffer. Transposition Driven
Work Scheduling in Distributed Search. In AAAI National Conference,
pages 725–731, Orlando, FL, July 1999.

[123] T. Rühl and H.E. Bal. A Portable Collective Communication Library us-
ing Communication Schedules. In Proc. of the 5th Euromicro Workshop
on Parallel and Distributed Processing, pages 297–306, London, United
Kingdom, January 1997.

[124] T. Rühl, H.E. Bal, R. Bhoedjang, K.G. Langendoen, and G. Benson. Ex-
perience with a Portability Layer for Implementing Parallel Programming
Systems. In The 1996 Int. Conf. on Parallel and Distributed Processing

Bibliography 237

Techniques and Applications, pages 1477–1488, Sunnyvale, CA, August
1996.

[125] D.J. Scales, K. Gharachorloo, and C.A. Thekkath. Shasta: A Low Over-
head, Software-Only Approach for Supporting Fine-Grain Shared Memory.
In Proc. of the 7th Int. Conf. on Architectural Support for Programming
Languages and Operating Systems, pages 174–185, Cambridge, MA, Oc-
tober 1996.

[126] I. Schoinas and M.D. Hill. Address Translation Mechanisms in Network
Interfaces. In Proc. of the 4th Int. Symp. on High-Performance Computer
Architecture, pages 219–230, Las Vegas, NV, February 1998.

[127] J.T. Schwartz. Ultracomputers. ACM Trans. on Programming Languages
and Systems, 2(4):484–521, October 1980.

[128] R. Sivaram, R. Kesavan, D.K. Panda, and C.B. Stunkel. Where to Provide
Support for Efficient Multicasting in Irregular Networks: Network Inter-
face or Switch? In Proc. of the 1998 Int. Conf. on Parallel Processing,
pages 452–459, Minneapolis, MN, August 1998.

[129] M. Snir, P. Hochschild, D.D. Frye, and K.J. Gildea. The Communication
Software and Parallel Environment of the IBM SP2. IBM Systems Journal,
34(2):205–221, 1995.

[130] E. Speight, H. Abdel-Shafi, and J.K. Bennett. Realizing the Performance
Potential of the Virtual Interface Architecture. In Proc. of the Int. Conf. on
Supercomputing, pages 184–192, Rhodes, Greece, June 1999.

[131] E. Speight and J.K. Bennett. Using Multicast and Multithreading to Reduce
Communication in Software DSM Systems. In Proc. of the 4th Int. Symp.
on High-Performance Computer Architecture, pages 312–323, Las Vegas,
NV, February 1998.

[132] E. Spertus, S.C. Goldstein, K.E. Schauser, T. von Eicken, D.E. Culler, and
W.J. Dally. Evaluation of Mechanisms for Fine-Grained Parallel Programs
in the J-Machine and the CM-5. In Proc. of the 20th Int. Symp. on Computer
Architecture, pages 302–313, San Diego, CA, May 1993.

[133] P.A. Steenkiste. A Systematic Approach to Host Interface Design for High-
Speed Networks. IEEE Computer, 27(3):47–57, March 1994.

[134] D. Stodolsky, J.B. Chen, and B. Bershad. Fast Interrupt Priority Manage-
ment in Operating Systems. In Proc. of the USENIX Symp. on Microkernels

238 Bibliography

and Other Kernel Architectures, pages 105–110, San Diego, September
1993.

[135] C.B. Stunkel, J. Herring, B. Abali, and R. Sivaram. A New Switch Chip for
IBM RS/6000 SP Systems. In Supercomputing’99, Portland, OR, Novem-
ber 1999.

[136] C.B. Stunkel, R. Sivaram, and D.K. Panda. Implementing Multidestination
Worms in Switch-based Parallel Systems: Architectural Alternatives and
their Impact. In Proc. of the 24th Int. Symp. on Computer Architecture,
pages 50–61, Denver, CO, June 1997.

[137] V.S. Sunderam. PVM: A Framework for Parallel Distributed Computing.
Concurrency: Practice and Experience, 2(4):315–339, December 1990.

[138] A.S. Tanenbaum. Computer Networks. Prentice Hall PTR, Upper Saddle
River, NJ, 3rd edition, 1996.

[139] A.S. Tanenbaum, R. van Renesse, H. van Staveren, G.J. Sharp, S.J. Mul-
lender, A.J. Jansen, and G. van Rossum. Experiences with the Amoeba
Distributed Operating System. Communications of the ACM, 33(2):46–63,
December 1990.

[140] H. Tang, K. Shen, and T. Yang. Compile/Run-Time Support for Threaded
MPI Execution on Multiprogrammed Shared Memory Machines. In 7th
Symp. on Principles and Practice of Parallel Programming, pages 107–
118, Atlanta, GA, May 1999.

[141] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An Operating Sys-
tem Coordinated High-Performance Communication Library. In High-
Performance Computing and Networking (LNCS 1225), pages 708–717,
Vienna, Austria, April 1997.

[142] H. Tezuka, F. O’Carroll, A. Hori, and Y. Ishikawa. Pin-down Cache: A
Virtual Memory Management Technique for Zero-copy Communication. In
12th Int. Parallel Processing Symp., pages 308–314, Orlando, FL, March
1998.

[143] C.A. Thekkath and H.M. Levy. Hardware and Software Support for Effi-
cient Exception Handling. In Proc. of the 6th Int. Conf. on Architectural
Support for Programming Languages and Operating Systems, pages 110–
119, San Jose, CA, October 1994.

Bibliography 239

[144] R. van Renesse, K.P. Birman, and S. Maffeis. Horus, a Flexible Group
Communication System. Communications of the ACM, 39(4):76–83, April
1996.

[145] R. Veldema. Jcc, a Native Java Compiler. Master’s thesis, Dept. of Mathe-
matics and Computer Science, Vrije Universiteit, Amsterdam, The Nether-
lands, August 1998.

[146] K. Verstoep, K.G. Langendoen, and H.E. Bal. Efficient Reliable Multicast
on Myrinet. In Proc. of the 1996 Int. Conf. on Parallel Processing, volume
III, pages 156–165, Bloomingdale, IL, August 1996.

[147] T. von Eicken, A. Basu, V. Buch, and W. Vogels. U-Net: A User-Level Net-
work Interface for Parallel and Distributed Computing. In Proc. of the 15th
Symp. on Operating Systems Principles, pages 303–316, Copper Mountain,
CO, December 1995.

[148] T. von Eicken, D.E. Culler, S.C. Goldstein, and K.E. Schauser. Active
Messages: a Mechanism for Integrated Communication and Computation.
In Proc. of the 19th Int. Symp. on Computer Architecture, pages 256–266,
Gold Coast, Australia, May 1992.

[149] T. von Eicken and W. Vogels. Evolution of the Virtual Interface Architec-
ture. IEEE Computer, 31(11):61–68, November 1998.

[150] D.A. Wallach, W.C. Hsieh, K.L. Johnson, M.F. Kaashoek, and W.E. Weihl.
Optimistic Active Messages: A Mechanism for Scheduling Communica-
tion with Computation. In 5th Symp. on Principles and Practice of Parallel
Programming, pages 217–226, Santa Barbara, CA, July 1995.

[151] H. Wasserman, O.M. Lubeck, Y. Luo, and F. Bassetti. Performance Evalua-
tion of the SGI Origin2000: A Memory-Centric Characterization of LANL
ASCI Applications. In Supercomputing’97, San Jose, CA, November 1997.

[152] A. Wollrath, J. Waldo, and R. Riggs. Java-Centric Distributed Computing.
IEEE Micro, 17(3):44–53, May/June 1997.

[153] S.C. Woo, M. Ohara, E. Torrie, J.P. Singh, and A. Gupta. The SPLASH-2
Programs: Characterization and Methodological Considerations. In Proc.
of the 22nd Int. Symp. on Computer Architecture, pages 24–36, Santa
Margherita Ligure, Italy, June 1995.

[154] K. Yocum, J. Chase, A. Gallatin, and A. Lebeck. Cut-Through Delivery in
Trapeze: An Exercise in Low-Latency Messaging. In The 6th Int. Symp. on

240 Bibliography

High Performance Distributed Computing, pages 243–252, Portland, OR,
August 1997.

[155] Y. Zhou, L. Iftode, and K. Li. Performance Evaluation of Two Home-Based
Lazy Release-Consistency Protocols for Shared Virtual Memory Systems.
In 2nd USENIX Symp. on Operating Systems Design and Implementation,
pages 75–88, Seattle, WA, October 1996.

Appendix A

Deadlock issues

As discussed in Section 4.2, LFC’s basic multicast protocol cannot use arbitrary
multicast trees. With chains, for example, we can create a buffer deadlock (see
Figure 4.8). Below, in Section A.1, we derive — informally — a sufficient condi-
tion for deadlock-free multicasting in LFC. The binary trees used by LFC satisfy
this condition. The condition applies only to multicasting within a single multicast
group. The example in Section A.2 shows that the condition does not guarantee
deadlock-free multicasting in overlapping multicast groups.

A.1 Deadlock-Free Multicasting in LFC

Before deriving a condition for deadlock-free multicasting, we first consider the
nature of deadlocks in LFC. Recall that LFC partitions each NI’s receive buffer
space among all possible senders (see Section 4.1). That is, each NI has a separate
receive buffer pool for each sender.

A deadlock in LFC consists of a cycle C of NIs such that for each NI S with
successor R (both in C)

1. S has a nonempty blocked-sends queue BSQS!R for R

2. R has a full NI receive buffer pool RBPS!R for S

We assume that hosts are not involved in the deadlock cycle. This is true only
if all hosts regularly drain the network by supplying free host receive buffers to
their NI. This requirement, however, is part of the contract between LFC and its
clients (see Section 3.6). If all hosts drain the network, the full receive pools in the
deadlock cycle do not contain packets that are waiting (only) for a free host receive
buffer. Consequently, each packet p in a full receive pool RBPS!R is waiting to
be forwarded. That is, p is a multicast packet that has travelled from S to R and is

241

242 Deadlock issues

enqueued on at least one blocked-sends queue involved in a deadlock cycle (not
necessarily C). Finally, observe that if RBPS!R is part of deadlock cycle C, then
at least one of the packets in RBPS!R has to be enqueued on the blocked-sends
queue to the next NI in C (i.e., to the successor of R).

We now formulate a sufficient condition for deadlock-free multicasting in
LFC. We assume the system consists of P NIs, numbered 0; : : : ;P� 1. The ’dis-
tance’ from NI m to NI n is defined as (n+P�m) mod P: the number of hops
needed to reach n from m if all NIs are organized in a unidirectional ring. In a
multicast group G the set of multicast trees TG (one per group member) cannot
yield deadlock if the following condition holds:

For each member g2G, it holds that, for each tree t 2 TG, the distance
from g’s parent to g in t is smaller than each of the distances from g
to its children in t.

To see why this is true, assume that the condition is satisfied and that we can
construct a deadlock cycle C of length k. According to the nature of deadlocks in
LFC, each NI ni in C holds at least one multicast packet pi from its predecessor
in C that needs to be forwarded to its successor in C. According to the condition,
each NI in the cycle must therefore have a larger distance to its successor than to
its predecessor. That is, if we denote the deadlock cycle

n0
d0�! n1

d1�! : : :
dk�1
�! n0

where di is the distance from ni�1 to ni, then we must have

d0 < d1 < :: : < dk�1 < d0

which is impossible.
Using this condition, we can see why LFC’s binary trees are deadlock-free.

In the binary tree for node 0, it is clear that each node’s distances to its children
are larger than the distance to the node’s parent (see for example Figure 4.9). The
multicast tree for a node p 6= 0 is obtained by renumbering each tree node n in the
multicast tree of node 0 to (n+ p) mod P, where P is the number of processors.
This renumbering preserves the distances between nodes, so the condition applies
for all trees. Consequently, LFC’s binary trees are deadlock-free.

Previous versions of LFC used binomial instead of binary trees [16].1 Fig-
ure A.1 shows a 16-node binomial tree. In binomial trees the distance (as defined

1This paper ([16]) contains two errors. First, it incorrectly states that forwarding in binomial
trees is equivalent to e-cube routing, which is deadlock-free [43]. This is true for some senders
(e.g., node 0), but not for all. Second, the paper assumes that binary trees are not deadlock-free.

A.2 Overlapping Multicast Groups 243

0

1 2 4 8

3 5 6 9

7 11

15

1413

1210

Fig. A.1. A biomial spanning tree.

above) between any pair of nodes is always a power of two. Moreover, and in con-
trast with binary trees, binomial trees have the property that the distance between
a node and its parent is always greater than the distances between a node and
its children. The condition for deadlock-free multicasting in LFC can easily be
adapted to apply to trees that have the latter property. Using this adapted version,
we can show that binomial multicast trees are also deadlock-free.

A.2 Overlapping Multicast Groups

Without deadlock recovery, overlapping multicast groups are unsafe. Consider a
9-node system with three multicast groups G1 = f0;3;4;5;6g, G2 = f0;3;6;7;8g,
and G3 = f0;1;2;3;6g. Within each group, we use binary multicast trees. These
trees are constructed as if the nodes within each group were numbered 0; : : : ;4.
Figure A.2 shows the trees for node 0 in G1, for node 3 in G2, and for node 6 in
G3. The bold arrows in each tree indicate a forwarding path that overlaps with
a forwarding path in another tree. By concatenating these paths we can create a
deadlock cycle.

244 Deadlock issues

0

3 4

65

6

3

7

8 0 2 3

0 1

6

Fig. A.2. Multicast trees for overlapping multicast groups.

Appendix B

Abbreviations

ADC Application Device Channel
ADI Application Device Interface
AM Active Messages
API Application Programming Interface
ASCI Advanced School for Computing and Imaging
ATM Asynchronous Transfer Mode
BB Broadcast/Broadcast
BIP Basic Interface for Parallelism
CRL C Region Library
DAS Distributed ASCI Supercomputer
DMA Direct Memory Access
DSM Distributed Shared Memory
F&A Fetch and Add
FM Fast Messages
GSB Get Sequence number, then Broadcast
JIT Just In Time
JVM Java Virtual Machine
LFC Link-level Flow Control
MG Multigame
MPI Message Passing Interface
MPICH MPI Chameleon
MPL Message-Passing Library
MPP Massively Parallel Processor
NI Network Interface
NIC Network Interface Card
OT OpenThreads

245

246 Abbreviations

PB Point-to-point/Broadcast
PIO Programmed I/O
PPS Parallel Programming System
RMI Remote Method Invocation
RPC Remote Procedure Call
RSR Remote Service Request
RTS RunTime System
SAP Service Access Point
TCP Transmission Control Protocol
TLB Translation Lookaside Buffer
UDP User Datagram Protocol
UTLB User-managed TLB
VI Virtual Interface
VMMC Virtual Memory-Mapped Communication
WWW World Wide Web

Samenvatting

Parallelle programma’s laten een aantal computers tegelijk aan één rekenintensief
probleem werken met als doel dat probleem sneller op te lossen dan met één com-
puter mogelijk is. Daar het moeilijk is om computers efficiënt en correct samen
te laten werken, zijn er systemen ontwikkeld om het schrijven en uitvoeren van
parallelle programma’s te vereenvoudigen. Dergelijke systemen noemen we pa-
rallelle programmeersystemen.

Verschillende parallelle programmeersystemen bieden verschillende program-
meerparadigmata aan en worden in verschillende hardware-omgevingen gebruikt.
Dit proefschrift concentreert zich op programmeersystemen voor computerclus-
ters. Zo’n cluster bestaat uit een door een netwerk verbonden verzameling com-
puters. De meeste clusters bestaan uit tientallen computers, maar er bestaan ook
clusters van honderden en zelfs duizenden computers. Kenmerkend voor een com-
putercluster is dat zowel de computers als het netwerk door massaproductie re-
latief goedkoop zijn en dat de computers met elkaar communiceren door via het
netwerk, en niet via een gemeenschappelijk geheugen, berichten met elkaar uit te
wisselen.

De uitwisseling van berichten wordt ondersteund door communicatiesoftware.
Deze software bepaalt in belangrijke mate de prestaties van de parallelle pro-
gramma’s die met een parallel programmeersysteem ontwikkeld worden. Dit
proefschrift, getiteld ”Communicatie-architecturen voor parallelle programmeer-
systemen”, richt zich op deze communicatiesoftware en behandelt de volgende
vragen:

1. Welke mechanismen dient een communicatiesysteem aan te bieden?

2. Hoe moeten parallelle programmeersystemen de aangeboden mechanismen
gebruiken?

3. Hoe moeten deze mechanismen in het communicatiesysteem geı̈mplemen-
teerd worden?

Met betrekking tot deze vragen levert het proefschrift de volgende bijdragen:

247

248 Samenvatting

1. Het toont aan dat een kleine verzameling eenvoudige communicatiemecha-
nismen effectief aangewend kan worden om verschillende parallelle pro-
grammeersystemen efficiënt te implementeren. Deze communicatiemecha-
nismen zijn geı̈mplementeerd in een nieuw communicatiesysteem, LFC, dat
later in deze samenvatting preciezer beschreven wordt. Een aantal van deze
mechanismen veronderstelt ondersteuning van de netwerkadapter. De net-
werkadapter is het computeronderdeel dat de koppeling tussen netwerk en
computer verzorgt. Moderne netwerkadapters zijn vaak programmeerbaar
en kunnen daarom een aantal communicatietaken uitvoeren die traditioneel
door een computer uitgevoerd worden.

2. Het beschrijft een efficiënt en betrouwbaar multicast-algoritme. Multicast
is één van de bovengenoemde communicatiemechanismen en speelt in ver-
schillende parallelle programmeersystemen een belangrijke rol. Het is een
vorm van communicatie waarbij één computer een bericht naar verschei-
dene andere computers verstuurt.

Op netwerken die multicast niet in hardware ondersteunen, wordt multicast
geı̈mplementeerd door middel van doorsturen. Een multicastbericht wordt
door de zender eerst sequentieel naar een (meestal) klein aantal computers
verstuurd; ieder van die computers ontvangt het bericht, verwerkt het en
stuurt het door naar andere computers, enz. Deze wijze van doorsturen is
redelijk efficiënt, omdat het bericht door verscheidene computers tegelijk
verwerkt en doorgestuurd wordt. Zoals beschreven is de methode echter
niet optimaal, omdat iedere doorsturende computer het bericht terugkopieert
naar de netwerkadapter. Dit proefschrift beschrijft een algoritme dat ge-
bruik maakt van de netwerkadapter om multicastberichten op efficiëntere
wijze door te sturen: zodra de netwerkadapter een multicastbericht ont-
vangt, stuurt het dit bericht zelfstandig door naar andere netwerkadapters
en kopieert het tevens naar de computer. De ontvangende computer is niet
meer betrokken bij het doorsturen van het bericht.

3. Het onderzoekt op systematische wijze de invloed van verschillende verde-
lingen van protocoltaken tussen computer en netwerkadapter op de prestaties
van parallelle programma’s. De evaluatie concentreert zich op het wel of
niet gebruiken van de netwerkadapter bij het implementeren van betrouw-
bare communicatie en bij het doorsturen van multicastberichten. Een in-
teressant resultaat is dat bepaalde werkverdelingen de prestaties van som-
mige parallelle programma’s verbeteren, maar de prestaties van andere pro-
gramma’s doen verslechteren. De invloed van een werkverdeling blijkt
deels af te hangen van de communicatiepatronen die een parallel program-
meersysteem gebruikt.

Samenvatting 249

Hoofdstuk 1 van dit proefschrift beschrijft bovengenoemde onderzoeksvragen
en -bijdragen in detail.

Hoofdstuk 2 geeft een overzicht van bestaande, efficiënte communicatiesyste-
men. Dit zijn bijna zonder uitzondering systemen die rechtstreeks door gebruikers-
processen aangesproken kunnen worden, dat wil zeggen, zonder tussenkomst van
het besturingssysteem. Hoewel de eliminatie van het besturingssysteem leidt
tot goede prestaties in eenvoudige tests, voldoet geen van deze communicatie-
systemen volledig aan de eisen die parallelle programmeersystemen stellen. In
het bijzonder blijkt dat veel van deze communicatiesystemen geen asynchrone
afhandeling van berichten of geen multicast ondersteunen; beide zijn belangrijk
in parallelle programmeersystemen. Een andere belangrijke observatie is dat de
bestaande communicatiesystemen sterk verschillen in de manier waarop ze werk
verdelen tussen computer en netwerkadapter. Sommige systemen beperken het
werk op de netwerkadapter tot een minimum, omdat de processor van de netwerk-
adapter in het algemeen traag is. Andere systemen daarentegen, draaien volledige
communicatieprotocollen op de netwerkadapter. Hoofdstuk 8 van dit proefschrift
onderzoekt op systematische wijze de invloed van verschillende werkverdelingen.

Hoofdstuk 3 beschrijft het ontwerp en de implementatie van LFC, een nieuw
communicatiesysteem voor parallelle programmeersystemen. LFC ondersteunt
vijf parallelle programmeersystemen. Hoewel deze programmeersystemen sterk
verschillende communicatie-eisen stellen, zijn ze alle op efficiënte wijze bovenop
LFC geı̈mplementeerd.

LFC biedt de gebruiker een eenvoudig en laag-niveau communicatie-interface
aan. Dit interface bestaat uit functies om netwerkpakketten betrouwbaar naar één
of meer andere computers te versturen. Deze pakketten kunnen zowel synchroon
als asynchroon ontvangen worden. Het interface bevat ook een eenvoudige, maar
nuttige synchronisatiefunctie (fetch-and-add).

De implementatie van het interface maakt agressief gebruik van een program-
meerbare netwerkadapter. Hoofdstuk 4 beschrijft in detail de protocollen en taken
die LFC op de netwerkadapter uitvoert:

� het voorkomen van bufferoverloop ten behoeve van betrouwbare communi-
catie (flow control)

� het doorsturen van multicastberichten

� het vertraagd genereren van interrupts

� het afhandelen van synchronisatieberichten

LFC veronderstelt dat de netwerkhardware pakketten corrumpeert noch ver-
liest, maar dat is niet voldoende om betrouwbare communicatie tussen processen

250 Samenvatting

te garanderen. Het is ook noodzakelijk dat ontvangers van berichten voldoende
bufferruimte hebben om binnenkomende berichten op te slaan. Om dat te garan-
deren, implementeert LFC een eenvoudig flow-controlprotocol op de netwerk-
adapter.

LFC laat de netwerkadapter multicastberichten zonder tussenkomst van de
computer doorsturen. Het blijkt mogelijk om dit te implementeren als een een-
voudige uitbreiding van bovengenoemd flow-controlprotocol.

LFC staat gebruikers toe om berichten synchroon te ontvangen, door een com-
puter actief te laten testen of een bericht gearriveerd is (polling), of asynchroon,
door de netwerkadapter een interrupt te laten genereren. Een computer kan snel
testen of een bericht is binnengekomen, maar het afhandelen van een interrupt ver-
loopt meestal traag. Als een bericht verwacht wordt, dan is polling dus efficiënter
dan het gebruik van interrupts. Als niet bekend is wanneer het volgende bericht
binnenkomt, dan is polling in het algemeen duur, omdat de meeste polls geen
berichten zullen vinden. Omdat interrupts duur zijn, laat LFC de netwerkadapter
pas na een korte vertraging een interrupt genereren. Op deze wijze krijgt de ont-
vangende computer de kans een bericht door middel van polling weg te lezen en
de interrupt te voorkomen.

LFC biedt een eenvoudige synchronisatiefunctie aan: fetch-and-add. Deze
functie leest en verhoogt op ondeelbare wijze de waarde van een gedeelde integer-
variabele. LFC slaat fetch-and-add-variabelen in het geheugen van de netwerk-
adapter op en laat de netwerkadapter zelfstandig binnenkomende fetch-and-add-
verzoeken afhandelen.

Hoofdstuk 5 evalueert de prestaties van LFC. De taken die LFC op de netwerk-
adapter uitvoert zijn relatief eenvoudig, maar omdat de processor van een netwerk-
adapter in het algemeen traag is, is niet a priori duidelijk of het verstandig is al
deze taken op de netwerkadapter uit te voeren. De prestatiemetingen in hoofd-
stuk 5 laten echter zien dat LFC uitstekend presteert, ondanks het agressieve ge-
bruik van de relatief trage netwerkadapter.

Hoofdstuk 6 beschrijft Panda, een communicatiesysteem dat een hoger-niveau
interface aanbiedt dan LFC. Panda is bovenop LFC geı̈mplementeerd en biedt de
gebruiker threads, message passing, Remote Procedure Call (RPC) en groeps-
communicatie. Deze abstracties vereenvoudigen vaak de implementatie van een
parallel programmeersysteem.

Panda gebruikt in het threadsysteem aanwezige kennis om automatisch te
besluiten of binnenkomende berichten door middel van polling dan wel inter-
rupts ontvangen moeten worden. Gewoonlijk gebruikt Panda interrupts, maar zo-
dra alle threads geblokkeerd zijn stapt Panda over op polling. Panda beschouwt
ieder binnenkomend bericht als een bytestroom en staat een ontvangend proces
toe om te beginnen met het lezen van deze bytestroom voordat het bericht in
zijn geheel ontvangen is. Tenslotte implementeert Panda totaal-geordende groeps-

Samenvatting 251

communicatie met behulp van een eenvoudige, maar effectieve combinatie van de
synchronisatie- en broadcastfuncties van LFC.

Hoofdstuk 7 beschrijft vier parallelle programmeersystemen die met behulp
van LFC en Panda geı̈mplementeerd zijn. Orca, CRL en Manta zijn object-
gebaseerde systemen die processen op verschillende computers toestaan om ob-
jecten met elkaar te delen en om via die gedeelde objecten te communiceren.
MPI daarentegen, is gebaseerd op het expliciet versturen van berichten tussen
processen op verschillende computers (message passing). Orca en Manta zijn op
programmeertalen gebaseerde systemen (respectievelijk Orca en Java). CRL en
MPI worden niet door een compiler ondersteund.

Hoewel Orca, CRL en Manta vergelijkbare programmeerabstracties aanbieden,
implementeren ze die abstracties op verschillende manieren. Orca repliceert som-
mige objecten en transporteert via RPC en groepscommunicatie de parameters van
operaties op gedeelde objecten. Manta repliceert objecten niet en gebruikt alleen
RPC om de parameters van operaties te transporteren. CRL repliceert objecten,
maar maakt gebruik van invalidatie om de waarde van gerepliceerde objecten con-
sistent te houden. Bovendien verstuurt CRL geen operatieparameters, maar ob-
jectdata. Orca, Manta en MPI zijn alle met behulp van Panda geı̈mplementeerd;
CRL is direct bovenop LFC geı̈mplementeerd.

Het hoofdstuk laat zien dat al deze systemen efficiënt op LFC en Panda geı̈m-
plementeerd kunnen worden. In het geval van Orca, een relatief complex sys-
teem, worden daartoe twee optimalisaties geı̈ntroduceerd. Ten eerste genereert
de Orca-compiler gespecialiseerde code voor het in- en uitpakken van berichten
die operatieparameters bevatten. Dit voorkomt onnodig kopiëren van data en on-
nodige interpretatie van type-beschrijvingen. Ten tweede maakt Orca gebruik van
voortzettingen (continuations) in plaats van threads om geblokkeerde operaties op
objecten compact te representeren. Voorgaande Orca-implementaties gebruikten
threads in plaats van voortzettingen. Threads nemen echter meer ruimte in beslag
en kunnen in onvoorspelbare volgordes geactiveerd worden.

Hoofdstuk 8 beschrijft en evalueert andere implementaties van het commu-
nicatie-interface van LFC. In totaal worden vijf implementaties bestudeerd, in-
clusief de in hoofdstukken 3 t/m 5 beschreven LFC-implementatie. Deze imple-
mentaties verschillen in de manier waarop ze protocoltaken tussen computer en
netwerkadapter verdelen, met name taken die verband houden met betrouwbaar-
heid en multicast. Het hoofdstuk concentreert zich op de invloed van deze ver-
schillende werkverdelingen op de prestaties van parallelle programma’s. Omdat
alle LFC-implementaties hetzelfde communicatie-interface implementeren, kan
deze invloed bestudeerd worden zonder wijziging van de parallelle programmeer-
systemen.

Hoofdstuk 8 bestudeert het gedrag van negen parallelle programma’s. Deze
programma’s maken gebruik van Orca, CRL, MPI, en Multigame. Orca, CRL en

252 Samenvatting

MPI zijn boven reeds besproken. Multigame is een declaratief parallel program-
meersysteem dat automatisch en parallel spelbomen doorzoekt. Prestatiemetingen
laten zien dat de in hoofdstukken 3 t/m 5 beschreven LFC-implementatie altijd de
beste prestaties van parallelle programma’s oplevert. Deze LFC-implementatie
veronderstelt dat de netwerkhardware betrouwbaar is en gebruikt de netwerk-
adapter om multicastberichten door te sturen. De andere implementaties veronder-
stellen dat de netwerk-hardware onbetrouwbaar is en implementeren daarom een
duurder betrouwbaarheidsprotocol. Sommige implementaties voeren dit protocol
op de netwerkadapter uit, andere op de computer.

Een interessante uitkomst van de metingen is dat het uitvoeren van meer werk
op de netwerkadapter de prestaties van sommige parallelle programma’s verbetert,
maar de prestaties van andere programma’s doet verslechteren. Met name het ge-
bruik van de netwerkadapter om betrouwbaarheid te implementeren kan zowel
positief als negatief uitwerken. Het lijkt daarentegen altijd nuttig om multicast-
berichten door de netwerkadapter (en niet door de computer) door te laten sturen.
De invloed van een werkverdeling blijkt deels af te hangen van de communicatie-
patronen die een parallel programmeersysteem gebruikt. Voor communicatiepa-
tronen die veel relatief kleine RPC-transacties bevatten is het verhogen van de
werklast van de netwerkadapter ongunstig. Voor asynchrone communicatiepa-
tronen daarentegen, is het nuttig om de computer te ontlasten en werk naar de
netwerkadapter te verschuiven.

Hoofdstuk 9 besluit dit proefschrift. Uit het gepresenteerde werk blijkt dat een
communicatiesysteem met een eenvoudig interface een verscheidenheid aan paral-
lelle programmeersystemen efficiënt kan ondersteunen. Zo’n communicatiesys-
teem moet interrupts, polling en multicast aanbieden. De netwerkadapter speelt
een belangrijke rol bij de implementatie van het communicatiesysteem. Met name
multicast kan met behulp van de netwerkadapter efficiënt geı̈mplementeerd wor-
den. De prestaties van parallelle applicaties worden echter niet alleen door het
communicatiesysteem bepaald, maar ook door communicatiebibliotheken zoals
Panda en door parallelle programmeersystemen. Dit proefschrift beschrijft ver-
schillende technieken om ook deze lagen goed te laten presteren en legt verbanden
tussen eigenschappen van communicatiesystemen, eigenschappen van parallelle
programmeersystemen en de prestaties van parallelle programma’s.

Curriculum Vitae

Personal data

Name: Raoul A.F. Bhoedjang

Born: 14 December 1970, The Hague, The Netherlands

Nationality: Dutch

Address: Dept. of Computer Science
Upson Hall, Cornell University
Ithaca, NY 14853–7501
USA

Email: raoul@cs.cornell.edu

WWW: http://www.cs.cornell.edu/raoul/

Education

November 1992: Master’s degree in Computer Science (cum laude)
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

August 1988: Athenaeum degree
Han Fortmann College,
Heerhugowaard, The Netherlands

253

254 Curriculum Vitae

Professional Experience

Aug. 1999 – present: Researcher
Dept. of Computer Science, Cornell University,
Ithaca, NY, USA

July 1998 – July 1999: Researcher
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

July 1994 – July 1998: Graduate student
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

Feb. 1994 – June 1994: Programmer
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

Dec. 1993 – Jan. 1994: Teaching assistant (Compiler Construction)
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

Nov. 1993: Visiting student
Dept. of Computer Science, Cornell University,
Ithaca, NY, USA

Sept. 1993 – Oct. 1993: Visiting student
Laboratory for Computer Science, MIT,
Cambridge, MA, USA

Feb. 1993 – Sept. 1993: Teaching assistant (Operating Systems)
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

July 1992 – Sept. 1992: Summer Scholarship student
Edinburgh Parallel Computing Centre,
Scotland, UK

Curriculum Vitae 255

Jan. 1992 – June 1992: Exchange student
Computing Dept., Lancaster University,
Lancaster, UK

Sept. 1991 – Dec. 1991: Teaching assistant (Introduction to Programming)
Dept. of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

Publications

Journal publications

1. R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. User-Level Network Interface Pro-
tocols. IEEE Computer, 31(11):53–60, November 1998.

2. H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G. Langendoen, T. Rühl,
and M.F. Kaashoek. Performance Evaluation of the Orca Shared Object Sys-
tem. ACM Trans. on Computer Systems, 16(1):1–40, February 1998.

3. H.E. Bal, K.G. Langendoen, R.A.F. Bhoedjang, and F. Breg. Experience with
Parallel Symbolic Applications in Orca. J. of Programming Languages, 1998.

4. K.G. Langendoen, R.A.F. Bhoedjang, and H.E. Bal. Models for Asynchronous
Message Handling. IEEE Concurrency, 5(2):28–37, April–June 1997.

5. H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G. Langendoen, and
K. Verstoep. Performance of a High-Level Parallel Language on a High-Speed
Network. J. of Parallel and Distributed Computing, 40(1):49–64, February
1997.

Conference publications

1. T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang.
MAGPIE: MPI’s Collective Communication Operations for Clustered Wide
Area Systems. In Conf. on Principles and Practice of Parallel Programming
(PPoPP’99), pages 131–40, Atlanta, GA, May 1999.

2. T. Kielmann, R.F.H. Hofman, H.E. Bal, A. Plaat, and R.A.F. Bhoedjang. MPI’s
Reduction Operations in Clustered Wide Area Systems. In Message Passing
Interface Developer’s and User’s Conference (MPIDC’99) pages 43–52, At-
lanta, GA, March 1999.

257

258 Publications

3. R.A.F. Bhoedjang, J.W. Romein, and H.E. Bal. Optimizing Distributed Data
Structures Using Application-Specific Network Interface Software. In Int.
Conf. on Parallel Processing, pages 485–492, Minneapolis, MN, August 1998.

4. R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. Efficient Multicast on Myrinet Using
Link-Level Flow Control. In Int. Conf. on Parallel Processing, pages 381–390,
Minneapolis, MN, August 1998. (Best paper award).

5. K.G. Langendoen, J. Romein, R.A.F. Bhoedjang, and H.E. Bal. Integrating
Polling, Interrupts, and Thread Management. In The 6th Symp. on the Frontiers
of Massively Parallel Computation (Frontiers ’96), pages 13–22, Annapolis,
MD, October 1996.

6. T. Rühl, H.E. Bal, R. Bhoedjang, K.G. Langendoen, and G. Benson. Experi-
ence with a Portability Layer for Implementing Parallel Programming Systems.
In The 1996 Int. Conf. on Parallel and Distributed Processing Techniques and
Applications, pages 1477–1488, Sunnyvale, CA, August 1996.

7. R.A.F. Bhoedjang and K.G. Langendoen. Friendly and Efficient Message Han-
dling. In Proc. of the 29th Annual Hawaii Int. Conf. on System Sciences, pages
121–130, Maui, HI, January 1996.

8. K.G. Langendoen, R.A.F. Bhoedjang, and H.E. Bal. Automatic Distribution of
Shared Data Objects. In B. Szymanski and B. Sinharoy, editors, Languages,
Compilers and Run-Time Systems for Scalable Computers, pages 287–290,
Troy, NY, May 1995. Kluwer Academic Publishers.

9. H.E. Bal, K.G. Langendoen, and R.A.F. Bhoedjang. Experience with Parallel
Symbolic Applications in Orca. In T. Ito, R.H. Halstead, Jr, and C. Queinnec,
editors, Parallel Symbolic Languages and Systems (PSLS’95), number 1068 in
Lecture Notes in Computer Science, pages 266–285, Beaune, France, October
1995.

10. R.A.F. Bhoedjang, T. Rühl, R. Hofman, K.G. Langendoen, H.E. Bal, and
M.F. Kaashoek. Panda: A Portable Platform to Support Parallel Programming
Languages. In Proc. of the USENIX Symp. on Experiences with Distributed
and Multiprocessor Systems (SEDMS IV), pages 213–226, San Diego, CA,
September 1993.

Publications 259

Technical reports

1. R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. Distributed Shared Memory
Management for Java. In 6th Annual Conf. of the Advanced School for Com-
puting and Imaging, Lommel, Belgium, June 2000.

2. R. Veldema, R.A.F. Bhoedjang, and H.E. Bal. Jackal: A Compiler-Based Im-
plementation of Java for Clusters of Workstations. In 5th Annual Conf. of the
Advanced School for Computing and Imaging, pages 348–355, Heijen, The
Netherlands, June 1999.

3. R.A.F. Bhoedjang, T. Rühl, and H.E. Bal. LFC: A Communication Substrate
for Myrinet. In 4th Annual Conf. of the Advanced School for Computing and
Imaging, pages 31–37, Lommel, Belgium, June 1998.

4. H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G. Langendoen, T. Rühl,
and M.F. Kaashoek. Orca: a Portable User-Level Shared Object System. Tech-
nical Report IR-408, Dept. of Mathematics and Computer Science, Vrije Uni-
versiteit, Amsterdam, The Netherlands, July 1996.

5. H.E. Bal, R.A.F. Bhoedjang, R. Hofman, C. Jacobs, K.G. Langendoen, and
K. Verstoep. Performance of a High-Level Parallel Language on a High-Speed
Network. Technical Report IR-400, Dept. of Mathematics and Computer Sci-
ence, Vrije Universiteit, Amsterdam, The Netherlands, 1996.

6. K.G. Langendoen, J. Romein, R.A.F. Bhoedjang, and H.E. Bal. Integrating
Polling, Interrupts, and Thread Management. In 2nd Annual Conf. of the Ad-
vanced School for Computing and Imaging, pages 168–173, Lommel, Bel-
gium, June 1996.

7. R.A.F. Bhoedjang and K.G. Langendoen. User-Space Solutions to Thread
Switching Overhead. In 1st Annual Conf. of the Advanced School for Com-
puting and Imaging, pages 397–406, Heijen, The Netherlands, May 1995.

