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Chapter 1
Introduction

Many Internet-based distributed systems have been designed over the years.The
World Wide Web (the Web) is a well-known example of a system that provides a way to
navigate the Internet [24]. Besides the Web, other ways have been devised to locate dis-
tributed information.For example, FTP, bulletin board servers, and gopher (a distributed
document retrieval protocol used mainly with text-based clients) [12] are alternative
mechanisms to locate information on servers on the Internet, often using a directory-like
structure. Aproblem with most of these systems is that a user has to know exactly on
what server a Œle is in that system's Œle hierarchy. This way of operating is difŒcult and
error prone.

The Web improved this. TheWeb paradigm provides concepts for navigation in the
form of hyperlinks. Documentscontain hyperlinks to other documents that users can fol-
low to go from one page to another. Hyperlinks are Universal Resource Locators (URLs)
that can point to any other Web page. Although the Web is a great tool for making infor-
mation accessible, it does not sufŒce for all applications. Because the Web is large and
because it contains such a diversity of content, it is difŒcult to organise and locate infor-
mation. Althoughoften a relation exists with the originating Web page, it is many times
unclear what information a hyperlink points to.The current-day solution to this problem
is to construct search engines that index the Web so that it can be searched, but there are
situations where this does not sufŒce.

The Web does not provide a solution for all applications.For example, an applica-
tion may want to search all images for a hidden feature that is difŒcult to extract reliably.
Some common features (such as the existence of a boat in a picture) may be recognisable
with ease using existing image processing tools, but rarer or more speciŒc shapes may be
harder to Œnd. Finding a speciŒc tumour growth within a three-dimensional brain scan
may be completely infeasible except for very specialised image analysis software. The
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Web has another problem in this case: patient information can be identifying and may not
be made available on systems external to the system where the information was collected.
It thus is not available to the Web, including to search engines. In general, how to locate
and process information that cannot be downloaded? For other content, say music Œles or
other intellectual property, the same may hold.

Mansion, the model presented in this thesis, provides an alternative to the Web: a
collection of independent domain-speciŒc worlds, each of which consists of hyperlinked
rooms that have a predetermined structure, through which active, autonomous processes
calledagentscan travel to do their jobs. It allows for organising information in an appli-
cations-speciŒc way, so that it can be found and processedŠe ven if it cannot be made
available for indexing or downloading.

Mansion presents a new programming paradigm for mobile agents, centered around
closed, scalable worlds that contain hyperlinked rooms.Mansion provides a structured
environment for mobile agents, where the structure is application-dependent and deŒned
by a world's designer. Information can be provided in a world by placing it in a room.
Agents visit rooms by following hyperlinks. Whenan agent follows a hyperlink, it physi-
cally migrates to the room where the data is, so it can inspect the data thereŠo r meet
other agents there.A mechanism calledconŒnementallows room owners to control the
export of information found by an agent, in case leakage of data must be prevented.

Worlds can have a predictable, application-speciŒc hyperlink layout to allow agents
to locate rooms and content in a straightforward way. Hyperlinks are annotated to help
agents locate rooms. Agents can talk to other agents to negotiate deals or speed up their
search. Agroup of agents may be sent out by companies to negotiate about the time and
price at at which some product, such as electricity, will be delivered. Agentsmay collec-
tively search for difŒcult to Œnd information in high-resolution scans of art in rooms pro-
vided by museums, using special algorithms. Agents may be looking for movies or audio
fragments, be searching for travel advice, or they may be searching archives for scans of
medieval poetry. Agents may also represent medical researchers that visit databases con-
taining sensitive medical images or DNA data.

Throughout this thesis, we will explain the proposed model, how it can be imple-
mented and what it can be used for. The above and other examples will be discussed.A
prototype has been constructed and will be discussed at length in chapter 10.

1.1. Overview of the Mansion paradigm

Mansion presents a new paradigm to structure words for speciŒc applications. It is based
on the notion of closed, application-speciŒc worlds. Eachworld consists of a potentially
large set ofrooms that contain content. Rooms are interconnected by (unidirectional)
hyperlinks. Roomscontain hyperlinks, objects containing content, and agents.Agents
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interact with the world by following hyperlinks and by searching rooms, inspecting con-
tent there. Agents can also communicate with other agents.An agent can only be in one
room at a time and can only access content in that room. In contrast to the Web, hyper-
links are part of a room and not embedded in documents.

A world provides an application-speciŒc environment. Thisenvironment is distrib-
uted: content can be added by different users, typically on their own systems which they
made part of the world. All entities in a world (agents, content, and hyperlinks) are anno-
tated usingattribute setsthat can be inspected by agents to facilitate search. The seman-
tics of attributes are deŒned per application.Users submit agents into a world, which
navigate through a set of rooms by following hyperlinks. Anagent autonomously exe-
cutes a task on behalf of its owner, either disconnected from its owner or interactively.
Agents aremobile: they physically migrate to the location where the data is and access
content there; agents are automatically migrated when following a hyperlink.

A world is physically distributed, with rooms added and managed by different peo-
ple and organisations. Aparticular challenge is to maintain controllability over a world
on the one handŠe nsuring consistency and integrity of the world's layout and attribute
sets, for example, to ensure the world remains searchableŠy et avoiding that a world
owner needs to or can control every detail of it. Like in the web, freedom of users to place
their own content in a world and to search a world's content is considered imperative. A
world designer has a large degree of control over the world's topology and its content, to
ensure it is a coherent, application-speciŒc environment, but should not be able to control
what content is placed in it. Control over who may place what content in a world is
decentralised and lies with the room owner.

The design presented in this thesis is a tradeoff between controllability and security
considerations concerning world design and management on the one hand, and autonomy
and privacy constraints of users of a world on the other hand.This can be formulated as a
question driving the research in this thesis:

Can we facilitate construction of application-speciŒc distributed worlds, in which
users are free to add content, but where the system can be sufŒciently structured so that it
remains understandable by end-users and their agents, thus striking a balance between
controllability and security of the system on the one hand and •exibility and autonomy of
users to implement their algorithms to Œnd rooms and contentŠa nd to process content
found Š onthe other hand?

This thesis describes the motivation, the requirements, the architectural design,
usage scenarios, and various aspectsŠs uch as securityŠt hat impacted the design and
implementation of Mansion and the middleware system that supports it. This includes
the tradeoff apparent from the above question.

The remainder of this chapter describes how Mansion relates to the Web, then
describes other related work, and then enumerates the main contributions of this work.
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1.2. Exploring Mansion: an alternative to the Web

This thesis describes a novel approach to constructing distributed systems.Mansion
introduces the concept of a mobile agent in the context of a Web-like distributed environ-
ment. Mobile agents are mobile programs that can be programmed by their user and
which can autonomously navigate through a world, detached from their user. Because
agents are (mobile) programs, they can be tailored to a speciŒc application.

Mansion makes it possible to deŒne application-speciŒc worlds that contain a set of
rooms and world related content.For example, there may be a book world or an electric-
ity auction world. The former allows agents to Œnd books on certain topics in certain
rooms; the latter may have rooms in which agents negotiate contracts or bid in an elec-
tricity market. Relatedrooms can have hyperlinks between them, possibly corresponding
to some application-speciŒc topological structure deŒned by a world owner. Hyperlinks
and content are described using attributes that allow agents to Œnd their way
autonomously without user interaction.Alternatively, they can search a world with user
interaction, as long as the data they access is not sensitive (otherwise, the agent's current
room should disable communications with the outside world).

Because the structure of a Mansion world can be tailored to the needs of a speciŒc
application (particularly, how hyperlinks are annotated and organised), the idea is that
agents can navigate their environment quickly and independently. By creating different
worlds for different applications, world designers as well as users can shield their agents
from other applications, unrelated content, and unrelated agents, making them operate
more effectively. The Web, in contrast, is unstructured and mixes unrelated information,
requiring search engines and/or techniques such as the semantic web [23] to locate infor-
mation in it. For many applications, a more structured approach may be usefulŠp articu-
larly if agents are to make sense of the environment instead of people.

The Web is based on a client-server model.A Web page is stored on a server, and is
retrieved (downloaded) by a user program called a client.Content is no longer controlled
by the data owner when it leaves the server. As a result, protecting conŒdential, copy-
righted or other sensitive information on the Web is a challenge, except possibly when the
client system runs "trusted" hardware and software as has been attempted with some digi-
tal rights management systems [1]. At the same time, clients are typically dependent on
the interface provided by the Web designer in how they can search remote information
and obtain results. In short, for both sides, it is hard to control how data is selected,
organised, or presented.

Mansion does not use a client-server based model. Instead, codeŠi n the form of a
mobile agentŠi s shipped to the server to search for information1. This can (but need not
always) lead to improved efŒciency compared to downloading and searching data at the

1 A room can be spread over multiple machines to handle the load of multiple agents visiting a room simultaneously. A
room's distribution is controlled the room's owner, and is restricted to a set of machines owned and/or fully trusted by the
room's owner (chapter 3). From the point of view of an agent, a room's distribution is transparent and invisible.
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client side. Because an agent runs on a system controlled by the data owner, it effectively
runs under control of the data owner. Mansion thus takes an opposite approach to the
Web, allowing data to be searched where the data is, and interactions between agents to
take place there. There are speciŒc use cases where searching information ``at the
source'' is useful:

ƒ It decreases the need for implementing speciŒc server-side interfaces to search infor-
mation, where a predeŒned algorithm searches underlying information and organises
the results.Although it may be useful to deŒne interfaces for common tasks, having
agents access (raw) data directly gives users more •exibility in processing informa-
tion to obtain speciŒc results.

ƒ For efŒciency reasons, searching raw data may sometimes be better done at the
source than, after downloading, on the PC of a regular user.

ƒ Agents can process privacy sensitive information which would otherwise not be
accessible. For example, medical data may reside in multiple hospitals that contain
textual patient records, lab results, medical images, DNA data, etc. Such data may
be identifying and would normally not be accessible. Mobile agents can search such
data to, for example, Œnd patients with a rare disease for a clinical trial or for epi-
demiological research.

ƒ Similar privacy-related issues may stand in the way of deploying centralised (search)
solutions for, for example, searching criminal case data stored in police departments.

ƒ In Mansion, data may not have to be exported or made remotely accessible, since
organisations can keep ``their'' data in-house and agents may go there.Carefully
controlled procedures for exporting information selected by mobile agents may pro-
vide a solution to legal, security, privacy or ethical issues that are often associated
with disclosing or exporting privacy-sensitive information outside an organisation.

ƒ Books or documents in libraries may be copyrighted and thus not available on the
Web. In Mansion, with searching at the source, potentially interesting copyrighted
material (e.g., pictures, or music), can be searched before buying it. In addition,
very large data collectionsŠf or example, containing movies, medical images, etc.
may simply be too large to ship over the network. Searching or preprocessing may
need to be done at the source for that reason.

The above cases illustrate that it can be useful to search information at the server side
instead of downloading it to a client machine. Such cases are the starting point for Man-
sion's mobile agent based design.

In summary, mobile agents are active, mobile programs that navigate a world
autonomously. Agents can search and Œnd information or meet other agents to do
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business. They can communicate with other agents in a world. This way, agents can
interact directly with each other to speed up their search by exchanging relevant informa-
tion, or to negotiate package deals or contract terms.At the same time, when the need
exists, interaction of agents with their environment can be constrained by the system.
Example security mechanisms are the application of access control rules to determine
whether agents can access particular rooms or content, or (temporarily) disabling commu-
nication mechanisms while an agent accesses security or privacy-sensitive content. At the
same time, Mansion supports legacy programming languages to ensure that agent owners
have the largest degree of •exibility when writing agents to support their task.

Besides exploring applications and the means to structure worlds and control their
content, this dissertation also explores low-level (operating system-level) and middleware
mechanisms required to support the framework. Security mechanisms are needed to pro-
tect hosts and data, as well as agents and the information stored in them.For example,
the mechanism that Mansion provides to control mobile agents when they search sensi-
tive information, entails that agents may not be allowed to communicate with the outside
world. This shows that agents should not be able to connect to any party except Man-
sion's middleware system implementing theconŒnement policy, illustrating why code
needs to run under control of the data owner.

1.3. Why agent mobility?

A starting point for Mansion's design is that it should support mobile agents. In fact, a
design decision was made that agentsmustmigrate physically to a system where a room
resides (the room's zone), before they can access that room's content. This section moti-
vates this design constraint.

These are the motivating reasons and scenarios for physical mobility:

ƒ Content in a room may bevaluable in an economic sense. Protecting intellectual
property Š suchas music ŒlesŠi s a challenge in the Web, since accessing Œles in
the Web means downloading them to a home computer, which makes them vulnera-
ble to theft. In Mansion it is possible to keep Œles located and accessible on only a
few servers. Letting agents access the Œles to search relevant content, only having
selected information exported to a user, may make it easier to limit and control dis-
semination of content.

ƒ Content in a room may besensitive in a legal sense. Privacy sensitive medical data,
such as medical images, may not be distributed freely because of legal or ethical
constraints. However, it may be beneŒcial when medical researchers can access data
to Œnd patients with a speciŒc rare disease, in preparation of a retrospective study or
for a medical trial, for example. Allowing agents to migrate to data to search it
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locally to Œnd matching patients, without being allowed to distribute the data, pro-
vides a solution to a concrete problem. It may allow researchers to Œnd eligible
patients for a trial, involving the doctor to ask these patients to enlist when relevant.

ƒ EfŒciency.If a room contains a lot of data that needs to be inspected by a program,
it may be inefŒcient to Œrst transfer all the data to a home machine for inspection.
Often, it makes sense to (pre-)Œlter the data at the data's location, and to ship data
home only after Œltering.Agents can do the Œltering themselves, possibly in a cus-
tomised way. Note that there is a tradeoff here: if computation is expensive com-
pared to shipping the data, especially if many agents do computation over some
dataset at the same time, it may be better to ship the data out over the network to the
client machine and to let the interested party do the computation there2.

ƒ Flexibility. Many databases that contain large amounts of data, provide a (Web ser-
vice) interface for searching this data. These interfaces are either based on prior
indexing of (meta)data, or on a Œltering algorithm that searches raw data on the •y,
e.g., with web services for searching (matching) standard annotated genomic data-
bases [103]. Both (prior) indexation and Œltering are in•exible. For example, it is
unclear whether generic tools can describe the contents of images sufŒciently well
for all tasks. Mobile agents instead search raw data, implementing a search algo-
rithm most suitable to the task at hand. Although searching raw data may be inefŒ-
cient compared to approaches that use prior indexing Œltering, agents may execute a
speciŒc task more precisely. As computing speeds increase, having agents search
raw data at the server side may become an increasingly realistic option, even if these
agents consume considerable amounts of CPU time and memory. Especially for
research, •exibility and end-user customiseability may give mobile agents an advan-
tage over Web services with hardwired Œltering, searching, or indexing routines.

Besides the above motivating examples for agent mobility in Mansion, other motivating
reasons for mobile agents were explored in previous work [28,69]. Theseare slightly out
of scope for Mansion, but are discussed brie•y below.

Disconnected use.A classic motivation for using mobile agents is that executing an
agent's task does not require online availability of the user behind the task.For example,
one can submit an agent into the network from a PDA or mobile phone, board a plane
from Europe to the U.S., and after the plane arrives sev en hours later, collect the agent
with its results.A similar idea may be where a user submits a task from a PDA which is
too heavyweight to execute on a mobile phone. Although Mansion can support detached
usage scenarios, these are not the primary motivating examples for the design, and are not
explored in depth in this thesis.

2 Note that there may be some Elastic (cloud) solutions which are usable to increase computational capacity under load;
these can be deployed as long as these machines can be considered trusted from the room owner's perspective (chapter 3).
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Privacy. Another motivation for using mobile agents is that they can enhance pri-
vacy of users. An often-used approach to identify users on the Web is to track them
means of their IP address or other identifyinglocation-boundfeatures. Mobileagents
may hide a user's physical point of presence on the Web. Agents can form à̀ mobile
proxy'' that allows a user to connect with services through a continuously changing IP
adress. Whencombined with other privacy-enhancing or anonymisation techniques,
anonymising `̀proxy'' agents may provide a solution to enhance online privacy. How-
ev er, to achieve real anonymity and unlinkability, various side issues have to be consid-
ered. For example, depending on the adversary model, having agents phone home may
void unlinkability. It is also unclear how an end-user can pick up an agent with its results
without the agent becoming linkable, and log Œles of various systems may also permit
reconstruction of the a user's interactions. Still,protecting end-users against adversaries
who are not omnipotent may achievable using mobile agents.Privacy may thus be a
motivation factor for using mobile agents. Note that Mansion can provide a way for
pseudonymisationof agents when they enter Mansion (Secs. 3.10, 9.1.3).The use of pri-
vacy-enhancing techniques in Mansion has not been studied in depth.

This dissertation describes the architectural model and the implementation of the
Mansion system. Before listing the contributions of this thesis, related work is described.

1.4. History and related work

The Œrst mobile agent system,Telescript, was a commercial system with an inter-
preted language using which agents could be programmed to travel f rom one physical
`̀ place'' to another [126]. After Telescript, in the '90s, a number of mobile agent systems
were conceived [19, 92, 87, 55],each specialising in some form of mobile code support,
mobility mechanism, security principles, etc.Before describing mobile agent systems,
we describe some earlier work in distributed systems that laid a foundation for mobile
agent system development.

1.4.1. Mobilecode systems

Many technical issues related to code mobility have been explored in the context of dis-
tributed operating systems [113,13, 29], about a decade before the advent of mobile
agents. Themain goal of code mobility in the context of distributed operating systems is
to migrate processes from one machine to another transparently, usually to facilitate load
balancing or fault tolerance.

Examples of distributed operating systems (DOSes) are Chorus and Amoeba[113].
A DOS can be deployed on multiple physical machines, while giving the impression of
working on a single machine. To a user, a DOS typically looks like a single Operating
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System (e.g., UNIX).Processes in a DOS could be placed anywhere on the underlying
set of physical machines. When a DOS supports process migration, processes are
restarted at the same point in execution as before migration. This is often referred to as
strong migration. Strong migration can be awkward to implement; a process is migrated
and restarted transparently, together with its internal state including registers and stack
pointers, at exactly the same point in its thread of execution as where it left off before
migration. A problem is that after migration, references to local resources (e.g., open
Œles) may have to be remapped, to point to a local resource or to refer back transparently
to the original resource, depending on the resource and DOS implementation. Dealing
with signals and timers is also difŒcult.

Weak migration is the opposite of strong migration. A process starts at its pro-
gram's initial entry point (main) after migration.Using weak migration, a process (i.e.,
its programmer) is responsible for packaging the process' relevant state before migration,
and for unpacking it after migration; nothing happens automatically [69].

Strong migration is convenient from a programmer's perspective. For example, a
process may keep an implicit list of `̀ visited sites'' on its stack as the result of a recursive
algorithm that visits multiple rooms, unwinding the stack and travelling back automati-
cally after hitting a dead end. Such an algorithm is harder to implement using a weak
migration model, as the language's (implicit) support for recursion by pushing data on the
stack cannot be supported or easily as the stack and other runtime information is destruc-
ted at migration time.Weak migration is more convenient from the perspective of the
system designer, as in this case he does not need to worry about the issues that were
described for distributed operating systems at migration time. Note that most distributed
operating systems were running on homogeneous hardware; for distributed (operating)
systems running on different hardware architectures, implementing strong migration may
be infeasible, particularly when supporting compiled binary programs.

Most traditional programming languages, for example compiled C, C++, Java (or the
JVM as a whole), or Python, were not designed to support (runtime) process migration.
This is particularly true if a program is to be migrated over different CPU architectures.
Java or other interpreted languages built upon a virtual machine can theoretically support
strong migration more easily than compiled binary programs can. However, for Java-
based agents, mobility support requires modiŒcations to the underlying virtual machine
[14, 25].

Distributed operating systems that support strong migration, have to manage issues
like capturing and reconstructing operating system-speciŒc process stateŠs uch as open
Œle descriptors and alarmsŠa fter process migration themselves. Theseproblems can
often be solved relatively straightforwardly, since distributed operating systems provide a
controlled environment that is designed speciŒcally for tasks like load balancing and
process migration.A particular advantage of distributed operating systems is that these
systems usually are distributed over a limited set of homogeneous resources on a local
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area network, each running an identical distributed operating system image.From a secu-
rity perspective, the advantage is that a DOS is deployed within a single trusted adminis-
trative domain. eachrunning an identical distributed operating system image.

Unfortunately, the realities of Internet-based distributed mobile agent systems are
much more harsh than the homogeneous, single-administrator world that underlies these
distributed operating system environments. Providing a truly transparent strong migration
model is much more challenging to maintain (if not practically infeasible) in more hetero-
geneous Internet-based systems than in distributed operating systems[69, 112].

1.4.2. Internet-based, heterogeneous distributed systems

Internet-based systems are systems that are spread over multiple administrative domains
spread across the Internet. Internet-based systems have a far-from-uniform underlying
substrate, in terms of hardware and software stacks. Machines in different administrative
domains differ in terms of hardware (e.g., CPU type, speed, and load) and in terms of
operating system, conŒguration and administration; that is, this environment is extremely
heterogeneous. Network speed, reliability and reachability (the ability of a given host to
reach a given other host anywhere on the Internet) are neither guaranteed nor uniform on
the Internet[26]. As a result, many of the assumptions applicable to distributed operat-
ing systems cannot be applied to Internet-based systems. Also, the security requirements
of current-day Internet-based agent systems are often more stringent and also more com-
plex than for the single-administrator, trusted-hardware model that underlies most distrib-
uted operating systems developed in the '80s. The following sections describe some
solutions that have been conceived in the context of heterogeneous Internet-based distrib-
uted systems.

1.4.3. Computationalgrids

A conceptually similar, but often different and often much more simplistic, descendant of
distributed operating systems are computational grid systems, such as Globus or gLite.
Globus is a minimalistic middleware, or toolkit, that runs on a large set of cluster comput-
ers all over the world. Grid middleware makes resources all over the world available for
(scientiŒc) applications. In a sense, the grid can be seen as a giant cluster computer,
except that it is heterogeneous and that the network speeds, especially between clusters,
can vary widely. Globus allows distributed (supercomputing) tasks to run on computing
resources owned by various organisations all over the world. Thesecomputing resources
are typically cluster computers running Linux, augmented with various components of
the Globus toolkit which allow for, among other things, submission of jobs (programs)
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into the cluster. Typically, storage and computational resources are owned by virtual
organisations (VOs), and users must be authenticatable as members of such a VO before
they can submit computationaljobsto the resources owned by a VO [9, 38].

An extension of the Globus middleware that attempts to provide a more concise
view of the `̀ cluster world'' w hich underlies a grid, is thegLite [59] middleware Š a
middleware system based on the Globus toolkit, built by a team of researchers from
CERN and various contributors. The difference between gLite and Globus is that gLite
comes with a set of overarching services, such as job submission services using which
researchers can submit their jobs so that they can Œnd their way to any cluster in the gLite
grid. Otherexamples of global services provided by gLite are Œle and resource naming
(lookup) services that allow users or jobs to locate resources in the system.

Globus or gLite do not provide a single ``Operating System'' v iew to applications.
The grid does not hide distribution aspects from applications either. Grid systems are
implemented by a middleware system running on top of standard operating systems, that
do not support process migration, certainly not strong migration. Programming or using
applications on the grid is often rather low lev el and in many cases requires speciŒc han-
dling of errors due to failing jobs or incompatibilities on different machines, although
some workarounds exist [44,75].

Globus (and gLite) are somewhat minimalistic by necessity; these systems have to
run on a variety of cluster machines, each with different conŒgurations and different
administration, on which they hav eto permit compute jobs to run in as efŒcient and as
simple a way as possible. The intended user community of a grid consists of scientists,
who are supposed to be able to handle considerable complexity and to invest the effort
needed to get their applications running in the system.

Programs submitted (as jobs) into the grid are not validated or signed for security;
the grid VO administrators trust their users not to submit malicious code into the system.
The relative trustworthiness of theŠt ypically smallŠs et of scientiŒc users that use a
VO, keeps the security model of grids tractable. However, this trust model is also a weak-
ness of grid systems. If a VO's systems are used by many users and also used for running
privacy-sensitive tasks, one of the users may take advantage of a vulnerability of the sys-
tem and gain access to sensitive data of another user using a malicious job.

In contrast to grids, Internet-based mobile agent systems may be deployed over a
large set of arbitrary and a priori unknown machines, owned by arbitrary users. Agents
may be submitted by any user, and may consist of arbitrary (unsigned) code. The intents
of users may range from running a simple computational or collaborative task, to launch-
ing a distributed denial of service attack, to spamming all citizens of all industrialised (or
nonindustrial) countries in the world. The difference between grids and mobile agent
middleware, thus, lies in the scale and the number of users and the assumed trustworthi-
ness of users in the relatively controlled environment of computational grids.
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Whereas most grid systems use ordinary security controls based on the traditional
UNIX user-based discretionary access control models, with a relatively high degree of
trust in the users and in the programs that these users submit, such a ``trusting'' security
model does not sufŒce for very large-scale mobile agent systems where we can make lit-
tle or no assumptions on the users who can inject agents into the system, or their intent.
In short, the gridtrust modeldoes not scale to general Internet based systems.

1.4.4. Desktopgrids

Desktop grids (DGs), such asXtremWebor BOINC from the University of California at
Berkeley [34, 10]take a  radically different approach to providing infrastructure for large-
scale scientiŒc computations than traditional grids. Desktop grids are designed to ``har-
vest'' CPU cycles and resources of (idle) machines within an organisation or on the Inter-
net. On participating machines, a middleware system that fetches jobs is run by the
owner. As long as the owner of the machine does not need its resources, the desktop grid
job may run on itŠo ften, the DG environment runs as aniceprocess (i.e., at low sched-
uling priority, inv oked using thenice system call), or as a screen saver. Another name for
using idle time of contributing computers on the Internet is volunteer computing.

Desktop grids do not accept arbitrary programs from arbitrary users on the machines
they manage. Instead, in most cases, the potential programs are screened and/or pro-
grammed by trusted administrators of the desktop grid, possibly signed by them, and only
after the jobs are sufŒciently vetted may they be submitted to the desktop grid. Desktop
grids can be seen as a somewhat more •exible version ofSETI@Home.3

Condor [114] is a more general-purpose version of a desktop grid, intended to be
managed in (large) organisations where sets of machines may be idle for large periods of
time, for example at night. Some hospitals and some universities run `̀ Condor pools,''
sets of machines that run the Condor middleware. In Condor, typically, only trusted
administrators submit (signed) jobs to run in the Condor pool. The Condor middleware
accepts only authorised jobs, to avoid that (potentially sensitive) Œles or resources from
the hosting organisation become corrupted or stolen, although this risk still exists Š how
does a Condor administrator vet the code that a researcher wants to submit into the pool?

An advantage of a Condor pool compared to a desktop grid, is that it runs in a rela-
tively small environment, typically a single organisation. This may allow trusted local
users (e.g., researchers) to use the Condor pool. In this case, depending on regulations
and deployment aspects, it may be possible to submit computations and sensitive data
into the pool, as the pool runs in the researcher's org anisation. Note that many hospitals
to date also maintain a small cluster computer, which may be considered safer for some
(sensitive) scientiŒc applications.

3 http://setiathome.berkeley.edu/
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An interesting distinction between (desktop) grids and mobile agent systems, is that
in a desktop grid, users typically submit a (trivially parallel) `̀ bag of tasks'' t hat should
be run on a set of remote machines in the grid, typically each with their own piece of
input data. This is a form of `̀ remote evaluation.'' A fter a task is completed, the user
(automatically) obtains the results.Mobile agents, also calleditinerant agents, take a dif-
ferent approach. In contrast to desktop grid applications, which are often regular applica-
tions executed by a script, agents typically (autonomously) navigate through the system.
This navigation ability has implications for the way in which applications are pro-
grammed (agents need to be location and mobility-aware), and for the abstractions pro-
vided by the middleware [52]. Securityissues (e.g., related to safeguarding data stored
in mobile agents, authentication, and protecting hosts on a multihop itinerary) are dis-
cussed throughout this thesis.

1.4.5. Internet-based mobile agent systems

As mentioned before,Telescript was the Œrst mobile agent system. It featured an inter-
preted language using which agents could be programmed to travel f rom one physical
`̀ place'' to another [126]. Telescript featured strong migration, using an interpreted,
object-oriented language similar to C++.A speciŒc operation in Telescript was themeet
primitive, which allowed agents to colocate at some known place and time.Colocated
agents could invoke methods on each otherŠf or example, where one of the agent imple-
mented a service. This provides an alternative to (generally slower) remote invocation, as
colocated agents can interact in real time without network delay. Telescript was a com-
mercial system and is no longer in production.

A canonical example of a mobile agent application is travel planning. Travel plan-
ning must be tailored to the needs of a speciŒc user, who wants to plan a speciŒc trip. In a
travel planning application, a site accepts programs that are written by users for the task
of planning an itinerary, and possibly for booking the trip.Executing the task requires
migration autonomy, as the agent must be able to visit sites of different travel agencies,
airlines, hotel booking sites, etc., to Œnd the cheapest offer meeting the agent owner's
requirements. Also, security is imperative: the agent should be protected against tamper-
ing and cheating, for example to avoid that it thinks that it is getting the cheapest deal
while in fact it has taken the most expensive offer.

Internet-based mobile agent systems have a different underlying systems model
compared to the distributed systems described before in this section.If mobile agent sys-
tems aim at Internet-scale deployment, issues such as portability and security arise.
Mobile agents can generally not assume to be running on a (relatively) trusted set of clus-
ter computers or on some homogeneous set of machines in a local network, as agents go
out to visit remote machines containing interesting content that may be located anywhere
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on earth. As with desktop grids, this may include machines owned by regular users or
companies on the Internet, which cannot be trusted in advance. Incontrast to desktop
grids, mobile agent systems should allow for execution ofarbitrary programs, generally
written by arbitrary (untrusted) users.

Agents may be customised or implemented by users to embed the search strategy or
intelligence they consider useful. Mobile agents can be tailored to the needs of a speciŒc
user. Flexibility (of implementation) is a primary design goal.Due to the •exibility-of-
code requirement, it is not feasible to verify or vet all possible mobile agents, or to make
any a priori assumptions on their correctness or intent of the agentŠp articularly in a very
large-scale environment Š asmay be feasible in desktop grids.There may not even be a
central entrance point through which agents are submitted. In short, few assumptions can
be made regarding the trustworthiness of people, content, agents, and hosts that are
involved in designing, writing, and deploying mobile agents, mobile agent systems, and
content.

The primary focus of most mobile agent systemsŠt he majority of which were
designed in the second half of the 1990sŠi s to achieve end-user agent programmability
and •exibility while meeting the goal of portability (being able to run agents in a hetero-
geneous environment), and security. The approach taken in most cases is to support only
one particular (relatively portable) programming language, usually Java. Java is often
chosen because it provides code portability as well as security bysandboxinginterpreted
code running inside a Java virtual machine (JVM), although standard Java does not pro-
vide a way to serialise the state of running threads (for strong migration).Other exam-
ples of interpreted (portable) languages that are used in mobile agent systems are Safe-
Tcl, Scheme, and Python [127,29, 63]. Some systems support (interpreted) C agents.
These generally use some form of code signing for security [91]. Code signing is rather
in•exible, and primarily useful for binding agents to identities.

Despite years of (research) work, no real `̀ industry standard'' agent system has
emerged, particularly not for mobile agent systems.JADE, a Java-basedmultiagent sys-
tem backed by a consortium of telecom providers, is one of the few agent systems in
active dev elopment to date that has a signiŒcant deployment base. JADE is however
mostly focused on stationary agents, with different agents executing (part of) a task, and
it has only limited support for agent mobility. The system's main function is to allow
agents that run on different machines within a closed system to collaborate[21]. Secu-
rity extensions called JADE-S exist that provide agents with mechanisms for authentica-
tion and authorisation of other agents, containers (execution environments that agents run
and invoke services in) and services, based on decentrally managed delegation certiŒcates
[94, 61]. However, these mechanisms alone do not sufŒce to consider JADE secure when
considering untrusted or malicious mobile agents or agencies in a distributed context
[32, 119]. Some work has been done to support (selective) encryption of content of
mobile agents in JADE, [46], but these have limited usability as the overall security
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model for mobile agents is incomplete. For example, integrity protection of agents (i.e.,
audit trails) or means for authenticating and expressing trust inagencies(the middleware
on a host that receives agents) are lacking.

Mobile-C is a mobile system that is, like JADE, compliant with the Foundation of
Intelligent Physical Agents (FIPA) standard [21] agency-model [28]. Mobile-Cis spe-
cially designed to be used in (closed) factory automation systems, where all agencies and
the agents in them are essentially trusted. The main threats considered here are external
threats, e.g., where an outsider tampers with an agent while in transit.The framework
makes use of ssh so secure agent transport, where known_host Œles are distributed
between all peers to establish mutual trust.The system is not designed for large-scale
use. The C agents are not compiled binary programs but run in an interpreter.

Notable security work is done in the SeMoA mobile agent system [99].SeMoA
uses a specially constructed Java agent server that applies various security techniques. For
example, it can apply Œlters to incoming and outgoing agents, which allow for authentica-
tion and conditional encryption or decryption of content and for constructing basic audit
trails. SeMoA applies various techniques to prevent agents in a virtual machine from
invoking objects instantiated by other agents. Because SeMoA is constructed using a reg-
ular JVM with unmodiŒed packages, however, it suffers from inherent shortcomings in
the Java security model such as insufŒcient protection against a number of DoS attacks
that can be mounted from within an agent, including memory exhaustion [99].

Another agent system that is currently in active dev elopment is AgentScape [127].
AgentScape is a mobile agent platform initially developed at the Vrije Universiteit Ams-
terdam4. Work done in AgentScape includes resource management, service composition,
and agent matchmaking and clustering [72,84, 83]. Agent servers (currently supporting
Java and Python agents) are used to manage and secure agent execution and provide them
with an API. AgentScape has many similarities to Mansion, and parts were co-developed.
AgentScape uses the Agent Operating System described in this thesis (Ch.4). It makes
use of its agent container integrity protection mechanisms and it can also use audit trail
based security mechanisms similar to those presented in this thesis[116]. In contrast to
JADE and Mobile-C, AgentScape is designed for large-scale distributed use; it shares
many of Mansion's design goals. Apart from implementation, Mansion is distinct from
AgentScape in the paradigm it provides and its use of jailing (Ch. 6) to manage host pro-
tection in a language-independent way.

The prevalent way to approach security in mobile agent systems is to force agent
programmers to use one or a small set of programming language(s) that match available
agent servers or containers. This approach has disadvantages, as it a priori excludes the
use of other languages that may potentially be better-suited to perform a given task. It
also precludes the use of legacy programs Š often ready at hand to implement some
task Š in or by mobile agents.It is possible that the restriction in choice of programming

4 AgentScape is currently supported by and maintained by a consortium, led by TUDelft and Thales NL.
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languages, particularly the lack of support for ``legacy'' p rograms including scripts and
compiled C programs, is a cause for mobile agent systems not having taken off at a large
scale in practice, as opposed to, for example, grid systems that readily support (existing)
programs written in any language that is supported by the underlying (UNIX/Linux) sys-
tem. There exists an enormous amount of efŒcient and ready to use legacy code, imple-
mented in various languages (think also of, e.g., perl), sometimes available only in binary
form. Software engineers may avoid solutions where the reuse of existing code is pre-
cluded.

1.4.6. Advancing the state of the art

In 2004, an overview of some possible causes for the lack of uptake of the mobile agents
paradigm was given by one of the authors of TACOMA [50]. The proposed causes
included security being left as an unsolved problem in most systems, a repeated focus on
Java-based agents in most solutions, and also the lack of a ``killer application'' and the
inability of the mobile agent community to ``converge on a standardised protocol and pro-
gramming model for Internet applications using [agent] technology.'' W hether or not
these claims are right, Mansion addresses and overcomes some of these issues.

Mansion presents a new programming paradigm for mobile agents, centered around
closed, scalable worlds that contain hyperlinked rooms. Mansion provides astructured
environment for mobile agents, where the structure is application-dependent and deŒned
by a world's designer. The paradigm will be explained in Chapter 2. Support for applica-
tions Š centeringaround access to sensitive information Š that are hard or impossible to
solve without mobile agents will be presented in the next section.

Most security problems common to mobile agent systems are addressed.This thesis
presents solutions for host protection, protecting content (using access control), and pro-
tecting an agent's state against tampering. It also presents control mechanisms that
include controlling membership of a world and means for global resource usage account-
ing and limitation. Interoperable protocols and APIs for (portable) migration and audit
trail construction have been implemented and tested for interoperability and performance.
A low-level jailing system provides a portable way (among UNIX systems) to securely
execute mobile agents written in different programming languages, including binary
agents, in a conŒned environment that can be controlled using a simple, intuitive policy
model. Combined, many of the problems of mobile agents that were discussed in in[50]
are addressed by Mansion.

One particular security problem is not addressed. Protecting an agent against a mali-
cious host that tampers with the agent's code at runtime is infeasible in practice and out-
side the scope of this thesis; we assume that agents trust hosts that they migrate to, and
any potential malicious alterations to an agent cannot spread from the host that these are
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made on. Although approaches are known to exist to help protect agents against this
threat for at least a limited period of time (e.g., code obfuscation, see [48]), these are not
generally applicable to all existing programs or programming languages.

Mansion can detect tampering with an agent's state after the fact, using audit trails
(Sec. 8.3.1); this provides a powerful deterrent against misuse. Based on these, an agent's
owner can determine whether a given agent has been tampered with on a particular
machine. Thepresented approaches support reputation-based mechanisms for trust man-
agement and, practically, to prevent agents from migrating to hosts that may have tam-
pered with agents. Because agent code issignedfor integrity, and because an agent is
restarted each time when migrated, tampering with an agent is limited to execution/run-
time modiŒcations on their current machine, and cannot spread to subsequent machines.

Protecting agent's state is important because data may be falsiŒed in mobile agents.
(Commercial) sites that receive agents may have an incentive to cheat, for example, by
giving an agent a low quote to make it decide to buy something, while the real price is
signiŒcantly higher than the agent expects. There may be an incentive for hosts on an
agent's itinerary to tamper with an agent's collected state from an earlier host (ahop): a
host may up the quotes obtained on earlier hops, to make its own (high) quotes look bet-
ter. We prevent the latter attack by ensuring a secure, tamper-evident audit trail of all
changes made to an agent throughout its itinerary. Combined with knowledge of the
agent's decision making algorithm and the amount of money actually spent (the decision
made), an assessment can be made whether the agent was cheated on a particular hop.
Such veriŒcation can take place probabilistically: an agent's owner may occasionally go
through a returned agent's audit trail to recalculate all intermediate results, based on the
offers that were collected by the agent to establish that the agent indeed got the lowest
offer on a given machine and was not tricked into it.

Detection of fraud can have direct repercussions for the fraudulent host (i.e, removal
from the world) or, if evidence is not hard enough, may result in its reputation decreasing.
Reputation-based techniques may be implemented by agents (or their owners) exchang-
ing information about possibly fraudulent hosts, which can result in agents avoiding
machines with a large `̀ fraud probability.'' Reputation-based techniques may be applied
at the application level and are outside the scope of Mansion.

Protection of resources is further achieved by access control and other approaches
that will be presented in later chapters.

1.4.7. ConŒnedagents

A particular contribution Š an attempt to address the lack of a ``killer app'' f or mobile
agents Š isthat of agent conŒnement. The paradigm provides a special logical construct
called a conŒned room.A conŒned room is a special room that agents can migrate to. In
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this room, agents can search for information but they cannot take anything out: no con-
tent, no notes, no memory. Agents are restarted with each migration (Mansion imple-
ments weak mobility), so they retain no memory when they leave a conŒned room. Fur-
ther, agents in a conŒned room cannot communicate with agents outside the room, and
they cannot store anything to keep with them as they leave, as would be allowed in a reg-
ular room.

The idea of conŒned agents is that they can safely search conŒdential or other sensi-
tive information in a conŒned roomŠt hey execute on a system of the data owner, so the
data owner can be sure that the room's restrictions are appliedŠw ithout risk of this
information leaking out.If the agent has found any information that it thinks might be
interesting for its owner, the agent must pass this information to a special ``guardian
agent'' provided by the room's owner, that inspects the information or request, and if
allowed, provides the agent with a means to obtain selected information after it left the
The way in which information is exported and under what conditions (payment, nondis-
closure contract, etc.) is determined by the room owner.

The main added value of entering a conŒned room from the agent's perspective, is
that the construct allows them to access information that may otherwise be inaccessible
(due to e.g., intellectual property, Œnancial or privacy constraints), and search it before
selecting data for buying or otherwise obtaining it afterwards.

Conceptually, being in a conŒned room is a bit like being in a library containing sen-
sitive documents. Onecan enterŠi f authorised Š to read the documents, but one is not
allowed to take any notes or copies of what is seen. If one wants to take information out,
one needs ones notes to be vetted by the library clerk.A special property in this analogy
is that one will be brain-wiped by the clerk when leaving because the library owner is
paranoid that one has photographic memory and may pass on even the slightest bit of
information. Onlyinformation explicitly vetted by the clerk may be exported, and often
only in original format (your notes will be destroyed as the clerk is worried about
steganography). In short, selected data is exported only in a way deemed safe by the
library owner, possibly after signing a contract or paying for the information; nothing of
the agent's original search remains after it left the conŒned room.

Although some earlier work described conŒnement, that is, searching under control
of the data owner, as apossible selling point for mobile agents [100,22], these approaches
focused mainly on intellectual property protection, where some compressed information
on results (e.g., thumbnails of images) could be returned to clients to be used for a deci-
sion to buy the information.This thesis is the Œrst to present conŒnement as a solution to
search privacy sensitive medical data which provides a stronger form of conŒnement,
where manual checking or, possibly, contract negotiations may be required beforeany
result is returned, although weaker conŒnement regimes can also be applied.Further, it is
the Œrst to present conŒnement as a genericlogical programming construct that is visible
to agents as part of a programming paradigm.
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1.5. Contributions of this thesis

The contributions of this thesis are broad.
First, a paradigm for modelling and structuring applications is presented, using the

concepts of application-speciŒc worlds that contain hyperlinked rooms where agents can
go to meet or Œnd content (chapters 1-3).This paradigm allows for development of dis-
tributed worlds for different applications. The thesis explores some applications that can
be supported by the paradigm and describes a prototype application (chapter 10).

Second, an application programming interface (API) and a middleware design are
presented that support the paradigm (chapters 4-9). The middleware addresses practical
problems, such as the problem establishing audit trails that cannot be tampered with, and
support for (compiled) legacy code that has not been solved by other agent systems.The
middleware system has a modular design. Among other things, the thesis presents a com-
mon communication substrate that allows for secure (distributed) deployment of the sys-
tem. Thissubstrate, like other components of the Middleware, is reusable in other dis-
tributed (mobile agent) systems. The various components, protocols, and concepts that
compose the Mansion system presents (sometimes incremental) novelty.

Third, the conŒnement model, presented in the context of Mansion, provides a novel
approach for maintaining control over export of information, while permitting freedom to
agent owners to implement programs and algorithms that best suit the task at hand (chap-
ter 2). A concrete, real-world scenario involving privacy-sensitive medical images that are
made available in different rooms by different hospitals, to allow for search by (conŒned)
agents of researchers while allowing for tight (manual) control over the export of infor-
mation, provides a concrete use case for this model (chapter 10).

Fourth, the design of the paradigm and the middleware system that supports it is a
contribution in itself (overall thesis, chapter 11). The design process involved a careful
tradeoff for every architectural decision, to ensure that the distributed system and the
components in it provide sufŒcient control mechanisms so that the system can be effec-
tively protected against misuse, faults, malicious host, rogue agents, etc. in a scalable way
(also from an administrative perspective), while at the same time ensuring that content
owners are free to autonomously add systems (computers), information, rooms, hyper-
links and other content, and that agent programmers are free to use whatever program-
ming language or algorithm they like and can go to any room they like without being
tracked or otherwise controlled5 by the world owner or some central authorityŠi n short,
while designing the system we took care to balance and maintain controllability, scalabil-
ity, security and autonomy of the system. By design, the model allows different indepen-
dent trust models (from the perspective of world owners, content providers and agents,
respectively) to be mapped on a given system.

5 An agent location service which tracks agents is designed, but there may be multiple of these services, each managed
by a different authority, and selected by an agent owner on world entrance.
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1.5.1. Research question

The Mansion paradigm and its validation presents the main contribution of this thesis.
Overall, the following research and design question drove the Mansion design:

Can we design a secure distributed system that can be structured such that content can be
effectively and •exibly located by mobile agents, which balances security, scalability and
controllability concerns of world and content owners on the one hand against the need
for autonomy of content owners and agents owners on the other hand?

A recurring design theme was the tradeoff between controllability and autonomy. The
tradeoff between these requirements occured with almost every major middleware com-
ponent's design. For example:

ƒ For a world: how to control world membership in a secure way, without at the same
time requiring the world owner to control every detail of a world? More speciŒcally,
ensuring the system remains scalable (also in an adminstrative sense), at the same
time ensuring the world remains controllableand preventing the world owner to
interfere with a content owner's autonomy to place hyperlinks or content in the
world?

ƒ For content and host owners: how to control agent processes such that system secu-
rity can be protected and conŒnement policies can be imposed, while avoiding that
agent programmers must use a speciŒc agent programming language and avoiding to
have to snoop on every instruction an agent program makes?

The question of how to ensure autonomy at one level while providing security or control-
lability at another level is a generic one that touched every aspect of the system's
design Š from low lev el aspects to the design of the paradigm.

1.5.2. Dominantdesign requirements

From the above, we selected the following high-level design requirements to drive the
design:

ƒ Conceptual clarity. The system needs to provide a clear programming model using
which agents can Œnd information effectively, within a potentially large-scale dis-
tributed system.It should be possible to customize worlds to a speciŒc application's
needs and express the world's structure, content and rules to agent programmers,
such that programming agents to Œnd information and/or interact with other agents
is doable.
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ƒ Security. The system needs to address security issues, like how to protect hosts
against mobile agents and vice versa, without imposing too many constraints on the
agent programming model, preferably with supporting legacy and binary agents.

ƒ Scalability. It should be possible to manage membership of a world effectively,
including the ability to add and remove systems, and ultimately content, from a
world, when such systems or content do not adhere to the rules. while ensuring that
the underlying system remains manageable and scalable.When load increases on
(parts of) a world, the system should be extensible with hosts and (replica) content
to cope with this load gracefully. Administrative scalability needs to be taken into
account: an increase of load in a given room should not involve action of otherŠo r
worse, centralŠa dministrators; similar for removing erroneous hosts or damaged
content.

ƒ Autonomy versus controllability. The design should allow people to create, manage
and add or remove content and agents autonomously, without central control over all
content or every detail. Security and controllability should be possible at the world
and other levels, while content and agent owners' autonomy (and privacy) should
not, or in the least possible way, be violated. Given this tradeoff, world designers
should be able to in•uence the decree of control needed and possible.

The Mansion design is the result of a design process that took the above requirements as
leading. The result: the Mansion paradigm, the programming interface and the middle-
ware system that supports it, is presented in this thesis and summarized below.

Mansion provides a paradigm to structure mobile agent applications.The paradigm
provides closed, application-speciŒc worlds to allow world designers to create worlds
speciŒcally for their (distributed) application. Agents can be programmed speciŒcally for
a giv en world. The logical structure of a world should allow agents to be tailored pre-
cisely to the application for which it is built; the Mansion logical model for structuring an
agent's environment allows doing so. The prototype world demonstrates that, given a sim-
ple hyperlink layout, it is straightforward to program an agent to search the world.

From a distributed systems perspective, the system should be secure, efŒcient, sufŒ-
ciently reliable (i.e., making sure that an error in one component can bring down a whole
system), and it should be scalable.Scalability concerns how a system can cope with
increasing numbers of machines, administrators, and content, possibly spread all over the
world, and also with large numbers of agents visiting a world. A system needs to provide
fairness from the perspective of components and resource usage, as well as from an
administrative perspective: the burden of administering new rooms, content, users, agents,
etc., should be spread more or less equally over the participants of the system and not be
placed on, say, a single administrator or component of the system. Scalability issues were
not tested extensively in our researchŠw e tested a prototype world which ran on the
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DAS3 cluster computer, but have not deployed the system at large scaleŠb ut are
addressed throughout the design. Scalability aspects are described speciŒcally in Chap. 3.

Sometimes, requirements are in con•ict.For example, consider replicating data for
availability, versus the need to limit data distribution for security/privacy reasons. Recon-
ciling con•icts can be difŒcult. The Mansion conceptual model often provides clarity that
helps resolve such con•icts. For example, administrators can replicate data, but not out-
side azone, which is a set of machines typically owned by a single organisation. Thepar-
adigm is designed such that programmers and users of the system can have a clear under-
standing of the system's properties, while hiding normally unnecessary details such as
related to physicial location except when asked for it (e.g., an agent normally only sees a
logical hyperlink to a room, but can enquire about administrative or security properties of
the system that it points to if required).

1.5.3. Technical contributions

In addition to presenting the overall design as outlined above, the thesis presents the fol-
lowing concrete technical contributions:

ƒ An overarching security architecture that protects the system, including agents, con-
tent, machines and users, against malicious parties or components, at least to the
extent that misuse can be detected and malicious agents or components can be held
or removed from the system.

ƒ A novel jailing system for conŒning (compiled, binary) agents. The jailer runs in
user mode in Linux, and can in principle be ported to other (UNIX) operating sys-
tems. Jailedprocesses can only access resources (like Œles or Internet addresses) if a
policy explicitly allows this. Results show that arbitrary programs (including scripts
and legacy programs) can run efŒciently in a jail despite being sandboxed.

ƒ A portable component has been designed and developed for constructing middle-
ware systems, called agent operating system (AOS). AOS provides the functionality
with which storing and shipping agents between middleware processes in a secure
and language-neutral way. AOS has been demonstrated to be portable, interopera-
ble, and usable in different middleware systems [77,78].

ƒ A hierarchical per-world location service infrastructure is devised, whose deploy-
ment can be adapted when usage of a world grows. It is implemented using an
object type that runs in an object server constructed for Mansion which allows for
jailing objects to protect the system against possible malicious objects (e.g., in case
future agents can place objects in a world). Mansionis designed such that this can
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be done without requiring centralized control over all components or content of a
world.

ƒ A location-independent identiŒer scheme for objects and hyperlinks that supports
authentication of different middleware processes using a single self-certifying iden-
tiŒer. This model allows for transparent replication of rooms and objects while repli-
cas can be authenticated using the same identiŒer.

ƒ A handoff protocol that ensures that when a host detects tampering with an agent
during migration, it is not accepted and the agent's contact address is not updated in
the agent's authoritative agent location service.

ƒ AconŒnement model for mobile agents is presented, using which mobile agents can
search protected data in a room while the room owner remains in control over what
information leaves the room. The conŒnement model is an attempt to resolve the
"lack of a killer app" issue that prevents adoption of the mobile agent paradigm
according to [50].

Some of the above contributions are concrete stand-alone components.

1.6. Outlineof the dissertation

The thesis is structured such that the overall system's description and distributed system
(security) architecture is described in the early chapters (describing the model), and the
validation is in the Œnal chapters that describe and discuss experiences with the prototype
world. The middle part of the thesis describes concrete middleware components, includ-
ing the jailing system and AOS. The concrete technical components contributed by this
thesis are described in chapters 4 to 9. This dissertation is structured as follows:

Chapter 2 introduces the main architectural elements and the logical (conceptual)
model of the Mansion programming paradigm.

Chapter 3 describes how the model maps on the underlying physical system (hosts),
including logical concepts such as worlds and rooms. Important security concepts used
by Mansion are introduced, as well as concepts that are crucial to administrating a closed-
off Mansion environment for a speciŒc application.

Chapters 4‰9 will describe the realisation of the Mansion middleware. Chapters4‰8
describe the way in which the Mansion middleware is structured and some of its compo-
nents: the jailer, agent operating system (AOS) kernel, and the Mansion object server.
Mansion has a modular, layered design. The above-mentioned chapters describe the
design of each component and layer, including performance measurements where appli-
cable. Chapter9 describes the interface with which agents can do work in a world, the
Mansion API, in full.
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Chapter 10 explores several scenarios for using Mansion, and describes a prototype
world and prototype agents that were implemented to validate the approach. It also
reports on some end-to-end performance measurements made when using the overall sys-
tem. The thesis concludes with a discussion. A summary is given in chapter 11.

1.7. Typographical notes

The following typographical conventions are used in this thesis:

ƒ Bold fonts are used for deŒnitions

ƒ Italic fonts are used for method and interface names and deŒnitions, and for system
calls, and arguments of methods and system calls.Path names and program names
are given in regular fonts. Program excerpts are shown in courier typeface.

ƒ Capitalisation is used when referring to a speciŒc system or its name, such as Man-
sion, the Web, or AgentScape, but not when naming a class or type of system, such
as grid systems. Acronyms are capitalised.



Chapter 2
The Mansion Paradigm

This chapter introduces the Mansion paradigm. The Mansion paradigm is a logical
model that provides the foundation for programming mobile agents. The paradigm is
supported by a middleware system, which provides a programming interface to agents.
The middleware ties the Mansion logical model to the physical model: the middleware
components of which a (distributed) Mansion system consists at runtime. This chapter
presents the logical model. The physical model will be described in a later chapter.

First, the architectural elements of the Mansion model are described, followed by
how these elements form a Mansion world.

2.1. Architectural elements

The following logical elements are visible to agents:

ƒ World: a collection of rooms, connected by hyperlinks.

ƒ Room: a place where agents and objects and hyperlinks can be. An agent can be in
only one room at a time.

ƒ Hyperlink: a unidirectional link from one room to another.

ƒ Object: a passive entity, which can be accessed and manipulated by its owner and
by agents. Objects may contain data such as Œles.

ƒ Agent: an active, autonomous entity that can inspect objects in a room and which
can interact (communicate) with other agents in the world.

All entities in a room are visible using sets of attribute-value pairs calledAttribute Sets.

25
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2.2. Theconceptual model

This section describes the main architectural elements of the conceptual model.
Agents are autonomousentities. Anagent can decide autonomously with what

object to interact, what hyperlink to follow, or with what agent to communicate, within
the constraints of the Mansion paradigm. An agent is a (single or multithreaded) process
running on one host. Agents can communicate with another agents using secure, bidirec-
tional, reliable, and ordered connections. When an agent enters a world, it receives a
unique identiŒer, AgentID. An agent can set up a connection to another agent using that
agent's AgentID.

Because agents are autonomous, they may refuse or ignore connections from other
agents, and may or may not reply to requests from other agents.Except for communica-
tion, there is no way to directly interact with another agent: no entity is allowed to inter-
fere directly with the execution thread of another agent. Agents do not expose an inter-
face for other agents or room owners to invoke methods. Allowing agents to invoke meth-
ods on other agents would violate the agent's autonomy and could prove a security risk.

Each room may contain one or more objects.An object is a passive entity that
encapsulates state, and which can be invoked using an interface. Anobject interfacecon-
tains a set of methods; the object types, that is, the methods that objects provide, may dif-
fer per world. Objects can be invoked only by agents in that room.An object may only
be in one room at a time. An object cannot invoke methods on anything. Thisconstraint
ensures conceptual integrity: an object visible in one room can only be changed due to
actions of entities in the same room; no changes may be made to an object's state as the
result of a method invocation by an agent in another room.

Mansion makes a clear distinction between agents and objects. Agents are active
entities, which have their own threads of control and can invoke methods on objects and
communicate with other agents.Agents are autonomous in deciding if and when to
accept communication requests, and whether or not to read incoming data or react to it.
Objects, on the other hand, are passive entities. Objects have private state encapsulated by
an interface which can be invoked using (synchronous) method invocations. They do not
have their own threads of control. Invocations may return data and/or change internal
state of the object. A Mansion object is conceptually similar to, say, a C++ object.

Each Mansion application is structured as a world. Different worlds for multiple
applications are not interconnected, and can coexist independently. This is fundamentally
different from the Internet where, in principle, anything can be linked to anything.

Each world consists of a set of rooms, interconnected by hyperlinks. Hyperlinksare
unidirectional links from one room to another room. Agents use a hyperlink to migrate
from one room to another. Rooms must be reachable through hyperlinks: a room which
is not reachable through some sequence of rooms and hyperlinks is not part of a world.
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An entry point of a world is called aworld entrance room (WER). There may be
multiple world entrance rooms, which are rooms that are specially marked as such by the
world administrator and known globally in a world. Different (overlapping) hyperlink
structures may exist in a world; a room may have multiple hyperlinks pointing to and
from it. (If there are multiple WERs, there may be multiple roots to a hyperlink struc-
ture.) Theremay or may not be an a priori structure imposed on the hyperlink layout of a
world. Hyperlinks, rooms and content may be added at runtime, depending on the world's
constraints.

Worlds are closed: a room in one world may not be part of another world and cannot
be linked to from another world. Agentsenter a world using a process called ``agent
injection.'' T he result of injection is that an agent is started up in one of the world's
world entrance rooms (WERs), typically one auto-selected by one of theworld entrance
daemons(entry points for agents) through which agents may be injected.A possible cri-
terium for selecting a suitable WER may, for example, be a payment scheme, or a speciŒc
topic that the agent is interested in6. From a world entrance room, an agent may migrate
to another room by following a hyperlink. Whenthe agents exists a world, it can be col-
lected from a daemon called themorgueby the agent's owner.

A world designer can in•uence certain aspects of a world, such as the types of
objects that exist in a world or a world's hyperlink topology. For example, there may be a
way to a giv en room, but no way back. The structure of a world depends on the applica-
tion. An agent may only be able to migrate forward through a pre-established path of
hyperlinks, with only an occasional detour. In another example, all rooms may be inter-
connected to all other rooms.Such aspects are described in aworld design document,
which describes a world and is used to conŒgure it. This document is described later in
this thesis.

All entities in Mansion are described by means ofattrib ute sets (ASs); using the
attributes in a hyperlink's AS, an agent can determine which hyperlink to follow to go to
a giv en room. Attributes also help agents to Œnd interesting objects or agents in a room.
An attribute may, for example, contain an agent's AgentID besides a description of its
interests. Mandatory and optional attributes in an AS are deŒned in a world design docu-
ment; agents are responsible for Œlling their attribute set when they enter a room; room
owners deŒne the AS'es for objects and hyperlinks in a room.

Attribute sets are registered in a special per-room object called theRoom Monitor
Object (RMO). Each room has one RMO, which contains attribute sets and other infor-
mation that is needed to make a room work such as a list of the agents in the room and
other bookkeeping information; the RMO acts as the registry of a room. An RMOŠa nd
all other objects in a roomŠi s available only from a limited set of machines, that each
run a middleware process. This set of machines is called azone.

6 The way in which an agent owner informs the world entrance daemon of a preference, or a possible payment scheme,
is in the realm of providing a user interface for injecting agents, depends on the application, and is outside the scope of this
thesis.
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A zoneis an administrative and security concept, that can be intuitively regarded a
set of machines under single administrative control that host a set of middleware pro-
cesses that can contain rooms.A room resides in a zone, and agents must migrate to that
zone to enter the room. Zones will be explained in detail in Chapter 3.

When an agent follows a hyperlink, it is migrated to the room that the hyperlink
points to. The middleware system infers the zone of the room that a hyperlink points to,
locates and authenticates a middleware there, and ships the agent to it.By design, if an
agent follows a hyperlink to a given room, it also migrates physically to a middleware
("machine") in that room's zone. Physical and logical migration takes place using a single
atomic operation: if either part of physical or logical migration fails, the agent continues
where it was before following the hyperlink.

2.3. Mansionmiddleware: components, interactions and operations

Mansion is a distributed system. Logical entities such as rooms and objects may be phys-
ically distributed, possibly replicated over multiple machines. Agents are normally not
aw are of this. Agents mainly interact with the system using interfaces that take location-
independent identiŒers as arguments, that is, agents are not immediately aware of the
physical distribution of rooms or other content that they access. TheMansion middle-
ware system providesdistributionandlocation transparencyto agents.

A central component of Mansion is a middleware process that runs on every
machine that manages agents and provides an interface, theMansion APIusing which
can do useful work. Themiddleware uses a number of internal processes and distributed
services to make a system work, such as location services and object servers. These inter-
nal components and services are collectively called thebasement. Details of the base-
ment are described in a later chapter.

The remainder of this chapter provides a detailed overview of the logical compo-
nents of Mansion. First, this chapter introduces objects, includingroom monitor object
(RMO), which essentially provides theimplementationof a room. It explains binding,
the method that agents use to connect to objects.Furthermore, it describes how agents
migrate to another room, how they interact with a room, and how they inspect attribute
sets and communicate with other agents.

All interactions in a world happen through an Application Programming Interface
(API), theMansion API, provided to agents as part of the Mansion system. Agents need
to use this API to do any work in a world; its implementation resides in the Mansion mid-
dleware. We call the speciŒc component of the middleware which implements the API
(and which is implemented as a separate process)Mansion middleware (MMW) . The
complete Mansion middleware systemŠw hich includes several components, such as
location services, to make the system work Š is simply referred to as the middleware.



Sec. 2.3 Mansion middleware: components, interactions and operations 29

The Mansion API provided by the MMW contains, among other things, calls to fol-
low hyperlinks, to communicate with other agents, to bind to objects, and to create other
agents. The Mansion API guards the conceptual integrity of the systemŠt hat is, it
ensures that the logical constraints of the Mansion paradigm are enforced.

2.3.1. Theroom monitor object

Every room has an object called the room monitor object (RMO). The RMO is the ``reg-
istry'' of a room: it contains a list of all the objects, agents, and hyperlinks in it. The
RMO is used by the middleware to Œnd information about entities in the room.Every
room has one RMO; the RMO is required for implementing a room.

When an agent enters a room, it is automatically connected toŠa nd registered
in Š the room's RMO. The MMW ensures that each agent is connected to its current
room's RMO, and only to the current room's RMO. This happens when an agent has suc-
cessfully followed a hyperlink. TheMMW ensures that all interactions of an agent with
objects, agents, and hyperlinks in a room take place relative to that room. Except for
interagent communication, agents can only interact with entities in a room.This way, the
MMW ensures conceptual integrity.

When the MMW, internally, requires information about some entity in a room (e.g.,
as part of executing an API call), it obtains the required information from the RMO of
this room. This then, is the essential functionality of a RMO: to store all the relevant
information about all content in a room. This also involves storing attribute sets. An
RMO interface is accessible to agents, using which they can view and potentially change
attribute sets.For MMW-internal use, the RMO provides a different interface, allowing
the MMW to view and change RMO content that is not directly accessible to agents.

The RMO contains a list of all objects, agents, and hyperlinks in the room, together
with their attribute sets. This information is the primary means for agents to navigate in
and interact with a world. How this works is described in the following sections.

2.3.2. Attribute sets

The RMO contains an attribute set (AS) for every entity in a room.An AS is a set of
attribute-value pairs associated with an entity. A world designer may specify different
mandatory or optional attributes (in an AS) for different entities. The creator of an entity
may also specify additional attributes. AnAS may be emptyŠi f a world designer allows
it Š e xcept for two Œelds: every AS contains a identiŒer for the entity relative to the
room, calledEntityID, and an AS always contains an attributeEntityType,which may be
Object, Hyperlink,or Agent. EntityID and EntityType are automatically created by and
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stored in an AS by the middleware when it registers the entity in a room.
An attribute is a string of the form<Attribute>=<Value>. A default attribute for

objects in most worlds is anameattribute, where the value is a free-form string which can
be Œlled in by the object creator (typically, the room administrator) at the time that the
object is created.Similarly, a hyperlink may have anameattribute. Agentscan Œll in
(modify) their AS after entering the room.

Attribute sets are Œlled in at the time that an entity is registered in a room. An AS
may be modiŒed later by its owner (an object's or hyperlink's creator, or an agent).
Agents can change their own attribute sets: a conceivable example of where this is useful
is when an agent advertises its ``mood'' using an attribute in a gaming world. Agentscan
access ASes or change their own (but only their own) AS using a call on the RMO inter-
face.

A world designer may determine certain mandatory or optional attributes that need
to be in an AS for each entity type.What (mandatory or optional) attributes exist
depends on the application and is deŒned per world (see Sec. 3.8.1).For example, a
world containing multimedia Œles may have attributes that describe (digital) media for-
mats; a library world may contain atopic attribute,author andtitle attributes, and/or an
attribute containing a list of keywords. Hyperlinksthat point to a given room may also
contain atopicattribute.

An example attribute set of an object may look as follows:

EntityType=Object
EntityID=2
ObjectType=MultiFileContainer
ObjectName=MRI-scans-nii
ScanType=Head
ScannerType=3TeslaMRI
ScannerType=Philips-Achieva-3.0T-XSeries-Q-dual-16-ch
ScanResolution=0.3mm
ImageFormat=nii.gz

A useful attribute to have for objects is theObjectTypeattribute. Anobject type is essen-
tially the name for a particular interface; this name is deŒned by the object creator (see
Sec. 5.2.3).The MultiFileContainerobject shown above is a standard objects provided
by Mansion. Currently, Mansion supports two types of objects: aFileContainerobject
which contains a single Œle, and aMultiFileContainerwhich may contain multiple Œles
stored in a user-deŒned directory structure. The above two objects have different inter-
faces, that is, theFileContainerobject has no method for listing the Œles in the container.

An ObjectType attribute is relevant if a world supports more than one type of object,
since agents need to know with what kind of object they will interact before connecting to
the object. If considered useful, hyperlinks and agents may also have types.
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To Œnd interesting content in a room, agents look for information in attribute sets.
The RMO interface provides a method for obtaining the attribute set of any entity in the
room. TheRMO can also be queried for a list of entities that match a template attribute
set speciŒed by the agent. Some attributes relevant to searching MRI scans (chapter 10)
are shown in the attribute set example above.

Attribute sets have similarities to semantic annotation techniques such as used in the
semantic Web [120,35]. In fact, attribute sets are equivalent to RDF / XML annotations
in what they can express; the latter are sets of XML entity-attribute-value triplets,
whereas attribute sets are attribute-value pairs associated with an entity. If entities such
as objects or hyperlinks are annotated sufŒciently precise, and if agents know what to
look for in a given world, then agents should be able to navigate through a world efŒ-
ciently, to Œnd content that matches their requirements.

2.3.3. Event notiŒcation

In addition to a mechanism for searching or ``polling'' attribute sets, the RMO provides
an event notiŒcation mechanism based on attribute sets. Using this mechanism, agents
can be notiŒed of changes to attribute sets automatically, so they do not have to poll the
RMO repeatedly (which can be inefŒcient and allow agents to miss changes to an AS).

Using a call on the RMO, an agent can request to be notiŒed when an attribute set in
the RMO matches atemplate attribute set,speciŒed by the agent. Event notiŒcation is
currently based on string matching: if an AS matches all the attribute-value strings speci-
Œed in the template AS, itsEntityID is placed in the set of matching entities returned to
the caller. In contrast to the RMO method that is used for regular search of the RMO's
AS-es, the event notiŒcation call is ablocking call. Whenthe call wait_for_eventis
invoked, the RMO blocks until an attribute set matches the template attribute set. Inter-
nally, the RMO simply evaluates all AS-es. If no AS matches, the call blocks.Whenever
a change to an AS is made, all pending event notiŒcation requests (calls) are re-evaluated.
If a match occurs, the corresponding event notiŒcation call is unblocked. Thismecha-
nism is called acontinuation.

Event notiŒcation works only while an agent is in the room where the call is
invoked. As soon as an agent migrates to another room, its outstanding event notiŒcation
requests will be cancelled: an agent that is not in a room may not interact with objects in
the room. If an agent needs to move on while keeping track of changes to attribute sets, it
can either clone itself before moving, or having its child agent moving onward, keeping
in touch with it using interagent communication. Or it can ask an agent provided by the
room owner (if so provided) to monitor the room's attribute sets on its behalf, and to
communicate any notiŒcations to it by means of interagent communication. In short, the
basic mechanism for event notiŒcation is thereŠi t sav es resources by avoiding repeated
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polling of an RMO, and the calling agent process can sleep while its event notiŒcation
call blocksŠb ut it restricted within a room. If the room restriction is inconvenient, agent
applications can implement a solution on top of it, for example using interagent commu-
nication.

2.3.4. Following a hyperlink

An agent can follow a hyperlink by invoking a call on the Mansion API. The call takes
an EntityID as an argument; this EntityID is found with the AS of a hyperlink as
described above. The result is that an agent is migrated to the target room to which the
hyperlink points, if the link is valid and the target room (and a Mansion middleware
(MMW) process to host the agent) is available.

Following a hyperlink is an atomic operation, implemented by the middleware,
which moves the agent from its current room to the target room. If something fails during
the migration process, the invoking agent process will be resumed at the place in its exe-
cution where it left off, with an error code returned from the call for following a hyper-
link. A successful migration implies that the agent's attribute set is unregistered from the
current RMO and registered in the target room's RMO; the agent's process is killed at the
location where it invoked the migration call, and started anew in the context of the target
room. The middleware takes care of all the steps required.

Due to its design decision to support agents programmed in legacy programming
languages (including binary C agents) on heterogenous infrastructures, Mansion supports
only weak migration.Strong migration (Chapter 1) is a challenge to implement in het-
erogeneous distributed infrastructures consisting of commodity off-the-shelf (COTS)
hardware, operating systems and software. This is even more so the case when agents
consist of multiple processes, including legacy binary programs or programming lan-
guages, which may be executed by the agent as a scriptŠa s they may in Mansion.Sup-
port for legacy programs increases the ease of programming agents by allowing reuse of
existing toolsŠf or example, image segmentation/analysis programsŠf or speciŒc tasks.

An agent is always completely restarted from its program's main entry point when
following a hyperlink is successful. In Mansion, agents restart with every migration to a
new room. Thisalso applies to the case where an agent does not strictly need to physi-
cally migrate to another machine, because the target room is accessible on the same
machine. Restarting an agent in all cases keeps the model and behaviour clear and consis-
tent to programmers. For example, agents usually publish their attribute set as their Œrst
task after being started.

Besidesfollow_hyperlink, which takes the room-relative EntityID of a hyperlink as
an argument, jumping may be allowed. Thejump primitive takes a world-wide unique
RoomID as an argument. Theworld designer determines whether thejump calls is
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enabled using a conŒguration option in the world design document. If the jump primitive
is enabled, an agent can invoke the jump call on the Mansion API to move to a speciŒc
room Š even if the agent's current room does not contain a hyperlink to that room.A
RoomID is a globally unique, location-independent name of a room; it is the same identi-
Œer that is stored internally in a RMO with a hyperlink. The RoomID of a target room can
be queried using the RMO interface. Aroom's own RoomID can be found by querying
the current room's self EntityID 0. Note that querying a room's RoomID is useful in all
worlds, even if jumping is not allowed. Thisway, an agent can for example keep track of
visited rooms in a list to prevent going in cycles.

As an example of when jumping is useful, consider an large-scale world in which
agents search for information. An agent may be in a room that contains multiple hyper-
links to different rooms, and keep a list of target rooms to visit later. An agent can then
later go to one of these rooms, even from a completely different room. This is particularly
relevant to avoid traversing a set of rooms back to a room from which a hyperlink to a
particular other room goes; migration may be expensive so it may be considered useful to
avoid this for scalability and efŒciency reasons, as will be described later.

The implications and tradeoffs of allowing jump for navigation and controlling
worlds will be discussed in Sec. 2.3.12; one aspect is to constrain migration to rooms
where an agent is (logically) allowed to go, given world-deŒned constraints on a world's
(hyperlink) topology and thus agent migration.

2.3.5. Agentcontainer

Because Mansion uses weak migration, agents need to have some way to store data
before, and to retrieve data after, migration. Agents store and retrieve data explicitly in a
private data storage system associated with each agent. This data storage abstraction is
contained in the middleware. BecauseMansion does not determine the programming lan-
guages in which agents can be programmed in advance, a platform and language-inde-
pendent data storage system called anagent container (AC) has been designed. This
design is described in detail in Sec. 4.4.1.

Every agent has an AC. An AC is essentially a small, private Œle system associated
with an agent. The AC is fully accessible to the MMW process which manages the agent.
Part of the AC can be used to store administrative information needed by the MMW, and
part of it can be accessed by an agent to store, retrieve, or remove data. An agent's owner
can, upon collection of an agent, see all information in an AC.

Data is stored insegments, essentially Œles, which can contain binary data. Agents
use POSIX-like methods for creating, opening, reading, writing, and deleting data seg-
ments in their AC. These methods are provided to agents as part of the Mansion API.
Agents use their AC to store information, and to retrieve this information at any later
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time. Somedata may be stored permanently (i.e., it can be marked as immutable) so that
it cannot be removed at a later time, while other data may be modiŒed or removed later.

In addition to providing a storage mechanism for agents, the middleware may (tem-
porarily) store information in an AC for internal use. An example is where a MMW
process, upon migration of an agent, stores data received through one of the agent's com-
munication channels, which has not yet been read by the agent (Sec. 8.2.13).This data is
stored in a temporary segment in the AC that is not visible to the agent.

As a means of protection, certain data segments can be marked as persistent in the
AC. A persistent segmentis protected against tampering by a later host on the agent's
itinerary. If an agent's AC is retrieved by the agent's owner, its integrity can be veri-
Œed Š segments may not be modiŒed or removed after being marked persistent. Integrity
of ACs is also veriŒed when the agent migrates (Sec. 8.3.1).

If required, data can be encrypted by an agent before storing it in the AC (e.g., using
the agent owner's public key, to protect it from being read by anyone except the agent's
owner). This is however handled at the application layer outside the scope of Mansion.

2.3.6. Jailing

To protect a system from potentially harmful mobile agents, Mansion uses a jailer (Chap-
ter 6) to conŒne agent programs. The jailer uses system call interceptions to prevent
agents from writing Œles outside a designated scratch directory, and from making connec-
tions to the outside world except to make Mansion API calls.A jailed process can be
suspended, resumed or killed. Jailing is an effective way to ensure that:

ƒ An agent can interact only with a local directory and the Mansion API to communi-
cate with other agents, to follow hyperlinks, and to interact with objects.This
ensures that agents are constrained to Mansion operations, which can be governed
by Mansion's middleware system.

ƒ System time and other resources can be protected.The jailing system can enforce
constraints such as a maximum number of threads, maximum disk or memory usage,
etc. ByconŒguring resource management options (appendix 3), resource exhaustion
attacks on systems that host agents can be prevented. agentscan be prevented con-
suming too many resources, compared to other processes on the system.

Different agents are started up in different jails by the MMW. The jailer is agent-agnostic;
agents are just regular processes to it. Agents can create child processes (modulo limits
imposed by the middleware). Agentscan be implemented in multiple languages: the
jailer supports binary programs, scripts or interpreted programs. An agent's code (or
script) is found in its AC, copied to a scratch directory, and started from there.
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2.3.7. Cloning

An agent can clone itself. Acloneis created by making a copy of the agent's original AC
(so, without segments of the parent that were added after the parent's injection), and
injecting this copy so that it is started as a new agent in the agent's current room. The
clone has a new AgentIDwhich is obtained by the parent.A world designer (or a world
entrance daemon) may impose a limit on the number of agents that may be cloned, typi-
cally a maximum number of agents per agent owner. This maximum depends on imple-
mentation. For example, a system for injecting agents may make use of a Web page for
registering agent owners which takes payment. The payment scheme may determine the
number of agents that an given user may run at the same time.

2.3.8. Interagentcommunication

Agents can communicate with each other using reliable, ordered, and secure (integrity
and conŒdentiality-protected) communication channels. These channels have semantics
similar to TCP. Channels are bidirectional.Agents are provided with a BSD socket-like
interface. Eachagent has a communication endpoint to which other agents can connect.
After the connection has been accepted, can agents send and receive messages (variable-
length byte streams) over the connection.

Agents connect to other agents using unique, location-independentagent identiŒers
(AgentIDs). An AgentID is assigned to an agent when it enters a world. An agent can
also connect to another agent in its current room using the other agent's (room-relative)
EntityID. If useful, agents can then pass their unique, worldwide AgentIDs to each other
after that. Agents can also announce their AgentID in their attribute set. A disadvantage
of the latter approach is that agents may get spammed by other agents.

Communication channels are reliable. Agents use a socket-like interface to send and
receive data over their communication channels.Connections are migration-transparent,
except that a transient error may occur when data is sent while the agent at the other end
of the channel migrates. Then the sending agent should retry. Data that is successfully
sent will arrive reliably and in-order with respect to messages sent earlier or later. Bar-
ring persistent underlying network errors or failure in the MMW processes that host the
agents, connections are maintained. The implementation of interagent-communication
channels will be discussed in Sec. 8.2.13; the API calls are described in chapter 9.

2.3.9. Objects

Agents can interact with objects using synchronous method invocations. Conceptually,
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an object in Mansion is similar to a C++ or Java object. Objectsare passive. Objects do
not have their own thread of control: code execution starts when an invocation is made,
and ends when the invocation returns. Objects cannot invoke other objects.

Each object has a speciŒctype,which is a synonym (name) for the object's inter-
face. Eachinterface consists of a set of methods.Methods are named and consist of a
number of arguments and a return value, which is always a signed integer.

Object interfaces are deŒned using the Mansioninterface deŒnition language
(IDL) . The arguments of object methods may bein, out, or inout variables. Anin vari-
able is passed to the object.the invocation. An out variable is Œlled in by the object and
passed back to the invoking agent. An inout variable is passed to the object and is write-
able by the object, it may be changed on return. The return value of a method invocation
is typically a positive number indicating success, or a negative number indicating failure
(e.g., an error code).Positive return values (or 0) are method-speciŒc, for example, the
number of bytes read. Negative values always indicate failure. Some negative error codes
are reserved and deŒned by Mansion to indicate failure in the middleware or in the mech-
anism to invoke an object.

Objects in Mansion aredistributedobjects. This means they may reside on another
machine than where the agent runs.The machine where the object resides is trusted (and,
likely, owned) by the room owner, and the physical location of the object and its distribu-
tion is hidden (invisible) to agents. Invocations of an agent on an object are routed to the
object transparently, by the Mansion middleware.

Marshalled invocation to skeleton;
marshaled result returned to stub

Agent 
invokes stub

Stub
interface

Host 1

Skeleton
invokes object

Host 2
MMW MOS

RMO

Fig. 1. An agent invoking a method on a stub object, which marshalls the request and forwards it to
a skeleton, which unmarshalls the request and invokes the object; results take the same route back.
Note that in Mansion, invocations are routed through the Mansion middleware (MMW) to the MOS
where the object resides; this is part of binding and transparent to the agent and the object's
stub/skeleton code (see text). Details on the MOS are described in chapter 8.
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Objects reside in a middleware component called theMansion object server (MOS).
An agent has a stub interface linked into its address space with the same methods as the
remote object. The agent invokes an object by invoking methods on the stub interface,
which marshallsthe in andinout arguments and passes them to the object server where
the object was created. In the object server, a skeleton unmarshalls the arguments and
invokes the object's method (if allowed), and it marshalls and returns the results (inout
and out arguments and the return value) back to the invoking object. The stub interface
unmarshalls the results and returns them to the invoking agent as if the object was
invoked locally (Fig. 1). Note the similarity to RPC[27]. Theremote object invocation
mechanism allows for transparent extension of the machines that host agents, by allowing
agents to transparently invoke objects that reside in an object server on a different
machine, with each machine being controlled by the room owner. Chapter 3 will explain
the trust model and mechanism that ensures that room owners can manage the set of hosts
that a room runs on and is available from in a secure way.

Stub and skeleton code are generated by the Mansion IDL compiler. The Mansion
IDL compiler takes a Mansion interface deŒnition as input, and generates C and C++
stubs and a C++ skeleton. The skeleton is used as the basis for implementing a Mansion
object. It is straightforward to generate stubs for different languages, like Java or Python:
since a stub's main function is to marshall and unmarshall arguments, generating a stub
for a given language is not very complex. Skeletons can also be generated for different
languages. Aninterface deŒnition resembles a C++ object's interface, except that argu-
ments only take simple C-like data types or structs; complex arguments like objects are
not allowed. The data types that can be deŒned in the IDL are simple on purpose for
interoperability.

A world may contain different object types. Currently, RMO, FileContainer, and
MFC (for MultiFileContainer)object types are deŒned.Allowed types for a given world
are included in the world design document (WDD). Only the RMO object need not be
deŒned in the WDD as it is a standard object predeŒned for all Mansion worlds, which
cannot be changed (except for its content, attribute sets, which are deŒned in the WDD,
but changes to which do not change the RMO interface).

The RMO is the only standard (mandatory) object type in all Mansion worlds. The
RMO is, as far as its IDL and implementation are concerned, a regular object. It has
methods for obtaining attribute sets, which the agent can invoke just as it can invoke any
object. TheRMO is mandatory because it is crucial to the functioning of Mansion.

There currently does not exist anObjectTypenaming convention or name con•ict
resolution protocol; object types are simple strings which are known to all users in a
world, as they are listed in the world design document. Naming con•icts seem unlikely;
however, if ObjectType naming con•icts ever become an issue, these may be resolved
using to-be deŒned object naming conventions or a (global) Mansion object type registry.
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Mansion does not enforce any particular structure or content upon the objects in a
world. Objects may store Œles, but they may as well store tuples or something else; obvi-
ously, objects with different purposes will have different methods. The only thing that
ev ery Mansion object has is an IDL and an ObjectType. Also,all Mansion objects must
implement a standard set of access control related methods (chapter 7), that are automati-
cally generated by the IDL (skeleton) compiler. These methods combined are called
MansionObject. Conceptually,MansionObjectis inherited by all objects (including the
RMO) in a world. Objectsare currently implemented as C++ objects, but they should
also be implementable using Python or Java, or even C. The object invocation model,
stub/skeleton compiler, and interface deŒnition language take a minimal approach to mar-
shalling invocations and data representation. This way, Mansion objects and agents
(which use object stubs) can be implemented in any programming language.

The main reason for calling Mansion objects ``objects'' and not, say, `̀ RPC ser-
vices'' ( which in terms of implementation they are very close to) is that an object server
may host several instances an object type, each holding its own state.

2.3.10. Binding

Before an agent can invoke a giv en object, it must instantiate an interface in its address
space. TheObjectType(listed in an attribute in the RMO) indicates to an agent which
type of interface, i.e., which stub, to instantiate.Next, this interface must be connected to
the relevant (remote) object instance. The latter connection is coordinated by the MMW.
The process of instantiating an object interface and connecting it to an object instance is
called binding.

Binding is the process where an agent connects to a remote object. Part of this is
setting up the local object interface (of the righttype) in the agent's address space. The
binding mechanism is partly implemented by the agent's runtime system, and partly by
the MMW. To bind to an object, two things are required:

ƒ The object's communication endpoint should be located and connected to, typically
using a connection routed through the MMW7; and

ƒ The interface established in the agent's address space should match the signature
(ObjectType) of the remote object instance that is being connected to.

The Œrst aspect is taken care of by the MMW, which internally uses a world-speciŒc
object location service to locate acontact pointwhere a given object can be reached
(chapter 3); as input for this lookup, an agent speciŒes the object's EntityID. Using the
EntityID, the MMW looks up the RoomID as registered in the RMO of the agent's

7 An exception is an authorised administrative program which binds directly to an object in an object server.
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current room, which is subsequently used to resolve the object's physical contact point
for binding. The connection is routed through the MMW process for security reasons.
This is described in more detail later.

The second aspect relates to the issue of object typing, as discussed above. An agent
(or its runtime system) must instantiate a local interface that corresponds to the object's
type. InMansion, this comes down to (dynamically) instantiating an object-speciŒc stub
which was generated by the Mansion IDL compiler. The ObjectType indicates which
stub to instantiate, and what methods the agent can use to invoke the object.

Stubs are language bindings of an object interface, that is, they are generated by the
IDL compiler, speciŒcally for an agent's programming language.If an agent is written in
C, it can be statically linked to a library containing a C language binding (stub) of the
object's interface, which can be invoked after binding to the object. In a C++ agent,
dynamic instantiation of a C++ class object can be used by the runtime system to imple-
ment thebindoperation.

The end result of binding is that an agent has an instantiated interface in its address
space. Ifinvoked, the method is invoked on the appropriate remote object instance.

2.3.11. ConŒnedrooms

A conŒned room is a special room, designed for security reasons (Section 1.4.7).An
agent in a conŒned room cannot communicate with entities outside the room or store any-
thing in its AC. AconŒned agentcannot take anything with it when it leaves the room.
ConŒned agents can safely search conŒdential or other sensitive information in a con-
Œned room, while the room owner can be certain that no information leaks out while the
agent searches information.A specialguardian agentprovided by the room's owner is
used to export selected information out of the room in a controlled way.

Implementing conŒnement is facilitated by Mansion's weak migration model.
Whenever an agent migrates to another room, it is killed and restarted in the context of
the new room. This happens every time an agent migrates, so the model is consistent.As
a result of weak migration, agents are automatically brain-wiped when moving to a new
room. Nomemory or thread state is retained during migration. It is sufŒcient to ensure
that agents in a conŒned room cannot communicate with agents outside this room or
write anything to their AC to fulŒll the requirements for conŒnement. Agents can com-
municate with each other while in the room; as none of them remembers anything after-
wards, this is not a problemŠa nd this way they can collaborate, if useful.

The MMW takes care of ensuring that conŒned agents cannot communicate with
agents outside the agent's current room or write to their AC; it simply disables the API
calls needed to do so.
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Export of information takes place either by explicitly communicating with a
Guardian Agent (GA)provided by the room owner. The GA can be a regular agent found
using its attribute set.A simpler way to obtain the same result is to leave a specialexport
Œlein a private directory that every agent has access to, before leaving the room. This Œle
can be picked up by a script or a program provided by the room owner. This program
takes the role of the GA. This is how the GA is currently implemented.

Using the export Œle, an agent can provide selected information such as the names of
interesting Œles found in aMultiFileContainerobject in the room to the GA, which can
check and Œlter this information. The GA can ensure that a Œle is stored in the Agent's
agent container which contains contact informationŠf or example, an email address with
a unique transaction identiŒer, a website URL where the agent owner can buy informa-
tion, or the AgentID of the GA from which information can be obtained. The agent or its
owner can obtain the allowed (Œltered) information using this information as provided by
the owner of the conŒned room or the GA. If the conŒned room has a real GA, the agent
can contact the GA using the GA's AgentID to obtain information; alternatively, the room
owner may contact the agent's owner insteadŠa " do not call us, we call you" option.

The semantics of the GA interaction is application speciŒc. The approach depends
on the purpose of conŒnement and on the sensitivity of the information in the conŒned
room. An e-commerce application may be less sensitive than a medical application;
selected music Œles may be readily available through a link placed in the agent's AC and
bought online by the agent's owner after the agent returned; in an application for search-
ing medical research data, contact may only be made after the agent's identity and the rel-
evance of the proposal for research (as indicated in the export Œle) is evaluated by the
hospital boardŠo nly if sufŒcient patients matched the agent's search in the Œrst
place Š after which the hospital may contact the researcher and negotiate a contract
before any data is exchanged. TheconŒnement principle allows for many usage scenar-
ios. Examplesare discussed in chapters 9 and 10.

2.3.12. Aboutjumping, and some words about world structure

This section discusses some aspects related to world topology, hyperlink constraints, and
whether or not to allow the jump primitive. Sec. 2.3.4 described thefollow_hyperlink
primitive that is normally used for navigation in a world, which takes a room-relative
EntityID as an argument, and thejump primitive which allows jumping to an arbitrary
room given a world-wide unique RoomID. Whether jumping is allowed is an applica-
tion-speciŒc world design parameter, deŒned in the world design document (Sec. 3.8.1).

It is instructive to discuss the various tradeoffs underlying the decision to allow
jumping in some worlds, and not in others.
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If the jump primitive is enabled, an agent can invoke the jump call on the Mansion
API to move to a speciŒc roomŠe ven if the agent's current room does not contain a
hyperlink to that room.Without jump, an agent can only move to another room by fol-
lowing a hyperlink.

The most important considerations to (optionally) allow the jump primitive are
related to the cost of cloning and migration, in particular to avoid that an agent has to go
back to a room by back-tracking through a set of already visited rooms.With very large
worlds that do not allow agents to Œnd information efŒciently without following a lot of
hyperlinks, jumping may be a useful world design option.

As an example of when jumping is useful, consider a large-scale world in which
agents search for information. An agent may be in a room that contains multiple hyper-
links to different rooms. Before following one of the hyperlinks, an agent can check
whether it has been in the target room before by checking a `̀ visited rooms'' l ist it keeps.
The agent also keeps a second list containing all target rooms it still needs to visit. It can
construct this list by collecting the RoomIDs for all hyperlinks in rooms it visits8. As an
(exhaustive) search strategy, an agent can use its list of unvisited rooms to jump to once it
is done searching a set of rooms behind a hyperlink. Thisway, an agent can avoid visit-
ing rooms multiple times, as could happen when back-tracking to an earlier room to fol-
low a different hyperlink from there. This saves the agent double work and timeŠa s will
be shown later, migration can be rather expensive. Alternatively, cooperating
agents Š possiblycloned agents, Sec. 2.3.7Šc an search a world together by informing
each other of which rooms they visited or still have to visit; depending on the number of
agents that may be cloned and the structure of the world, jumping may be convenient.

When a world designer does not allow jumping, it is straightforward to force agents
to follow hyperlinks to rooms in a certain order, assuming that room owners do not cheat
and adhere to the rules set by the world designer. Hyperlinks allow world and room
designers to enforce a structure or ordering on the hyperlinks that an agent can follow,
either for the world as a whole or within a set of rooms, for example in a zone.For exam-
ple, an agent may Œrst have to enter an anteroom before going onward into, say, a music
store. For a gaming world organised as a dungeon, enforcing structure on the world (i.e.,
to force agents to go through a sequence of rooms) is also clearly useful. The use of
hyperlinks to structure worlds was the reason to not support jumping originally.

Control over iteneraries is, however, not lost completely when using jumping, even
though itineraries may not be enforceable in as Œne-grained a way as when using hyper-
links to structure migration between rooms. Actually, control at another level is required
also when using hyperlinks to structure worlds, since with large-scale worlds it becomes

8 The list of rooms that still need to be visited, may be manipulated by a malicious host on the agent's itinerary, for
example to avoid that agents visit the room of a competitor. Howev er, by making persistent copies of the room lists regu-
larly, it becomes possible for the agent's owner to check for any malicious modiŒcations of the (nonpersistent) lists after
the agent returned, using an automated audit procedure. This way, a misbehaving hop on the agent's itinerary can be
exposed. Asa consequence, the agent's owner can inform the world owner who can take action Š possibly removing it
from the world. More information on audit trails is given in a later chapter.
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very hard if not impossible verify adherence to Œne-grained hyperlink constraint policies.
Thus, a world designer can express constraints in the world design document that
describe what zones may link to what other zones. These policies are described in the
following section.

Constraints on migration at the zone level can be enforced by the middleware, irre-
spective of whether a hyperlink was followed or a jump call was made; at the time an
agent migrates, both sending and receiving middleware processes authenticate each other
as a member of a zone in the world, and at that time can check whether migration is
allowed given the world's topology constraints; further, auditing of agent itineraries can
take place in the central agent location services. Details of the mechanisms required will
be explained in chapter 3 and 8. The following sections describe some details of migra-
tion and topology constraints.

2.3.13. Physical migration

Agents interact with rooms by inspecting content in an RMO and interacting with objects
(or agents) within a room. Following a hyperlink brings an agent to another room. A key
question at design time was whether physical migration is mandatory or optional.Man-
sion could provide anoptionto agents by which they could choose to access a room (i.e.,
its RMO) remotely using a form of RPC, instead of forcing agents to migrate there. We
chose to physical migration instead of supporting a client-server approach. The reason
for this decision is that we aim to provide a clear, unambiguous model regarding migra-
tion, which distinguishes itself from the Web approach where content is downloaded to
the machine where the client resides. Section 1.3 motivated the design decision to force
use ofmobileagents in all cases; we make the discussion more speciŒc here, now that we
discussed Mansion's conceptual model.

The client-server approach of the Web has shown to be extremely successful.Had
Mansion been implemented using a client-server approach, a client agent could interact
remotely with Mansion objects such as the RMO using a form of RPC, similar to a Web
browser fetching Web pages or putting content on them. In this case, Mansion would not
have many beneŒts over the Web. A hybrid model, where agents would be aware of dis-
tribution aspects and make conscious migration decisions instead of being always forced
to migrate could also have been possible. However, we wanted to have a simple, consis-
tent programming model that emphasizes the beneŒts of using mobile agents. For the pur-
pose of consistency, we decided that agents migratealwaysŠe ven when following a
hyperlink to a room within a zone, at which time migration may not be strictly needed.

The reason Mansion does not use a client-server approach, is that it undermines
some of the strengths of using mobile agents; a hybrid model leads to unclear semantics.
Without enforcing migration, it would become difŒcult to meet the requirements and
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explore the use cases outlined in chapter 1, such as searching sensitive informationon-
site. Also, consistency of the model is difŒcult to maintain: were objects including the
RMO accessible from any machine, how easy would it be to guard the design decision
that agents can visit only one room at a time? The Mansion source code could be modi-
Œed easily such that agents could connect to multiple RMOs/rooms at the same time.It
would thus be difŒcult to impose constraints or policies on, for example, the way that a
client navigates in Mansion. Thus, the most important reason for enforcing agent mobil-
ity is that it allows the system (middleware) to maintain a consistent view of how a world
looks, including structure and security aspects.

The idea of Mansion is that a world's structure (e.g., a predeŒned itinerary of rooms)
can Š if needed Š be imposed on agents. Mansion allows for deŒning world-speciŒc
constraints on hyperlink layout, to force agents to take a certain path from a world entry
room to some other room. Also, without physical migration, implementingconŒned
roomsthat allow data owners to control export of information, while allowing agents to
freely search content while in the room, would be infeasible.

2.3.14. Hyperlink topology and navigation

Hyperlink constraints are important to structure a world. They are deŒned in the world
design document. The granularity of hyperlink constraints may differ from world to
world, as a world's hyperlink layout differs from world to world.

If deŒned, a hyperlink constraint provides a policy on what zones may point to what
other zones. At the world level, what rooms can be pointed to cannot be controlled; such
detail would become too difŒcult to manage and managing world topologies would not
scale. Roomsare part of zones, and zones can agree between them what rooms may
point to what zones.Zonesmay deŒne certain zone entry rooms as the ofŒcial zone
entrance rooms, and refuse agents from outside the zone to enter a non-entry room.Zone
owners may also have agents enter speciŒc rooms depending where they came from. This
is however not visible at the world level or in the world design document.

If deŒned, hyperlink constraints apply to jumping as well as to following hyperlinks.
This way, a world's topology can be controlled consistently. For example, in a world that
allows jumping, an agent may store a RoomID in its AC to jump to later. Jumping to this
room may not be allowed at a later time, if a hyperlink constraint forbids it from where
the agent is at that time.

A world's structure has obvious consequences for searchŠf or example, if a world
has no back-links, or if its hyperlinks do not form a tree-like or spanning structure,
searching a world may become complicated, especially if the world is large. It is evident
that a world designer must communicate a world's topology clearly to agents or to agents
and their programmers.
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The constraints of a world's topology may be communicated informally using
instructions to owners of rooms in a world, or more formally through hyperlink con-
straints deŒned in the WDD. Another approach is to communicate topology information
within a world.

Hyperlinks are unidirectional, and Mansion does not impose a particular way of
using hyperlinks in worlds. A Mansion-provided utility program for creating rooms by
default creates a back-link from a new room to the current room, where the back-link can
be distinguished form other hyperlinks by its name.However, this is not mandatory and
another tool may do things differently.

Early in the design of Mansion, we deŒned anAttic for the purpose of providing ser-
vices to agents, such as yellow page services (listing company rooms), white pages (list-
ing AgentIDs) and topology information.Theattic was a special room that could contain
service objects(invokeable in the same way as regular objects) or (non migrating)ser-
vice agents. A world could have one or more attics and would be registered in a room's
RMO. Thegoal of an attic was to allow a world owner to provide some common services
for a set of rooms.

The attic concept was not implemented because other mechanisms exist that can be
used to the same purpose. Attic-like services can be deployed in a world entrance room,
where agents can obtain information about the layout of a world from objects or other
agents, prior to following hyperlinks into the world. A service agent in a WER can be
contacted for information at any time. Furthermore,hyperlink constraints and other
important information about a world can be communicated to users and agent program-
mers externally. Hyperlink constraints at the zone level are part of the world design docu-
ment which can be obtained by agent developers (see Sec. 3.3).

An attic has the advantage that it may be accessed at any time, irrespective of what
room an agent currently resides in.An attic could contain a roadmap listing important
rooms with their RoomIDsŠf or example, rooms that are entry points to ``sections'' on a
given topic Š useful for navigation. However, world-wide availability of services such as
a roadmap service can also be achieved by service agents in a WER; for the prototype
world described in this thesis (chapter 10), there was no need for an attic.

A way to help agents navigate large worlds is to construct a database that is equiva-
lent to a search engine in a world entrance room. Such a service may contain the Roo-
mIDs of rooms matching a query. Alternatively, for a world without ajump primitive,
such a service may return a set of possible ``paths'' ( consisting of a sequence of hyper-
links to follow) to take to reach a given room matching a query.

Agents in a world may map the (dynamic) hyperlink structure and possibly content
of a world on-the-•y and help other agents navigate a world, by providing agents with
information about interesting routes to follow, either by placing information in a search
engine equivalent, or by exchanging information by communicating with other agents.
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2.4. Puttingthings together

Figure 2 shows an overview of the main (logical) components of an example world.
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Fig. 2. Overview of a Mansion world with three rooms. See text for explanation.

The world in Fig. 2 contains three rooms. Each contains, by deŒnition, a room moni-
tor object (RMO). The RMO contains information about entities in the room, including
attribute sets. Visible are objects, agents, and hyperlinks to other rooms. This world uses
an attribute set that contains only a Name attribute for all entity types. The world
designer speciŒes whether attributes are mandatory or not. In this case, the Name
attribute is not mandatory, entities may leave this attribute empty (e.g., agent).

The world has a simple hyperlink layout. A world entry room (entered when an
agent is injected into a world), room 1, contains a hyperlink to room 2. Room 2 contains a
hyperlink to room 3. There are no back-links in this world; thus, agents must follow a
path from room 1 to room 3, unless they exit using an API call (the result is that the agent
is transported to the morgue Š not shown).

Arrows indicate show which entity an attribute set (AS) refers to. Rectangles with
rounded corners are objects, the rectangle to the left visually representing its interface.
Ovals indicate agents containing threads (agents are processes).Internal information in
the RMO, used by the MMW internally to locate entities, is not shown in this Œgure: the
RMO contains information which is invisible to agents that allows the MMW to bind to
an object (Sec. 2.3.10).

Only ASes in the RMO of room 1 are shown. The AS of EntityID 3 contains a
description of the hyperlink to room 2.Different EntityTypes can be seen for different
attribute sets. Agent 1 only uses the standard EntityID and EntityType attributes. An
Object has an attribute Name, and a hyperlink has an attribute Name which describes the
target room (this attribute could also have been calledTarg etRoom).
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One object has anObjectType`̀ FileContainer'' w ith Name attribute `̀disserta-
tion.pdf.'' F rom these attributes, an agent can derive that this object has (IDL) type File-
Container and it contains a PDF Œle called dissertation.pdf.Note that a world where
objects may potentially contain many Œle types, an attribute ``FileType'' may be useful;
MIME-types9 like strings can be used to indicate the Œle type, e.g., application/pdf.

2.5. Discussion

This chapter described the architectural elements and the main components of a Mansion
world. Agents interact with objects in the context of the room that they are in, and can
interact with other agents using migration-transparent communication channels. Agents
can collect information and store it in their agent container, or send the information home
over a connection to their owner. In a conŒned room, agents can search but they cannot
export information. Weak migration ensures a consistent semantics when following a
hyperlink, irrespective of whether an agent is in a conŒned room or a regular room.

A world design document contains basic information on hyperlink (zone) con-
straints, and additional information that help agents navigate can be found in a world,
either using services found in the world entrance room or by contacting other agents in
the world. World topologies can differ depending on application requirements, with more
structured worlds likely disabling the jump primitive, while other worlds may allow
agents to jump around more freely. In all cases, attribute sets are used to annotate content
(rooms, agents, objects and content) so that agents can Œnd their way. Agents migrate
physically, so that they are always close to the data they inspect, leading to potential ben-
eŒts in efŒciency and customiseability of search, and security and controllability beneŒts
for content owners.

The aim of Mansion is to provide a consistent model that allows for efŒcient search
in a structured environment, and to provide a paradigm that emphasizes the beneŒts of
using mobile agents. This chapter introduced the paradigm and its components, and
describes how it helps application developers develop worlds. Thenext chapter describes
how a mansion world can be deployed on physical infrastructure (hosts), and how Man-
sion aims to provide scalability and controllability properties of this environment.

.

9 MIME (Multipurpose Internet Mail Extensions) types are deŒned in RFC 2045-2049



Chapter 3
Distribution Model: Control and Scalability

Mansion rooms, objects and content can be provided by different users, and it can be
hosted on different servers (by different owners) all over the world. Mansionshould
scale in view of the overall number of machines, rooms, objects, and agents in a world. It
also has to scale administratively and it should allow world owners to retain control over
relevant aspects of their world even at large scale.

Several important components are implemented as distributed objects, which can be
transparently replicated over multiple hosts. Transparent replication was the goal of the
Globe distributed object system [107], and the use of distributed objects is one of the
starting points for the Mansion design10. Agents can access a room and its content as dis-
tributed object(s) without realising that these objects are distributed and may run on a dif-
ferent machine. Object distribution makes it possible to scale a room transparently with
regard to the number of agents that it can handle, by adding object replicas and/or by
adding machines from which (more) agents can access these objects.

Distribution transparency is a goal, and is obtained to an extent: rooms and objects
can be distributed transparently to ensure they can cope with increasing load.However,
full distribution transparency is not realistic for mobile agent systems. In particular,
physical distribution aspects relate to security andtrust. Not all underlying processes or
systems, or all administrators or users of the underlying systems, trust each other equally.

Agents may not migrate to all systems as their owner may not trust all content or
physical systems (or their administrators) equally. When placing (sensitive) content in a
world, the content owner may only trust a few machines to host that content. In short,
security and trust issues stand in the way of full location or distribution transparency, and
ways are needed for administrators and users to Œnd out where information resides physi-
cally, and to control aspects related to system and content distribution.

10 In the end, Mansion objects were not implemented as Globe objects, but the design principles are applicable.
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This chapter describes how Mansion has been designed to scale by providing loca-
tion and distribution transparency when possible, while also allowing reasoning about and
control over (security) relevant properties of the system.

3.1. World deployment

A way is needed to map the paradigm's logical model onto a physical model.Mansion's
logical model is about rooms, objects, hyperlinks and agents.The physical model con-
sists of administrative domains, machines, and (middleware) processes running on these
machines. Themapping between the logical and the physical model is related to admin-
istrative and deployment aspects, and (implicitly or explicitly) totrust.

The concept of azonemaps the logical model onto the physical model.

A zone is a grouping of (middleware) processes under single administrative control,
where each process may run on a different machine. Each zone member process must be
authenticateable as a member of the zone.

Content in a world (in rooms) is placed in zones. Zones thus create the mapping between
the logical world (rooms, objects, content) to the physical world (machines, processes).
Zones are essential to understand how the logical world is mapped onto the physical
world Š that is, how the content of a world is physically distributed Š andfor security.

Each world consists of one or more (disjoint) zones. Every zone consists of one or
more Mansion middleware processes on one or more machines. The middleware pro-
cesses contain cryptographic keys using which they can be authenticated as a member of
a zone. Every room is located (distributed) in one zone only. Objects in this room are
located in the same zone.A zone can contain multiple rooms.

An agent has to migrate physically to a machine in a given room's zone before it can
enter that room. Concretely: when an agent follows a hyperlink, the agent's MMW must
select a MMW process in the target room's zone, and ship the agent there.

This chapter explains the zone concept in depth, including administrative details.
Important actors in (physical) world deployment and in zone management will also be
explained. Thechapter concludes with an overview of the most important middleware
components needed to make the Mansion system work, and describes how these are
mapped onto the zones that constitute a world.
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3.1.1. Administrative entities

A world has the following administrative actors.

ƒ World owner: the world owner or administrator is in charge of the design and
deployment of a world. Ultimately, the world owner decides on the content of a
world ‰ both in logical terms (what is the world about, what are useful descriptions
of entities in the world, and what are useful hyperlink constraints?), and in physical
terms: what zones may be part of the world, and under what conditions?

ƒ Zone owner: the owner of a zone, which is a group of processes on a set of
machines on which content such as rooms, objects, and agents can be hosted.A
zone is an administrative/organisational grouping. A zone owner manages and trusts
the processes hosted in the zone, and is responsible for them.Usually, a zone has a
name, and possibly other properties associated with it.A world administrator can
remove a zone from the world if it does not adhere to the world's requirements.

ƒ A room owner: someone deploying a room and managing its content (e.g., data in
objects in the room). Often, a room owner is the same principal as the zone owner,
but this need not be the case; rooms can be deployed in a zone that the room owner
does not have control over, much like a Web page can be hosted by a third party.

ƒ An object owner is typically the same person as the owner of the room in which the
object resides, but this is also not necessarily the case. Content in an object can be
provided by someone else than the person managing the object.

ƒ Aworld entrance zone owner. World entrance zones are special. A world entrance
zone contains one or more world entrance rooms and a number of importanttrusted
services. These services allow users to inject agents into the world, keep track of
them, and store them when they exit so they can be collected by their owners. These
critical services are managed by the world entrance zone owner, who needs to be
trusted by the world owner, content providers, and by agent owners that make use of
this zone. There may be more than one world entrance zone per world. Theworld
entrance zone owner and the world owner may be the same person.

ƒ Agent owner: the owner/user who injects an agent into the world. Theagent owner
is generally authenticated (identiŒed) by a world entrance daemon in a world
entrance zone, at the time of agent injection.Only the agent owner can collect an
agent when it has exited, and may directly communicate with their agents.

The terms `̀owner'' and `̀administrator'' are often used interchangeably in this thesis.
Owner and administrator may not be the same person. For example, an owner may be a
multinational organisation, while an administrator is a technical expert who ensures the
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system work. However, in general, an owner is the responsible entity for whom an admin-
istrator works, so owner and administrator are related entities.

3.1.2. MappingMansion components on zones

The abstraction chosen to map a logical model on a physical model is called azone.A
zone is effectively a set of processes. Each room is mapped on exactly one zone.Rooms
are only distributed toŠa nd accessible fromŠm iddleware processes in this zone.

A zone is a grouping related to adminstration and security. Zones are sets of middle-
ware processes that can be authenticated using a singleself-certifying name(Sec. 3.2.1).
A zone owner decides to run/selecting or accepting suitable processes on suitable hosts in
a zone. Themanagement of content and composition (membership) of zones is decen-
tralized and the responsibility of the zone owner for scalability and autonomy reasons:
when middleware processes and machines need to be added to a zone, this should not
require world owner involvement.

A zone may consist of several different middleware processes running on different
machines Š from one to potentially hundreds of machines spread over the physical
worlds. Thezone administrator determines how these processes are distributed over a
zone. Atypical zone contains the following processes, that may physically run anywhere
in a zone:

ƒ One or more MMW processes for receiving, running, and shipping agents

ƒ One or more object server processes, running one or more objects (at least one
RMO, and regular objects)

ƒ Location service processes that are used to Œnd processes, rooms, objects in a zone.

Example zone member processes are the MMW that hosts agents and the Mansion Object
Server (MOS) that contains objects. Each zone member process can run on a different
machine. Every zone must have a location service node managed by the zone owner, in
which zone member processes are registered. Using this service, zone member processes
can be located. The location service is an object in a MOS which is not visible to agents.

All middleware processes in a zone recognise each other using mutual authentica-
tion using a mechanism explained later in this chapter. Authentication takes place when
middleware processes connect to set up reliable connections between them. Except for
location services and MMW processes receiving agents, zone member processes will not
accept connections from outside its zone. Zone composition as well as distribution of
middleware components in a zone are transparent to agents using the system.

Fig. 3 shows a number of processes in a world that consists of two zones. TheŒgure
shows two examples of distributing processes on zones.Logically, the zone contains
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three rooms and a number of middleware processes. At the top, the logical view is pre-
sented. Zone2 contains one room and an object. Zone 1 contains two rooms: RMO1 in
room 1 and RMO 2 in room 2. At the bottom, the physical view is presented.

3

RMO RMO Object

Room 2Room 1

RMO Object

Room

MOS

MMWMMW

Host 4

MMW MOS MMW

Host 5Host 2 Host 3Host 1

Zone 1 Zone 2

Fig. 3. Logical concepts mapped on physical concepts: three rooms mapped on two zones. Bottom
shows physical concepts: MMW processes hosting agents, and the Mansion object server (MOS)
hosting objects. Top the logical view: rooms (in zones) containing objects and agents.

The Œgure shows a few examples of distributing processes on zones.There may be
one MOS hosting all objects in a zone, with multiple MMW processes accessing it (zone
2). In zone 1, a MOS runs on one machine with no MMW process. This may shield the
object server from security problems that may occur, or prevent problems due heavy load
generated by hosting multiple agents.Alternatively, each host could contains a MOS that
holds replicas of the zone's objects. In this case, an object replica is always locally avail-
able to an agent.A load balancing strategy (implemented by returning MMW addresses
from the location service in round robin order) spreads incoming agents over different
MMW processes in the zone. The MMW starts the agent on its machine.The MMW
transparently routes requests (invocations) by an agent to the appropriate object server(s).

3.2. Usingself-certifying identiŒers to name components

In Mansion, all components and entities (middleware, object server, agents, objects) are
named using location-independenthandles. These handlesŠe ssentially, character strings
of up to 64 bytesŠa llow for registration of multiplecontact addressesof an entity in a
location service; this supports replicated objects and services. Besides registration of con-
tact addresses, handles in Mansion areself-certifying. This means that, when connecting
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to an entity after resolving its contact address, the entity can be authenticated using infor-
mation from the handle.Interestingly, because of this approach, the location service need
not be trusted as it cannot forge contact contact records without this being detected at
connection time. Only by managing handles (e.g., storing them as hyperlinks), a decentral
system for Œndingandauthenticating middleware components is available.

This section explains how authentication of entities using self-certifying names
(zone identiŒers) works, followed by other examples. After that, management of world
membership, rules and components including the location service will be explained. We
conclude by discussing controllability and scalability aspects of the system.

3.2.1. Zone-basedauthentication

Mansion components are referred to usinghandles. Handles contain an identiŒer of the
zone that the component resides in, and its type (e.g., an object server, or an agent).

Zones are identiŒed and authenticated usingself-certifying identiŒers (ScIDs). A
ScID is a string that allows a client process to authenticate a (remote) process.

Self-certifying identiŒers were Œrst introduced in the context of the Self-certifying
File System (SFS, [65]).In this system, ScIDs were used to authenticate nonreplicated
Œle servers. Thissection introduces a way to use ScIDs to identifygroupsof processes.

Implementation of ScIDs in SFS is straightforward. SFSpathnamescontain the hash
of the public key of the server on which the Œle is stored. The public key of the server can
be contained in a self-signed certiŒcate, where a Œle server has access to the correspond-
ing private key. An authenticated key exchange protocol, combined with client-side veriŒ-
cation of the ScID against the public key certiŒcate obtained from the Œle server, is sufŒ-
cient to implement authentication of self-certifying Œle names.

3.2.2. ScIDsfor r eplicated services

Mansion uses an adaptation of the SFS scheme to authenticate replicated servicesŠz one
members. Azoneis a set of processes. Each zone has a unique, self-certifying ID, called
ZoneID. Using ZoneID, any process that is a member of this zone can be authenticated.
Each zone has a self-signed certiŒcate, called thezone certiŒcate. Using the correspond-
ing private key, the zone owner can signzone member certiŒcatesfor all processes in
the zone.Every zone member has its own zone member key and certiŒcate. In effect, the
zone owner acts as a certiŒcate authority for the zone.A zone certiŒcate chain is shown
in Fig. 4.
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.
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self-signed using zone key
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Fig. 4. Zone membership certiŒcate chain. Shown is a zone key / certiŒcate, which is the root of a
certiŒcate chain. The private zone key is used to sign zone membership certiŒcates. Arrows point to
the key which is used to (self)sign a certiŒcate. Also shown are zone (membership) predicates; these
are optional Œelds used to attach properties to zones or zone member processes. See text for details.

The ZoneID is the hash over the public key stored in the zone certiŒcate. For authen-
tication, a client retrieves this certiŒcate together with the zone member certiŒcate.Zone
members must produce a certiŒcate chain up to the zone owner to clients at authentica-
tion time. The current implementation uses RSA public/private key pairs, with X.509
certiŒcates. Thisallows re-use of existing technology (i.e., SSL) to exchange and verify
certiŒcate chains, but the certiŒcates normally contain no information common to X.509
certiŒcates, since they are self-signed. Zone (member) predicates are optional in dis-
cussed in Sec. 3.9.

Mansionbase32-encodes ScIDs so that they are human-readable; more precisely, a
ScID is the base32-encoded SHA-1 hash of the public key as embedded in ASN.1 format
in the public key certiŒcate. Theresulting string has a Œxed, short size of 32 characters
coming from the base32 alphabet. This alphabet contains no spaces or special characters,
which ensures that the resulting strings can be used in, e.g., URNs.Nonencoded ScIDs
are 20 bytes, corresponding to the 160-bit SHA-1 hash.

Authentication of zone member processes works as follows. First,a process authen-
ticates a zone member process using an SSL-based authenticated key-exchange protocol
(implemented using the OpenSSL library) to set up a mutually authenticated encrypted
channel. As part of this protocol, the connecting process obtains the public key of the
zone member process and the zone member's certiŒcate chain. The zone member certiŒ-
cate is veriŒed for correctness. Among other things, the expiration date is veriŒed. Short
expiration dates (combined with a renewal service) can be used by the zone administrator
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to ensure compromised zone member certiŒcates can be invalidated quickly11. By hash-
ing the key of the zone certiŒcate, a hash value is obtained which can be compared with
the ZoneID. This ZoneID is normally known in advance to the connecting party, as it is
part of the entity's handle.

Various uses of (base32-encoded) ScIDs are used throughout this dissertation. ScIDs
(ZoneIDs) are used as part of various ``handles'' w hich refer to entities such as objects or
rooms. Thisensures ZoneIDs are known to a process when connecting to an entity.

3.2.3. Otherapplications of ScIDs

Self-certifying identiŒers are used inhandles. Handles are location-independent names
of entities such as objects, rooms, and agents.For example, a room's ZoneID is part of
the RoomID of a room. The RoomID is the handle of that room's room monitor object.
ScIDs can also be used to authenticate nonreplicated entities. A ScID is the hash over the
entity's public key. The hash over an agent owner's key is used as an identiŒer for the
agent's owner. This ScID is calledAgentOwnerID.

Using a self-certifying handle, entities or processes that host an entity can be authen-
ticated. For example, an object server that hosts a (replica of an) RMO can be authenti-
cated using the RMO's RoomID. Similarly, a MMW process can be authenticated using
the ScID in the RoomID (hyperlink), when an agent wants to follow this hyperlink.

The convenience of using ScIDs is that they provide a simple, short, Œxed-size way
to name entities or principals. ScIDs simplify key management because once an entity's
self-certifying name is known, it is not needed to obtain its key. This collapses policy on
mechanism in a simple, convenient way. (In a sense, the key management problem
becomes a ScID management problem. Because of the use of hyperlinks, this problem is
now implicitly solved by resp. tied to managing hyperlinks between rooms).

The Œxed size of ScIDs simpliŒes data structures. For example, access control list
(ACL) of Mansion objects contain the AgentOwnerID's of agents that are allowed access.
With a PKI, in contrast, X.509common names (CNs)would have to be included, in addi-
tion to requiring a PKI to bind these CNs to keys. On the other hand, ScIDs only identify
keys; where X.509 certiŒcates contain additional information about the holder of a key,
such information needs to be found elsewhere if ScIDs are used. How this is dealt with in
Mansion (e.g., using zone lists) will described elsewhere in this thesis.

Note that the Œxed, limited size of hashes also imply that there may be collisions. In
fact, there have been reports of collision search attacks on SHA-1 However, in the case of
ScIDs, such attacks do not impact security. Even if some public key can be generated
which generates the same SHA-1 hash (this is called a collision), it is still

11 A blacklisting approach can be used for invalidating compromised zone member certiŒcates with a longer expiration
date. Notethat if one zone member process is compromised, the zone key is not compromised.
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computationally infeasible to compute a private key from this public key Š a basic
assumption underlying public key cryptography (see e.g., [104]).

An important ScID is theWorldID. The WorldID is the ScID of a world Š speciŒ-
cally, it is the ZoneID of the world zone.WorldID is used to authenticate a number of
important services of a world, which are hosted in the basement. Each world has a special
zone called theworld zone, which contains the services that comprise the basement.
These services are essential to the functioning of the world.

3.3. Mansion-internal infrastructure

Former sections described logical components that are visible to agents, and how these
are distributed over zones. Thissection introduces internal components of the middle-
ware. Thisconsists ofcore information servicesand thelocation service.

3.3.1. Core services of a world: the Basement

Every Mansion world needs a number of services that are managed by the world owner
and which are, part of the basement and located in the world zone. The most important
are:

ƒ Zone information service. The zone information service contains thezone list.
The zone list is a list of all the zones in the world, together with (optionally) infor-
mation about them.The information in the zone list is vetted by the world owner. If
a zone is not in the zone list, it is not part of the world. The zone information service
can also be queried for information about speciŒc zones.

ƒ The bootstrapper service. The bootstrapper service contains a set of documents
needed to initialise the system, including the (pre-parsed) WDD Œles containing
attribute set deŒnitions and object IDL deŒnitions.The bootstrapper service is used
as part of initialising middleware systems that join a world, but it also acts as a
resource for agent programmers and content providers. Thebootstrapper service is
implemented as aMultiFileContainerobject which contains a set of Œles.Its con-
tent is read-mostly, so it can be replicated with ease.

ƒ The world' s location service root The world location service (WLS) is the root of
the world's location service; it contains pointers to (contact addresses of) zone loca-
tion services, agent location service and other parts of the world's distributed loca-
tion service. It also contains pointers to basement services including the bootstrap-
per services and core services such as the world's agent location and Morgue ser-
vices. TheWLS is critical to locating entities in a world. Like other services, it is
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implemented as a Mansion object that can be replicated.The contact addresses of
the WLS are registered in a global service provided by Mansion, the Mansion Root
Service (see below).

3.3.2. Delegatedworld services

Every world has a number of core services that are not necessarily managed by the world
owner. Preferably, for scalability reasons, each world has one or a few world entrance
zones that are managed by independent administrators. The world entrance zones each
contain one or moreworld entrance rooms, through which agents can enter the world.
World entrance zones are trusted by the world owner and, necessarily, also by agent own-
ers that enter the world through this zone.

A world's entrance zone (WEZ)is marked as a special zone in the world's zone
list; using this ZoneID, the entrance zone's core services can be located. These services
are registered in the WLS. These are the world entrance daemon, morgue, and ALS.

The world entrance daemonis the system through which an agent is injected in a
world. The Agent Location Service (ALS)keeps track of an agent's physical where-
abouts; an agent's contact address is needed when another agent wants to set up a connec-
tion to an agent.Upon exit (e.g,. after an agent's time to live expired, or when it calls
exit), an agent is migrated to themorgue. Here, the agent can be collected by its owner.

A combination of ALS, WED, and Morgue services must always run in the same
world entrance zone. Each WEZ has to be trusted by the world owner because it is the
entrance point to the world; the WEZ ensures that agents end up in a valid world entrance
room, and its services must ensure that agents do not violate world design policies such
as a maximum time to live, or a maximum number of child agents per agent or per
account as deŒned in the WDD or per some (payment) scheme. It also has to be trusted
by agent owners because the WEZ manages their agents while in the world. Propertiesof
a WEZ are relevant because at world entrance the world owner and agent owner's
requirements meet.

Each WEZ can implement speciŒc constraints, rules, or controls. For example, a
WEZ may be told by the world owner that agents must always be able to reach a speciŒc
set of rooms from one of its world entrance rooms. It may also be that the available
rooms differ per payment scheme, with the world entrance zone administrator controlling
this. For example, a platinum owner's agents may be started up in the platinum world
entrance room and may be able to move to all rooms in the world, while silver agents
may be start up room, from which only a limited number of rooms are reachable.There
may also be ``anonymising'' W EZs which offer access through a layered,multi-organisa-
tional anonymisation scheme for privacy reasons, or which offer `̀ data retention free''
services. Anotherpolicy may be conŒgured where a world entrance zone's services are
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required to keep audit logs for a certain period of time.Using world entrance policies,
application designers gain a lot of •exibility to design policies; most of these can be
enforced through the world entrance system.

3.3.3. TheAgent Location Service

Agents are managed by one of the world's agent location services (ALSes). An agent's
ALS is located in the world entrance zone that the agent entered through. An ALS keeps
track of the whereabouts and contact address of an agent, so that other agents (or the
agent's owner) can contact it using the agent's uniqueAgentID. The ALS implements a
home-based approach similar to that used by mobile phones. Similar to mobile telephone
numbers, the AgentIDs contain sufŒcient information for middleware processes to locate
the agent's ALS when it needs to locate the agent. The AgentID contains the ZoneID of
the world entrance zone. Using this ZoneID, thehandleof the ALS can be constructed
and resolved using the WLS. Next, the AgentID can be resolved in the ALS.

3.3.4. Aworld' s location service infrastructure

Each world has its own hierarchical location service.Contact addresses of services and
processes which have to be reachable from anywhere in the world are located in the top-
level part of the location service, theWorld Location Service (WLS).

To a large extent, theZone Location Service (ZLS)is responsible for providing
scalability of the overall location service. Because lookups for entities local in a zone are
handled by the (local) ZLS, with the lookups originating from agents runningwithin the
zone, most lookups will not reach the WLS.Clients cache contact addresses locally after
resolving them12. Like all location services, multiple contact addresses can be registered
with one handle, including addresses for ZLS replicas. These are returned in round-robin
order or can be requested all at once.

ZoneIDs are the key to locating entities in the location service. All entities contain a
ZoneID as part of the handle that they are referred by: AgentIDs, object handles, Roo-
mIDs, middleware handles. The AgentID contains the ZoneID of the agent location ser-
vice (ALS) that manages its contact records, with the ALS' handle registered in the WLS.
Zone-internal handles are registered in the ZLS, except for the ZLS itself which is regis-
tered in the WLS. As an example, the ZLS can be resolved by constructingŠb y conven-
tion Š a name<ZoneID>_ZLS_0_0and resolving this name in the WLS.

12 Typically this means that the next time an entity is resolved, the address (e.g., of a MOS) returned by the resolver will
be the same. In Mansion, underlying secure connections are often kept alive transparently or SSL sessions are maintained,
so that connecting to the same underlying service next time is efŒcient. This artifact, which improves scalability, is simpli-
Œed by the resolver's caching behaviour.
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3.3.5. Trusting the location service

It is important to note that the middleware does not rely on trustworthiness of the location
service. For a potentially very large-scale system such as Mansion, trusting a location
service (and thus the MCR) would be very risky, as it would be an obvious target for
attack. Further, location service should be able to scale. It should provide correct infor-
mation to allow the system to work, but it should not have to do extensive security valida-
tions for all addresses that are registered with it.The core idea of using self-certifying
handles is that the location server need not be trusted, as authentication takes placeend to
end,when connecting to the referred-to entity.

An important starting point for the trust model regarding usage of self-certifying
handles, is that a room owner veriŒes the validity of a hyperlink, including the ZoneID
encoded in it, before registering the link in the RMO. In addition, there is an independent
list of zones, maintained by the world owner, which lists properties of each zone (Sec.
3.8.2). Theroom owner may receive RoomIDs in various ways, depending on the world
or room's policy. This may imply extensive validation but also may simply be to trust a
link when it is sent by a friend over (secure) email. Either way, key management takes
place at the application level in the form ofhandle management. Thus, the world's zone
list, combined with hyperlinks and AgentIDs advertised by agents, are the basis for
authenticating (target) rooms and, with that, zone member processes.

The location service simply records contact addresses. However, there remains one
risk regarding the location service, and that is that it can be contain erroneous addresses,
making entities unreachable.This may cause service degradation and it may even be
used as a basis for a denial of service attack. Therefore, location service nodes check, for
all modiŒcations of contact records, whether the modifying party is the same as the regis-
tering party (appendix 5). Mansion object, it implements client authentication by default
(chapter 7). Thus, this check is relatively straightforward and enabled by default.

3.4. GlobalMansion services

Mansion has two global services for all worlds, theMansion root service (MRS)and the
Mansion naming service (MNS). These services are available for all worlds and are
currently run by the author of this dissertation.

ƒ The Mansion root service. The Mansion Root Service (MRS) is the root of the
Mansion location services. The contact addresses of all World Location Service
(WLS) nodes of all Mansion worlds are stored in the MRS. The MRS is a replicated
service. In contrast to WLS nodes, which may run on an arbitrary port, the MRS lis-
tens on a well-known port. The IP addresses of all replicas of the MRS are registered
in the Internet Domain Name Service (DNS) undermrs.mansionworlds.org.. Using
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this service, a world's WLS can be located; its address can be found by looking up a
name consisting of the WorldID (Sec. 3.2.3) plus extension_WLS. Information
need only be looked up from the MRS at the time a world is bootstrapped; after that,
middleware processes have cached the the WLS contact addresses.

ƒ The Mansion name service. The Mansion Name Service (MNS) can be used to
register human-readable names (aliases) of all worlds. WorldIDs are 32-character
base32-encoded strings. The world's WorldID can be registered in the MRS so it
can be looked up using the world's alias, after which the MRS can be called to boot-
strap the world's location service and continue. The registration procedure is
straightforward: the Œrst person to come with a new name for a WorldID, a name
that has not yet been registered, can register the name. There is no naming conven-
tion for Mansion world names.Mansion names are simple ASCII strings without
spaces. Ifthe need for more structure arises, a naming scheme like that of DNS
could be considered.

3.5. Locationservice overview

The Mansion location service is shown in Fig. 5.
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Fig. 5. An overview of the Mansion Location Service

The WLS contains references to world-wide accessible services. Objects and per-
zone services are registered in the per-zone zone location service (ZLS). The MNS and
the MRS are currently managed by the Mansion developers. TheWLS can be found via
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the mansion root service (MRS) using a using a special handle,<WorldID>_WLS_0_0.
Some notes:

ƒ Each agent gets a unique identiŒer (anAgentID) at world entrance. This identiŒer is
generated by an ALS. The AgentID contains the ZoneID of its ALS.

ƒ Ahandle is a location-independent identiŒer for a service or object. It uses a simple
naming convention: it contains the base32-encoded ZoneID, followed by under-
score, followed by the name (its IDLtype) of the service, underscore, an and an
instance identiŒer(in case there are multiple objects of the same type in a zone).
The location service associates a handle which a (set of) contact record(s).

ƒ Knowing an agent's identiŒer and given the naming convention for handles, it is
straightforward to create the handle of a speciŒc known service, such as an ALS.As
an example, agent (AgentID) 6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_12
can be resolved in ALS 6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_ALS_0_0.

Using a process of incremental lookups based on straightforward naming conventions,
any object or service's handle can be resolved, typically starting with a ZLS. Most han-
dles can be constructed in a similar way. A resolver library linked in with Mansion mid-
dleware processes can resolve handles based on their type, and caches results.Details on
naming conventions used to resolve handles are provided in appendix 5.

3.6. Putting it all together: overview of a world and services

Fig. 6 shows an overview of a world, including the services and the zones described in
this chapter. Shown are a world zone, containing the world location service (WLS) and
the basement. Further, a world entrance zone and a regular zone are shown. Thecompo-
nents of the location service (WLS and ZLS) are also shown, including the Mansion
name service (MNS) and the Mansion root service.

The location service of Mansion is distributed over multiple zones. The contact
addresses of rooms (RMOs) and objects, and MMW processes hosting agents, are regis-
tered in the per-zone zone location service. Location services may be single-instance per
zone, or may be replicated. Replication may be useful if a zone is large, spread over a
large geographic area, or simply as a primary backup mechanism. Current services are
non-replicated, but earlier work on replicated objects can be applied[107, 26].
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Fig. 6. An overview of important services in a world. Dotted arrows show `̀ pointers'' r egistered in a
location service. Zones (including the world zone) are clearly shown. MNS and MRS are global ser-
vices used to Œnd the WLS.

The location service is hierarchical.The WLS can be found using the MRS, and the
ZLS can be found using the WLS. Object servers and middleware processes can be
resolved on the ZLS using a handle that can be constructed using a straightforward nam-
ing convention based on the zone's ZoneID. Similarly, an agent's (home based) agent
location service can be found using the ZoneID in the agent's AgentID.

A world can have multiple world entrance zones; zone 1 is one of them.The agent
in zone 2 is managed by the ALS in zone 1; had there been another agent, it might have
been managed by an ALS in a different WEZ (not shown).

3.7. Discussion

The sections up to now discussed how logical/visible elements of the paradigm are
mapped onto zones, and how internal components are used and distributed. Combined, it
shows how worlds are distributed.

Zones create a clear mapping between a logical model and an underlying physical
model. All middleware processes in Mansion that belong to a room must be a member of
one zone, the room's zone. Aroom and its content (objects, and agents accessing objects
in a room) may only be physically distributed in the room's zone. Asa result, it is clear
which physical substrateŠp rocesses on hosts, managed by a single administratorŠa
room is distributed or replicated on.
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By ensuring that content in a room is only distributed within a room's zone, a clear
model of how logical concepts are mapped on physical concepts is achieved.

Entities can be located in a distributed location service. Each entity has a handle that
contains a self-certifying ZoneID. Using this handle, contact addresses for the entity or
service can be resolved, and the entity can be authenticated. The mechanism allows for
decentralized, scalable management of zone membership (by a zone administrator), and
avoids that components need to trust central authorities or components in order to authen-
ticate processes as members of zones.

The following sections describe how, in a giv en world, properties can be associated
with zones. Based on this, agents and other parties can decide how much they trust a
given zone or entity. The chapter ends with a discussion on controllability and scalability
of worlds from an administrative perspective.

3.8. World management

Most of the remainder of this chapter will deal with scalability and controllability issues.
As outlined in Chapter 1, an important concern with the design of Mansion was to ensure
that a system iscontrollable on the one handŠi n terms of aspects that a world owner
needs to control to maintain a consistent world structureŠw hile also ensuringscalabil-
ityŠa voiding that central administrators or components become overloaded when a
world grows Š and autonomyŠe nsuring that world owners cannot control every little
detail in a world, and that zone, content and agent owners retain autonomy to make deci-
sions or to manage content without interference from central parties.

This section will describe the components needed to control aspects of a world, and
subsequently discuss scalability and (decentral) autonomy related aspects.

3.8.1. Theworld design document

The primary goal of Mansion is to structure worlds . The basic structuring concept is that
of rooms containing objects and agents, with hyperlinks connecting the rooms.Worlds
are closed, so that the hyperlink structure and the content of the world can be adapted to
the application. All entities are described usingŠa gain, application-depen-
dent Š attribute sets, using which agents can Œnd their way.

Maintaining a coherent, logical structure in a world can be difŒcult. Thereexist
many systems to date with an open structureŠt hat is, few rules exist. This includes the
World Wide Web. In such systems, applications, users, agents, and their programmers are
essentially relied upon to ``make sense of the mess'' at the application level. Agents can
help do that to an extent, but in very large systems the task is daunting [127,84].
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Mansion is different. Mansion allows world designers to create rules to structure a
world. When,rooms, objects, and information are added to a world, the world designer
requests their maintainers to adhere to these rules. Structuring worlds has beneŒts for
programming applications and agents, and for users. This way, they know what to expect
when entering a world.

Mansion allows a world designer to impose an application-speciŒc structure on its
world. The world design document (WDD) is the central tool to help in this process.
Important instruments are the attribute sets that deŒne properties of entities in the world.
An important responsibility of the world designer is to create a hyperlink structure.The
WDD allows for deŒning attribute sets, objecttypes(interfaces) and hyperlink topologies
(topology constraints) that suit a given application best.

For example, consider an auction world. Rooms may have certain topics, like cars,
paintings, or energy. Then, rooms (hyperlinks) may have an attribute `̀topic.'' A s an
example for object attributes, a multimedia world may contain aMediaStorageobjects for
audio, image or movie Œles; a ``mediatype'' attribute may indicate the type. Each object
may contain the same content in different formats, such as raw or JPEG images, or
MPEG movies with different resolutions or different codecs. In a multimedia world, it
makes sense to advertise properties like these in attribute sets.

World designers can set rules on these aspects in the world design document.The
WDD can be parsed such that the MMW and RMOs in a world can enforce some of its
rules automatically. For example, an RMO can check whether a registered AS conŒrms
to the WDD's rules, and the middleware can check the hyperlink constraint policy at the
time of migration or registering a hyperlink13. The WDD is intended to be program-read-
able; it may be that updates to the WDD (e.g., changes to the hyperlink constraints) are
distributed at regular intervals. TheWDD is signed by the world owner, so its authentic-
ity can be veriŒed by all members of a world.

The WDD currently contains the following:

ƒ Attrib ute set templatesfor hyperlinks, agents, and objects.EntityID and Entity-
Type are mandatory attributes in every world. Other optional or mandatory
attributes (for example, `̀name'') can be deŒned by the world designer per Entity-
Type. Insome cases, attributes may come with a list of possible values. For exam-
ple, a world designer may deŒne an attribute ObjectType with the object typesFile-
Containeror MultiFileContainer. Non-limitative or optional attributes may be left
empty. Mandatory attributes in which casemustbe Œlled in when the entity is regis-
tered in an RMO.

ƒ Object types list and IDL deŒnitions.A set of object interfaces (types) may be
deŒned to aid agent development. Mansion comes with two object types,FileCon-
tainer andMultiFileContainer, as well as a number of Mansion services, currently

13 If checks are made at hyperlink registration time, checks need not be made at agent migration time.
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implemented in C++. A given world may provide additional objects, e.g., through a
software repository. The IDL deŒnitions of all objects should be included in the
WDD to enable programmers to compile stubs for these objects, possibly in differ-
ent agent programming languages14.

ƒ Hyperlink constraints. Depending on the world, it may be useful to constrain the
way in which hyperlinks are created. Hyperlink constraints generally describe how
zones may interconnect, not how rooms may interconnect, since the latter is not
enforceable at the world level15. Example hyperlink constraints are described in ap-
pendix 2. Besides hyperlink constraints that can be directly enforced by middleware
processes, a world designer can document general constraints or intents regarding
the world's hyperlink topology in external documentation.Examples of additional
instruction may be ``prevent cycles,'' o r `̀ zones should have only one entry room, no
deep linking.'' A dherence cannot be directly enforced, but a world designer can use
agents to verify these constraints. Because a world owner can remove zones from a
world, compliance to the rules can be enforced.

ƒ Security constraints. A WDD may contain certain security-related parameters. An
example are cipher suites that deŒne the cryptographic channels between middle-
ware processes.Other security constraints may be security clearance levels, which
may be associated with agents at registration or world entrance time. Such levels
may in•uence what rooms or content an agent can interact with. We hav enot imple-
mented such levels, but object access control lists exist that allow for dealing with
such levels in principle, assuming objects understand the clearance level or role
information assigned to agents.

ƒ ConŒguration aspects.A WDD contains a number of global conŒguration parame-
ters. Examplesare the maximum size of an agent container, a list of allowed pro-
gramming languages or binary agent types (e.g., Linux 64 bits and 32 bits), and a
maximumtime to live(in seconds) that agents are allowed in a world. The latter
parameter may also be deŒned as a runtime parameter set at world entrance time
than Œxed in a WDD. Finally, a WDD contains a declaration that speciŒes whether
thejumpprimitive is allowed in the world.

In appendix A, an example of a WDD is shown as it is currently used in the (default)
Mansion setup.The WDD currently has no complete formal language (hence it is not
called a world designlanguage). It consists of various sub parts which may be inter-
preted differently for a different purpose (e.g., the IDL). Mansion comes with a simple

14 Note that the WDD should typically be accompanied by more detailed programming documentation, such as notes on
error handling for the objects; these may be provided externally, e.g., through a website. There may be stub repositories per
world, but these are not currently implemented.

15 In theory, constraints on how zones interlink may in theory be enforced by the Agent Location Services of a world,
which can effectively block agent migration by refusing to update an agent's location address to a given zone.
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WDD parser that splits the document into relevant parts and places them at a well-known
location in a centralbootstrapperservice for downloading by middleware processes.

3.8.2. Managingzone properties Š the central zone list

All zones in a world are in a world-wide zone information service, in a list called the
zone list. The zone list is simply a list of ZoneIDs with, for each zone, the description as
accepted by the world owner. The description may be vetted by the world owner before
registration, depending on the world. Using the zone list, properties of the zone (such as
its owner / administrator) can be looked up so agents and other parties can determine
whether they trust it. If a zone is not in the zone list, it is not part of the world. The world
owner decides what zones are in the list; depending on the world, the world owner may
have extensive veriŒcation procedures or may simply accept any information as-is.

The role of the world owner is similar to that of a certiŒcate authority (CA) in a Pub-
lic Key Infrastructure. Bysigning the zone list, the world administratorbinds informa-
tion to (public) keys, in this case ScIDs. By controlling information about all zones, a
world administrator acts as theroot of trustfor zone information in a world. Like a  CA, a
world owner has to be trusted by all users of a world. This trust is implicitly established
when using a WorldID to bootstrap a world or injecting an agent in it.

Zones may be associated with various properties usingzone descriptions.Mansion
does not pre-impose any description. Propertiesneed be associated with zones only if
this is needed or useful for a world. A typical zone description contains a zone's name
and its properties, such as its owner/administrator's name. If propertiesare deŒned for a
zone, they should be applicable to all zone member processes or the systems they run on.

Zone descriptions are attribute-value pairs describing properties of the zone.Exam-
ples may be host conŒguration details, if relevant. For example: `̀OS=linux'' or ``OS-ver-
sion="2.4.22".'' A nother example is where a DNS name is encoded in a zone description,
for example,amazon.com.Zone descriptions may also contain a reference to a Service
Level Agreement (SLA)Šd igitally signed by the zone owner Š that speciŒes properties
that may impact performance, security, or privacy, such as: `̀ we jail all processes'' or
`̀ we guarantee to remove all temporary data stored by an agent after exit.'' S uch a refer-
ence to an externally deŒned SLA should be accompanied by a hash of the SLA, to
ensure the zone owner cannot change it without the world owner's permission.

Zone properties may be optional or mandatory. An example mandatory property
may be a common name (CN) or a company's DNS name in a commercial world. Zones
are not geographically constrained, so their properties need not contain location or organ-
isation information, but they may; physical properties (e.g., hardware information) may
also be contained.Alternatively, zones may simply act as a grouping of processes that is
suitable for authenticating the zone, without any additional information (Sec. 3.2.1).
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From a technical perspective, open, low-barrier entry, loosely-deŒned systems can
be constructed just as well as highly secure, constrained and tightly controlled ones,
although the latter system's zone registration processes will be much more complex.

3.8.3. Trust and agent migration

The concept of zones, zone ownership, and zone descriptions exist so that control over
and veriŒcation of zone properties is possible if this is needed for a world. Dueto the
zone list, each zone in a world is known, and it is clear what properties it has. Typically, it
is thus known what administrative entity (zone owner) is responsible for a zone, so that
other parties in a world can decide if they trust it.

Trust is particularly important in mobile agent systems, since agents that run on a
machine are vulnerable to attack by that machine or the software or users on it. An agent
must migrate to a zone before it can enter a room in that zone. An agent can request
information about the zone in which it runs, and it can request information about the zone
in which a target room resides. If an agent communicates with another agent, it can
request the zone in which the other agent resides. This information can be used by agents
to reason over trust related aspects.

Agent owners may not trust all zones equally. Agent owners can create`̀ trusted
zone lists'' that allow their agents to avoid untrusted zones; their current (trusted) MMW
can check this list in their AC, and refuse to migrate and alert the agent if it intends to
migrate to an untrusted zone. The agent can override this decision if needed.

Note that an agent owner who trusts a zone, may not necessarily also trust all con-
tent in it. But it will typically trust this zone's execution environment (the host that it runs
on, which is part of the zone) not to tamper with itŠo r decide to take the risk.

3.9. World management

The zone list is a central, trustedauthoritative list that contains information about all
zones in a world. Thereasons for having a world-controlled zone list are:

ƒ The world owner needs a way to include or remove speciŒc zones in the world. The
zone list contains the authoritative list of zones in a world. Zones (ZoneIDs) not
listed in the zone list are simply not a part of the world.

ƒ The world owner needs a way to impose andŠi f needed Š exert control over prop-
erties of the zones in a world, such as security or conŒguration properties.

It is up to a world owner to decide how important (validation of) zone properties is and, if
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needed, to collect (and verify) zone properties at the time when a new zone is registered.
Before a zone is entered in a world's zone list, a world owner can impose requirements on
any party that wants to join the world. This may be loose, or it may include strict veriŒca-
tion measures on zone owner (contact) information, or contracts or (service level) agree-
ments regarding zone properties.This may ensure that the zone owner can be held liable
if zone properties do not correspond to those speciŒed in the zone description.

The basic implementation of zone registration currently consists of a script that
emails a ZoneID with the zone owner's email address to the world's owner (the world
owner's email address is found in the bootstrapper service). This way, a zone owner can
be contacted by a world owner, for example, to obtain more information. In an ``open''
world without meaningful world entrance control, a central script could take care of
instant inclusion of the ZoneID in the zone list, possibly with some email and key veriŒ-
cation procedure at registration time.

Note that Fig. 4, shows a zone certiŒcate that also contains azone (member) predi-
cate. A zone predicate is an optional way for zone owners to describe (additional)
attributes of a zone (member process) in the zone (member) certiŒcate, in addition to the
general zone description. These properties are not checked by the world owner. Zone
(member) predicates can be used to specify details about zone members which may
change over time, or which may be zone-speciŒc or not critical to world membership.
For example, there may be OS-speciŒc details which may differ for members of a zone or
which may change over time Š for example, the OS of a host on which a zone member
process runs. The zone predicates provide some extra •exibility , making it possible to
manage and evaluate (at connection time) certain details decentrally, in addition to the
world-wide zone descriptions.

3.9.1. Adherence to world rules

For adherence to the world design rules, much the same holds as for other types of con-
trol: the world owner can remove zones from the world if these do not adhere to the rules.

Adherence to the WDD is important to allow consistent structuring of worlds. At
the same time, zone owners should be autonomous in the content they manage Š inas far
as they adhere to potential rules set by the world owner. Worlds also need to be scalable.
Autonomous and relatively independent zones are important so that they can scale up or
down as needed, and remove or add zone member processes, content, or hosts as needed.

Maintaining a coherent, logical structure in a world can be difŒcult when providers
of content (rooms, objects) are autonomous entities who host their content. The require-
ments of scalability and autonomy mean that the world owner does not have absolute
control. Suchcontrol would not scale from a technical and administrative perspective,
and would interfere with autonomy of zone and content owners.
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The deployment model for content in zones is not unlike the World Wide Web,
where people are free to add content (as they are in Mansion), but the Web does not
attempt to enforceany structure on the world. In contrast however, Mansion worlds,
developed for a certain application or goal, may impose constraints on content or struc-
ture. In practice, world owners may require zone owners to agree to speciŒc constraints or
rules before they are allowed to join the system. Periodic checks and peer pressure can
ensure that content owners stick to the rules, with removal f rom the world being the ulti-
mate sanction.

3.9.2. Power and consequences

A world owner cannot directly control what middleware processes and objects in zones
do or not do.But if zones do not adhere to a world's rules, a world administrator has ulti-
mate coercive power: she can remove a zone from a world's zone list, effectively remov-
ing it from the world.

MMW processes in a world are expected to check (update) the world's zone list reg-
ularly, will only accept agents migrating to and from a zone that on the zone list.The
agent location service (ALS) also does not allow updates of an agent's contact informa-
tion to a zone that is not in a world's zone list (Sec. 8.3).

If a zone owner does not comply to the world's rules, this can be detected, or may be
reported upon by other world members. It can then be removed from the world.

3.9.3. `̀Dark worlds''

Zones removed from Š or unsatisŒed withŠa w orld, are free to start or join another
world that allows con•icting content. Worlds are completely independent of each other.
Suppose a zone owner provides illegal content, is removed from a world, and starts a new
world. Does this pose a problem? The only thing that can be done then, is to remove these
worlds from the Mansion root services that people use to bootstrap a world. Mansion can
employ censorship in that sense, as far as theofŒcialsystem is concerned. (Similarly,
IARA can forbid DNS names like www.childporn.com in the ofŒcial DNS naming sys-
tem). However, a `̀dark world'' w ith alternative MRS and MNS servers or even without
such services can easily be constructed.

Creating `̀subworlds'' or even `̀ subversive worlds'' is thus clearly a possibility.
Since worlds are disjoint, autonomous, and independent, it is straightforward to create
`̀ hidden,'' `̀ secret,'' o r `̀ private'' worlds. This may be a morally problematic result of a
system like Mansion that is designed to create independent application-speciŒc worlds. It
should however be noted that this problem exists for all systems, even including the Web
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which Š with a different underlying DNS systemŠc an look completely different in a
hidden or secret instantiation.

3.10. World entrance policies

The world entrance zones (possibly subject to rules imposed by the world owner) can
implement world entrance policies, and the mechanisms to enforce these policies.For
example, a world entrance zone may be accessible through a Web site that offers pre-
compiled agents for certain tasks to registered users. Such a web site may require pay-
ment to enter a world. A typical scenario is that the owner of agent may have to preregis-
ter before he/or she can inject agents. ScientiŒc users may require a (Web) interface
where agents can be uploaded (or possibly reused) with different initialisation Œles.Con-
ceivable are agent composition or work•ow orchestration toolkits for multi-agent tasks.

Every world (or even each world entrance zone) may implement its own world
entrance policy. For example, an agent owner's registration may result in an agent being
•agged by the world entrance daemon as belonging to a certain category, such as `̀ivory,''
`̀ gold,'' o r `̀ platinum'' agents. Alternatively, the registration procedure may require strict
identiŒcation of an agent's owner, or it may allow anonymous or pseudonymous access,
where a mapping between an end-user's identity and a ``pseudonym'' is generated at
injection time.

Internally, every front-end uses the same agent submission procedure and mecha-
nism to submit an injected agent to a world entrance room.A world entrance daemon
securely binds agent ``identity'' ( or, if applicable, its role) information to an agent at sub-
mission time, by storing it in the agent's Agent Container (Sec. 8.2.6), along with other
information such as the agent's time to live, the maximum AC size, and the AgentID
obtained from registering the agent with the ALS.

Currently, the access control scheme for world entrance consists of simple identiŒ-
cation of an agent's owner by means of her public key. A 32-byte identiŒcation string
(essentially, the agent owner's ScID, or AgentOwnerID) is placed in a special Œle in an
agent's agent container, and signed by the world entrance daemon. The AgentOwnerID
assigned to an agent is opaque to the MMW and can have sev eral meanings, such as a
security level or as a payment scheme identiŒer. The string is only interpreted at the
application level, that is, by objects, and rooms.It is passed to objects when these are
invoked by the agent. Based on this ID, an RMO or other object decides on whether
access to the room is allowed. Accesscontrol and semantics of an agent identiŒer are up
to the application; the mechanism is •exible enough to meet different application sce-
nario's. Different services can be provided at different service levels or cost if required:
online tracking of agents, pseudonymity, premium access, etc16.

16 When nonstandard attributes (e.g.,rolesor paymenttypes) are stored in the agent's AC, the world's rooms and objects
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In terms of control: a world owner can accept or remove a world entrance zone like
any other zone. The world owner and the world owner should agree on the types of access
policies permitted and enforced.Contractual agreements may have to be in place before
the world entrance zone is added to the world. Dependingon world requirements, the
world entrance rooms may have to enforce certain constraints, such as a maximum num-
ber of agents that may enter a world at a given time. Also, world entrance rooms may
have to link to speciŒc other rooms in the world so that agents can reach the whole world
from it. Finally, SLAs may be in place.

3.11. Scalability

Using different independent zones in a world provides scalability and security advantages
compared to where a world owner manages a central infrastructure for all services.With
increasing scale, keeping up with the capacity of the infrastructure and the administrative
load of managing a single infrastructure could soon become infeasible.

Technically, it is also important that load is spread; if interest in one part of a world
increases, would this impact central parts of the system (e.g., world location service),
world entrance zones, or even unrelated zones disproportionally?

A related issue is economics. How is the cost to pay for scalability, and the resources
required for that, spread over the participants of a world? Thissection will also discuss
some aspects related to that.

The basement and the location service. For very large-scale worlds, world manage-
ment and the central infrastructure in the world zone can become a bottleneck. From an
administrative perspective, a world owner should not have to worry about details of how
zones are managed internally.

From a technical perspective, the capacity and availability of the basement and the
services therein, including the world location service, is important. The location service
of the world is hierarchical. The zone location services that manage the contact records
of entities in different zones are distinct, and managed by the zones, separate from the
world location service (Fig. 6). Thus, as particular zones may grow in size or popularity
while overall popularity of the world remains constant, the load on the basement should
remain stable, while only the load on the more popular zone location service(s) increases.

If a world's overall size increases, so will the load on the basement, since more
agents and more MMW processes will request information from it to locate zone location
services or ALS addresses. (Note: the resolver library used in Mansion uses caching to
avoid having to resolve an entity's address repeatedly).

must obviously be aware of these; the world owner should specify design notes or guidelines on this.
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In a hierarchical location service, the (potentially varying) load is spread over the
different location services of which it is composed.Concretely, larger and more popular
zones will attract more trafŒc to their location service. First, because more agents will
migrate to it, which leads to more requests to Œnd a MMW process to migrate to. Second,
lookups to resolve resources within that zone involve the zone location service only.
Objects will generally be resolved from within a zone, as only agents in the same zone
can bind to them. Thus, requests within a zone will generally not impact other location
service nodes.

Zones. Internally within a zone, many services need to scale up as its popularity rises.
Capacity for hosting agents can increase by adding MMW processes on new hosts to the
zone. Some objects or services (with often accessed read-mostly data) may need to be
replicated. Thisalso implies adding more processes (e.g., to host replicas of the service)
to the zone.

Adding processes to a zone is done decentrally by the zone owner, and does not
require world owner intervention. Mostservices in a zone, such as object servers manag-
ing objects and MMW processes managing agents, are completely internal to the zone
and can be created (as new zone member processes) without having an impact on other
parts of the world.

As for replication: experience has shown that highly available, large-scale replicated
services can be built [26,112, 2]. The lessons learned can be applied to RMOs, objects
and services (implemented as objects) in Mansion.For location services, related issues
have been explored for the Globe location service infrastructure [17], DNS, and for
Mobile IP and mobile telecom services. Although replication for location service nodes
and objects is not currently implemented, chapter 7 will describe some options for repli-
cating objects.

World entrance. Another potential bottleneck for scalability is world entrance. All
agents must enter a world through the world entrance system, so scalability of the system
as a whole is impacted by the number of agents that can enter this way.

As the number of agents that enter the world increases due to adecentralprocess of
people adding content to the world and people getting interested in using the world, the
load on the world entrance daemons, agent location services, and Morgue services in a
world increases. It is intuitively clear that one single world entrance roomŠp otentially
containing services that help agents on their way, e.g., a yellow pages serviceŠd oes not
scale to huge numbers of agents.Such a room (its RMO and other objects) would have to
be heavily replicated17 over a large number of machines in the world entrance zone to
handle all incoming agents.

17 The room's RMO's state may be difŒcult to replicate (its state needs to be updated often as attribute sets are written to
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Scaling up a world with a single world entrance room would clearly be a challenge.
A world with multiple world entrance rooms in one world entrance zone is in better
shape, but in this case problems may arise with the number of agents that have to be man-
aged by the world entrance daemon, Morgue and agent location service of that zone.

Mansion solves the scalability issue of world entrance rooms by having multiple
decentrally managed world entrance zones each containing one or more (equivalent)
world entrance rooms. World entrance zones are technically and organisationally separate
from other zones.

The different world entrance systems (aworld entrance systemconsists of a world
entrance zone, one or more world entrance rooms, the agent injection systemŠW ED,
morgue Š and additional systems and procedures such as for registering agent owners)
are managed decentrally. (How agent owners Œnd the world entrance zone is outside the
scope of Mansion, but probably the world entrance system manager will announce the
means to register with and inject agents in the world to the outside world by means of, for
example, a Web site.Having a choice of world entrance zones can help an agent owner
to select the best one for its purpose.World entrance system managers may compete with
each other to present attractive front-ends and services in their world entrance rooms to
users; details are outside the scope of this thesis).

The world owner may have Service Level Agreements (SLAs) with world entrance
zones. As the size or popularity of a world increases, the capacity of the more popular
world entrance zones may have to be increased to meet the SLA.Presumably, world
entrance zones charge for their services in some way, to pay for the cost incurred.Fur-
ther, as world's popularity rises or if existing world entrance zones struggle, new world
entrance zones may be added such that more agents can be served in total.

3.11.1. Economicalaspects of scalability

Keeping a set of reliable services for agents to enter (and exit) a world and keeping track
of agents using a reliable world entrance system is not cheap, and is probably infeasible
without some sort of payment or revenue model associated with it. Similarly, as a world
grows, demands on availability of the basement will grow. This section explores and dis-
cusses some aspects related to whether revenue and business models can support scalable
world deployment.

As the size or popularity of a world increases, so does the load on the central (base-
ment) services, on the world entrance zones, and on the individual zones in a world. It is
important that if an increase in load requires investments for scaling up, that these

it for all entering agents and removed for all that leave). It could be considered to change the semantics of world entrance
rooms such that in a world entrance room, agent attribute sets are not shown in the RMO; however, creating such an excep-
tion would break the conceptual model. Besides, agent attribute sets have a function, such as that other agents can see who
enters the world and, possibly, make contact.
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investments are ``fair,'' t hat is, a service or zone that does not contribute to the increased
load, should not have to scale up disproportionally. If required investments to handle
increased load on services are skewed compared to where the load is generated, then even
if technical scalability is possible (which we assume), the required investments may not
be made and the system may end up with bottlenecks in practice. Therefore, it is impor-
tant to see whether an increased load on some part of the system is proportionate to the
potential revenue that can be made by this part of the system, and if economic models can
be conceived which can sustain a (large scale) world.

The potential number of individual objects and services in a world may be large
compared to the number of zones in a world. Objects, services, and agents may also be
subject to a high degree of ``churn,'' t hat is, subject to the dynamics of disappearing and
(re-)appearing nodes and processes in a system. This puts a large load on the location ser-
vice system. For objects, this mainly concerns the zone location services. For agents,
most of the load is on the agent location service; the load on an ALS is related to the
number of agents that entered through the ALS's world entrance zone and which are in a
world at a particular time. Churn of services may impact both global and zone-relative
services. Atleast some kind of replication of the location services (ZLS or WLS) may be
required Š not just to cope with load, but also to ensure availability and reliability of the
system. This incurs cost for machines and administration.

Depending on how many agents visit a zone, computational resources are required
to host the agents. Whether or not providing computational power to host agents is eco-
nomically feasible depends on the application.A few examples:

ƒ Users who submit agents may be willing to pay for the service provided or the data
collected; this can be the basis for business models that support the resources needed
for the framework.

ƒ Universities or medical centers may have sufŒcient incentive to fund the resources
required based on the prospect of setting up (medical) trials, research, or collabora-
tions in ways which were infeasible using the Web Š the added value of the applica-
tions may be worth the cost.

ƒ At the other end of the spectrum, volunteer resources (end-user machines) may be
added to a zone to host content and agents, like Web pages may be added to the
Web. NGO funding and/or small world entrance fees to cover the cost for managing
world entrance zones may sustain the costs.

A scalable system should provide fairness: a zone consisting of a huge number of objects,
middleware (MMW) processes, and agents, should not place an undue or disproportionate
load on an unrelated part of the system. The hierarchical approach of spreading location
service(s) over the system, combined with the fact that rooms are accessible from their
own zone only, ensures that (location) services and objects of the popular zone will be
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loaded speciŒcally when popularity of a zone rises. If a given zone is popular, the
increased cost of maintaining it is the price to pay. The hierarchical approach of spread-
ing load thus seems to provide the required fairness, as other zones are not impacted.
Interestingly, had we chosen to use a less strict model on agent migration where agents
could have accessed rooms from different zones, fairness may have been less predictable.

The world entrance zone has another position.The load on a WEZ may increase as
popularity of a world as a whole increases. Although the WEZ may have to inv est in deal-
ing with the resulting increased load, revenue (e.g., due to increased sales) may go to reg-
ular zones in the world. Onecan consider that agent owners will pay the world entrance
zone for entering the world. This payment may cover the cost of some or all of the
resources used in the world entrance zone.(The WEZ may use a registration fee, a fee
depending on how long agents use the system or on how often they migrate, or on the
(maximum) size of the AC, which is stored in the morgue.

As an alternative, the WEZ may bill zones in the world, e.g., corresponding to the
number of agents that visits them; aggregated migration statistics may be obtained from
the ALS to indicate which zones in a world are popular and must be billed. It should be
noted that this may cause privacy concerns.

A very different model is where the world entrance fee has to cover all costs in a
world, including the cost of deploying regular zones, who thus bill the world entrance
zone Š this may occur in cases where content is provided by non-proŒt or academic insti-
tutions. Inaddition, the world administrator may demand a share of WEZ revenue, irre-
spective of who payed for this revenue.

Presumably, all cost will eventually be payed by agent entrance fees or or agent
owner registration costs, or as a share of revenue by zones who provide content.
Although a detailed discussion is outside the scope of this dissertation, it seems that
mechanisms (in particular, accounting for use using the ALS) are available to WEZ
administrators to account for usage of the world. This can help construct feasible eco-
nomic models to support scalable world deployment. Accountingfor use, billing for
placement of a hyperlink in a (world entrance) room, payment for registration of a zone
in a world, etc. are conceivable instruments. It appears that economic models can be
mapped on the deployment model of Mansion.

3.12. Examples

To close this chapter we describe a few example worlds to illustrate the aspects discussed
in this chapter.

A single-zone world. The content of a single-zone world will be provided by the
world administrator, or at most by a few content providers who then provide the content
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through the world administrator. There is little complexity here, as scale is limited. The
world owner has complete control over all rooms, objects, hyperlinks and content in the
world.

A multi-zone commercial world. Closest to other examples in this thesis, an e-
commerce world allows registration of zones for shops that sell music, movies or images.
Registration comes for a fee, and require that prospective zones show their registration
before the shop's information is registered in a zone description. The world services are
payed by these fees. There are three world entrance zones, with world entrance rooms
specialising in movies, images and music, respectively Š with cross-links to the world
entrance rooms of the other zones. The world entrance zones get payed by zones, with
accounting done by checking the time that agents spend in each zone using the agent
location service. Agent owners can register once and presumably pay a small fee once;
the assumption will be that the investments needed to host agents in a world will be payed
by music, image or movie sales. Some shops may provide conŒned rooms to search
expensively priced rare music or movies while other shops may allow agents to stream
music home (pay per minute). The world owner, together with world entrance zones,
spends a lot of time optimising the hyperlink layout to ensure the world allows for Œnding
the different shops easily without bias for the larger shops. Agents or services provided
by world entrance zones may help locate shops with speciŒc content.

An open, huge-scale many-zone world. Consider a very large-scale, World-Wide-
Web like world, where anyone is allowed to create zones and content and place it in the
world using a simple, automated and fairly insecure procedure. In this example, all con-
tent (room) providers run their own zone (containing the middleware services required for
hosting agents and rooms) similar to how in the Web, many org anisations run their own
Web servers without any central control. The world owner does little, for administrative
scalability reasons, but also due to reasons of ownership and trust: not everyone will trust
the world administrator, even though they use the world, and also the world administrator
is not interested to host thousands or even millions of rooms for various parties; this
would simply not scale. Therefore, the world administrator primarily ensures that the
world location service (and the basement) stay up and running and that zones can be
added and removed (automatically) from it.

A secure banking world. Imagine a banking world, where zones may only be
added using a (costly and presumably difŒcult) highly secure procedure. This procedure
is needed to ensure that only legitimate banks enter a world. Also,the zone keys (ScIDs)
of these bank zones must be properly authenticated. SLAs ensure that liability issues are
covered and establish a baseline (mutual) trust between all contributing parties.CertiŒca-
tion of zones (banks), their systems, and their personnel may be required.Only authenti-
cated and authorised agents will be able to enter the world; agent (owner) registration and
world entrance will be tightly controlled. The underlying network connections need to be
encrypted with the strongest cryptographic standards, if not also run over leased lines.
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Clearly, the above worlds differ in a number of (orthogonal) aspects. The examples
illustrate why Mansion must permit different tradeoffs to be made, translating into differ-
ent levels of control depending on the scale and purpose of a world, as was discussed in
this chapter.

3.13. Summaryand discussion

Chapter 2 of this dissertation explains Mansion's logical model. Chapter 3 explains the
way in which the logical model is mapped on the physical model (by means of the zone
concept), and the world description document. Combined, these two chapters describe the
basic model of the Mansion paradigm. We summarize and discuss it here.

Rooms and content are deployed within a zone; an agent that wishes to access a
room or its content has to migrate to that room's zone, since objects are only accessible
within a zone. Agents can interact with each other anywhere in a world. Agentscan
communicate with other agents using secure, migration-transparent connections.How-
ev er, in a conŒned room, an agent cannot communicate with the outside world; its com-
munications with the outside world are cut off, and the only way in which to export infor-
mation from a conŒned room, is by passing it through the room's guardian agent.

Rooms and objects in those rooms are only accessible by agents in this room. The
object servers in which objects, including the RMO, run, are only accessible to processes
in the room's zone. Mansion's migration model is simple and clear. Upon following a
hyperlink, agents are always restarted. Mansion only supportsweak migration, meaning
that agents are restarted retain no execution state or memory upon migration.Except for
what agents store in their private agent container, nothing is kept when an agent migrates.
In a conŒned room, an agent is not allowed to write to its AC.

Hyperlinks are logical links to rooms; agents are normally not aware of the physical
location of entities. World owners may impose constraints that restrict migration
(through hyperlinks) between particular zones.For scalability, objects may be replicated,
and zones may exist on multiple (middleware) processes on several machines in a zone.
These aspects are invisible to agents.

A world can consist of a large number of zones, each containing a large number of
rooms and objects, or of a single zone with a single room. A world design document
describes the properties of worlds, such as object interfaces, conŒguration aspects such as
supported agent programming languages, and on inter-zone migration (hyperlink) con-
straints. Attribute sets describe all components (agents, objects, hyperlinks/rooms), and
allow agents to Œnd their way.

The world owner controls what zones are part of a world, and may impose con-
straints on (world entry) zones in the world and, to a limited extent and indirectly, over
the content of a world, since ultimately a world owner has the power to remove zones
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from a world. TheWDD contains template descriptions of the attribute sets of all entities
in a world and hyperlink constraints. Zone owners may lead an agent through a path of
hyperlinks, for example to enter (sub)sections of rooms on a particular topic.

Multiple independent Mansion worlds may exist independent of each other. The
WorldID is the self-certifying name of a world; it allows users to retrieve and verify the
world owner's public key, which is the root of the world and its (implicit) PKI. Using the
Mansion root services, a world's WorldID may be used to bootstrap a world.

A zone owner is responsible for managing both the content as the physical infra-
structure of its zone; as zones become more popular, content (objects) can be replicated,
and MMW processes may have to be added (on additional machines) to handle increasing
numbers of mobile agents.Zone members can be added by signing a zone member cer-
tiŒcate for the new zone member process using the private zone key.

A zone is created straightforwardly by creating a zone key pair and a self-signed
zone certiŒcate, and can be tested ``live'' o utside a world. Theonly required step to link
a zone to a world is to get the new zone's ZoneID registered in the world's zone list and
to get hyperlinks to its zone entrance room registered from an existing (regular or world
entrance) room.How this works depends on the world ‰ the process may be similar to
getting a new domain name registered in DNS, or it may be closer to getting a certiŒcate
signed by a certiŒcate authority, which may include face-to-face veriŒcation Š depending
on the constraints imposed by a a world owner. In worlds where the world owner places
no constraints on zones that may enter, an automatic registration procedure could sufŒce.

An important property of Mansion is that the world administrator controls a world
by controlling the world's zone information service and zone list. This control is needed
to impose application-speciŒc a structure or other application-speciŒc properties on a
world. By controlling the world's zone list, a world owner exert power even over internal
aspects of content in a room if needed, since any party (zone) that violates rules on con-
tent or structure of a world can be removed from the world. How Œne-grained the degree
of control is depends on the applications; probably, very Œne grained control is normally
not needed, works counterproductive as it inv ades autonomy and, potentially, privacy, and
cannot work at large scale, but some degree of control is important.

Mansion starts from the notion that a world owner can design worlds with a speciŒc
structure, or speciŒc content, or other properties which suit a particular application.This
can only work if some form of enforcement is possible. Enforcement at a low lev el (e.g.,
through rules embedded in all the processes in a world) is difŒcult if not impossible to
implement, as individual middleware processes in a world run outside control of the
world owner and may simply circumvent the rules, for example by modifying the MMW
software. Controllingzone membership of a world is thus a useful coercive means to
impose control if needed.

In Mansion, each party who wants to run its own resources can create its own world,
and in most worlds may be allowed to create and register its own zone.Within this zone,
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a zone owner is free to deploy as many rooms and objects as it wants, possibly subject to
world requirements.Typically, these requirements only involve high-level, inter-zone
hyperlink constraints and zone properties18.

Depending on how the world is designed, a world may consist of one, a few, or a
large number of zones.It is important that a world can adapt to growth and scale over
time. A small world may be owned and deployed fully by the world owner, as a single
administrator. It can start with a simple world entrance zone managed by the world
owner, and grow over time by adding zones and rooms. As a world grows, (profession-
ally managed) world entrance zones may be added to the world; over time, the original
zone may be removed, or kept for testing purposes only. As the world grows (or shrinks),
(world entrance) zones and zone members can be added or removed, often transparently.

All processes within a zone trust each other equally. Agents, and other zones, must
determine for themselves whether they trust a given zone. Agents can have a `̀trusted
zone list'' in t heir AC to help prevent migrating to untrusted zones. Depending on hyper-
link constraints, zones may refuse agents coming from a given zone, or indeed refuse
agents from speciŒc untrusted owners. Inthat sense, users (agents) and content owners of
a world are autonomous. Only the world zones and the world entrance zone chosen by an
agent owner need generally be trusted completely by the world owner, room/zone owners,
and agent owners alike.

This section discussed a number of aspects related to structuring and deploying a
world that illustrate how controllability (security) and autonomy requirements are bal-
anced at various levels of the system.Overall, Mansion is a •exible system that balances
these requirements well, and allows for various degrees or tradeoffs when balancing con-
trol of administrators versus autonomy of users or content providers, depending on the
application. SinceMansion intends to support different applications using different
worlds, this is not surprising and it illustrates the strengths of the framework.

The discussion on scalability and economics exempliŒed how business models are
likely to support the investments needed when worlds scale up, with fair divisions of
work and cost being possible due to most of the cost being incurred in the zones where
most agents migrate to.

Following chapters

With this chapter we conclude the Œrst three chapters that describe the architectural
model and distribution aspects of Mansion worlds. We now turn to the design of middle-
ware components.

18 A zone owner may have to indicate certain properties of its zone, for example, properties of the underlying machines
used to host agents, or the geographic regions or countries that the zone is hosted on, in the zone descriptions. This may be
relevant in some worlds, as such aspects can have leg al implications, for example due to data protection regulations.
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Mansion is a layered system. The next chapter describes the lowest layer in the mid-
dleware stack, Agent Operating System (AOS), followed by a chapter describing the
Mansion communication stack and RPC layer. Following this, chapters describe other
middleware components: the jailer and the Mansion object server (MOS) that makes use
of the jailer and of the RPC layer.

Next, a chapter describes he main middleware (MMW) process that manages agents
(using the jailer and AOS), and the Mansion API; here, all layers and components come
together.

Final chapters describe applications of the system and conclude with a discussion.
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Chapter 4
Agent Operating System

AOS is a stand-alone middleware `̀ kernel'' designed to facilitate the development of
mobile agent systems. It is described here as it is the basis of the current middleware
implementation; following chapters will describe the layers that are constructed on top of
it. AOS is used in Mansion as well as in the AgentScape [127] mobile agent platform.

This chapter describes the design and implementation of the Agent Operating Sys-
tem (AOS). AOS provides generic data storage for agents (agent containers), secure
agent container transport, and secure communication mechanisms for middleware sys-
tems. The main idea behind designing AOS is that if common functionality is provided
by AOS, this will help save dev elopment efforts for different mobile agent systems. It
also should ensure that basic security mechanisms are in place regarding communication
and agent transport.Tw o interoperable AOS kernels have been implemented, in C/C++
and in Java. This chapter presents comparative performance measures of these two
implementations19.

4.1. Introduction

Designing a secure and reliable mobile agent system is a challenge.Over the last decade,
various mobile agent middleware systems have been developed to support (mobile) multi-
agent applications [19,20, 51, 59, 110, 115].These applications depend on a middleware
system (called a mobile agent system or mobile agent platform) for functionality such as
agent life cycle management, communication, migration, and security. Over time, vari-
ous mechanisms for security, such as audit trail based security [115], have been designed,
but few of these have been adopted in other mobile agent systems. Most agent systems

19 This chapter is based on an article that appeared in 2007 [77].

81



82 Agent Operating System Chap. 4

have been implemented in Java. This provides portability and security advantages. [45].
However, for many tasks, support for agents in different languages is useful, for example
to allow leg acy programs to be reused in mobile agents.Few systems support agents
written in other programming languages than Java. High-level protocols, for example for
interagent communication, have been deŒned as international standards [21,70], but not
the low-level protocols needed to, for example, ship an agent. As a result, most agent
systems implement their own form of agent transport, communication, or security, typi-
cally in a (language) speciŒc way.

This chapter presents a different approach.Based on our own experience in con-
structing mobile agent systems and related work [127,79], this chapter identiŒes a mini-
mal set of common primitives required for mobile agent middleware systems.Rather
than focusing on speciŒc solutions, a portable and generic ``kernel'' is constructed which
provides the common primitives required for constructing mobile agent systems.AOS
provides support for secure communication, secure agent storage, and agent migration.

AOS is implemented as a separate process which can be invoked by middleware pro-
cesses, instead of as a library. Having AOS run in a separate address space allows for
effective protection against faulty or compromised middleware components. This design
has the additional advantage that middleware processes can be implemented in different
languages, accessing AOS through a language-neutral RPC interface. Finally, it can help
overcome a practical problem for systems that run multiple programs that must be avail-
able from the internet: port availability. Using AOS, only one TCP/IP port must be acces-
sible, over which connections to multiple middleware processes can be multiplexed. A
simple but effective security mechanism is designed to logically separate AOS resources
owned by different middleware processes.

Designed as a portable and language-neutral layer between local operating systems
and higher level agent platform middleware, AOS provides interoperability between agent
platforms and between different implementations of AOS itself.Different middleware
processes can use a single AOS kernel (the process that implements AOS functionality) at
the same time.Tw o AOS kernels have been implemented, in C++ and Java, based on a
single speciŒcation of the AOS API and the low-level protocols [81]. These two imple-
mentations were intensively tested for interoperability. AOS is used in a middleware sys-
tem implemented in C (Mansion) and in a middleware system implemented in Java
(AgentScape).

This chapter is organised as follows. The requirements and considerations that
drove the design of the AOS kernel are described in section 4.2.Section 4.3 presents the
architectural design of AOS. 4.7compares the performance of the AOS kernel written in
C++ with the kernel written in Java. Related work is discussed in section 4.8, and the
chapter concludes with a summary in section 4.9.
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4.2. Designrequirements

Most mobile agent middleware systems are designed to support speciŒc agent models and
programming environments. These systems share functionality. AOS has been designed
to provide a minimal common base which provides this shared functionality to mobile
agent middleware systems. By design, AOS supports interoperability, facilitating open
and extensible design of agent middleware, and enabling interaction and/or integration
with (existing) middleware services.

The commonalities found between agent middleware systems can be broadly classi-
Œed as: (i) mobile agent (code and data) storage and transport, (ii) primitives for agent life
cycle management, and (iii) secure communication between middleware processes (irre-
spective of what is actually stored in an agent or being communicated).In addition, all
mobile (multi)agent systems require security mechanisms that allow for, for example,
authentication and authorisation of remote processes, and for integrity veriŒcation of
migrated agents and content.

The AOS kernel is designed as a stand-alone component with a well-deŒned inter-
face, that provides •exible and secure primitives for building mobile agent systems. The
requirements deŒned for AOS are the following:

ƒ AOS should provide a minimal set of primitives required for building (secure)
mobile agent middleware. AOS should be a robust, minimal layer supporting a
broad range of agent middleware systems.

ƒ AOS should be portable and interoperable when implemented in different languages,
and reliably run on different platforms.

ƒ AOS should be reasonably efŒcient, within the expected performance boundaries of
(secure) agent middleware. It should not add signiŒcant overhead compared to a dis-
tributed mobile agent system written with similar (security) requirements in mind.

ƒ AOS should implement mechanism, not policy. AOS should not impose design lim-
itations or a speciŒc model on the mobile agent middleware designerFor example,
it should not require the designer to adopt a speciŒc deployment or security model
(e.g., using a public key infrastructure).

ƒ AOS should be usable without administrative privileges on a hosting machine.

ƒ AOS should be usable by different mobile agent middleware systems concurrently,
as well as privately (non-shared) by a middleware system or middleware process.

AOS provides a minimal set of primitives required for building (secure) mobile agent
middleware. TheAOS design and speciŒcation is language and operating system neutral,
so that it can be implemented in any programming language and ported to any operating
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system. It does not impose speciŒc design limitations or a speciŒc model on the mobile
agent middleware that uses it. Minimality implies that some mechanisms have to be
implemented by the agent middleware itself. This is inherent to the idea that many mech-
anisms are middleware speciŒc. In short, AOS should be `̀ lean and mean,'' a nd provide
only the basics needed for implementing (secure) mobile agent middleware.

For example, host protection and agent life cycle management are handled differ-
ently between mobile agent middleware systems. Some systems view agents as pro-
cesses, while other systems view them as threads running in an agent server. As a result,
it is hard to attain a single, simple model for secure agent execution and life cycle man-
agement. Also,agent execution may be somewhat operating system speciŒc. Agent life
cycle management mechanisms are thus not provided by AOS.

AOS should not rely on external services, as such reliance could effect reliability
and performance. Interactions with a remote process can block or fail in several ways.
AOS interacts with other AOS processes only for primary tasks, for example to set up a
communication channel to another AOS kernel to ship an agent.Management tasks span-
ning more than one machine or that involve external services are the responsibility of the
middleware. Thiscoincides with the requirement that no (deployment) model should be
imposed on the middleware: location services, public key infrastructures, etc. are high-
level issues and the responsibility of the middleware designer.

Sharing an AOS kernel between different middleware systems, possibly run by dif-
ferent users, on a single machine, allows for running multiple mobile agent systems
behind a Œrewall, with one or only a few TCP ports open on this Œrewall. In this sce-
nario, it is evident that AOS must isolate resources owned by different middleware pro-
cesses. AnefŒcient and •exible mechanism is devised to control access to AOS
resources owned by different processes (Sec. 4.4.3); isolation is the default but sharing
resources is possible.

Language independence is an important reason for designing AOS as a process that
runs separately from other middleware processes. AOS provides one or more RPC inter-
faces that expose its methods to the middleware. A design decision is that AOS should be
able to provide several RPC interfaces (each providing a different language binding) at
the same time, such that a middleware designer (or different ones) can choose different
languages for implementing different middleware components (Sec. 4.3).AOS provides
mechanisms, not policy. It hides speciŒcs of its internal implementation from users.For
migration and secure channel setup, primitives are provided that allow middleware pro-
cesses to securely authenticate a remote (AOS) process using self-certifying identiŒers.
This avoids the need for AOS to know about or adopt a speciŒc public key infrastructure
or trust model (the self-certifying identiŒers are or provided to AOS, or veriŒed by, the
middleware layer that makes use of AOS).
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4.3. Architecture

The intended use of AOS is to provide a common base to a range of speciŒc mobile agent
middleware systems.This common base should be seen as a kernel component in a lay-
ered middleware system design.Higher-level agent middleware can use AOS for agent
code and state management, agent migration, and communication.The middleware can
extend the AOS layer with middleware-speciŒc components and services, for example,
for agent life cycle management, middleware management, and agent naming services.
The architectural model is shown in Fig. 7.

Agent

Agent ServerAgent Server Service

Agent Operating System (AOS) Agent Operating System (AOS)

Agent Server Agent Server Service

AgentAgent Agent Agent

Operating System (OS)

(network)

Operating System (OS)

(network)

Fig. 7. Example of a layered agent middleware architecture using AOS. Thisexample system con-
sists of two agent server processes and one service (e.g., for receiving incoming agents, or a white
pages or agent naming service) running on top of AOS on each machine; this example has some
similarities to the AgentScape design. Mobile agent middleware processes communicate with other
local or remote middleware components using AOS. Agentscommunicate with their runtime envi-
ronment (e.g., agent server), and do not normally access AOS directly. Example •ow of an interac-
tion of an agent with a remote service through the middleware stack is shown (dotted arrow).

AOS provides a means to securely communicate with middleware components and
services, and to migrate agents to other locations in a secure way. Agent middleware
components are distinct processes (see Fig. 7).Agent middleware processes run in a dif-
ferent address space than AOS, AOS methods are accessible through RPC calls.AOS is
not directly accessible to agents in general. Agents access a middleware layer that makes
use of AOS; this middleware layer presents a runtime environment to agents.

AOS is used both in Mansion and the AgentScape mobile agent platform (Sec.
1.4.6). InAgentScape, agent servers (currently supporting Java and Python agents) are
used to run agents as threads. The agent servers provide an API to the agents. In Man-
sion, all agents are processes that have only a marshalling stub in their address space that
invokes methods on an API presented by the Mansion middleware.
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AOS has a clear speciŒcation for interoperability and portability [81].The speciŒ-
cation describes the API available to higher-level middleware processes, including argu-
ments and semantics

4.4. AOS concepts and primitives

The AOS API provides primitives for agent transport and communication. In addition,
AOS provides primitives that allow for protecting or sharing resources owned by different
middleware components. The agent transport mechanism provides integrity protection of
agent code and data, and both the agent migration and the communication related meth-
ods provide a simple yet highly effective authentication mechanism. The main concepts
and mechanisms are described in this section. The API is described later in this chapter.

4.4.1. Agentcontainers

Agent code, data, and metadata (e.g., owner information, time of creation, permissions,
etc) are stored in AOS in a data structure called the agent container (AC). TheAC is a set
of segments that can contain code or data. Segments are typed to contain code, data, or
system data; subtypes can be deŒned by the middleware system to indicate a speciŒc type
of code (e.g., x86 binary code) or system data. Every segment has a name.Segments can
be transient or persistent. Persistent segments may not be changed after creation, transient
segments may be removed or modiŒed. Primitives for creation of AC and segments, and
reading/writing segments are part of the API.

A table of content (ToC) contains metadata about every segment, including type,
subtype, name, and apersistentbit. The ToC is exposed to middleware processes, which
can use it to Œnd segments (e.g., by name) in the AC. Every segment has a distinct entry
in the ToC, indexed by SegmentID. The ToC contains creation and modiŒcation dates for
ev ery segment.

A Œnalizecall is used to synchronise any new content of the AC to disk. This pro-
vides for some resilience against AOS crashes (or akill by the owner of the agent system,
for example, in a desktop setting where the desktop user reclaims the desktop's
resources); the API deŒnes error codes that allow for detection of an AOS restart, and
contains a call for re-initialising AOS resources after such an event was detected by the
middleware.

The Œnalizecall must always be called before migration; it generates checksums
over all segments in the ToC, and places a signature over the ToC, to allow for integrity
veriŒcation of the AC when it is sent to another AOS kernel. TheToC data structure is
also used to implement an efŒcient audit trail mechanism described in Sec. 8.3.2.
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4.4.2. Communicationendpoints and authentication

Communication-related calls include creation and deletion of communication endpoints
(similar to Unix sockets). Connect, accept, send, receive,and selectcalls exist which
allow for setting up and using secure, reliable, ordered communication channels to these
endpoints. These calls are introduced in Sec. 4.6.Theconnectandacceptcalls make use
of self-certifying AOS contact records (Fig. 10), that contain the ScID of the AOS kernel.

Middleware processes implement mechanisms to securely exchange information
about their own kernel's ScID to their peer process to ensure that they communicate with
the correct kernel, that is, the one in their peer's communication stack. In Mansion, such
a mechanism is implemented in the zone authenticated communication (ZAC) layer of
the Mansion middleware, which will be explained in Sec. 5.1.5.A giv en middleware sys-
tem may also use AOS endpoints directly as endpoints, without end-to-end authentication
of the middleware processes. In this case, an AOS ScID or endpoint management system
(comparable to a key management system) may be required so that other middleware pro-
cesses know the ScID of the AOS kernel with which they communicate.

Internal to AOS, a standard authentication protocol based on TLS/SSL is used for
authentication and key-exchange, to set up an efŒcient, secure, encrypted channel to the
peer AOS. This protocol is identical to the ScID-based endpoint authentication protocol
explained in Sec. 5.1.1. The middleware can specify a cryptographiccipher suitefor the
channel at connection setup time, to in•uence the strength of the security protocols used
by the underlying connection. Other than that, the middleware is unaware of the mecha-
nisms used in AOS for secure channel setup.Connections between the same pair of AOS
kernels, with the same security properties (i.e., cipher suites), are multiplexed over a sin-
gle AOS `̀ base channel'' w hich has these security properties. Reusing base channels to
multiplex communication channels allows for amortising expensive initial secure (SSL)
connection setup times. Agent transport makes use of the same base channels (with simi-
lar endpoint records), allowing for safe, conŒdentiality-protected transport of ACs.

A key property of the AOS authentication model is that the middleware does not
have to support a speciŒc PKI when using AOS: middleware processes see AOS contact
records, and AOS implements the required mechanism for authentication and secure
channel setup based on the information available in the contact record.As long as a cor-
rect contact record is obtained (e.g., through a trusted channel), this works securely.

4.4.3. Isolationand resource sharing using roles

Secure sharing of a single AOS instance and its resources by different unrelated agent
middleware systems on the same host is enabled by the concept of arole. A role is a set
of resources associated with a cryptographically protected authentication token
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(essentially a random bit string) called acookie. AOS creates the cookie securely, and
also creates an internal data structure that describes the resources associated with this
cookie. A middleware process must pass a cookie with every AOS method that it
invokes. Associatedwith every cookie is a bitmap, called arole bitmap, that speciŒes
the methods that may be invoked by the holder of this cookie.The role bitmap is closely
related to the resources that can be managed by a middleware process.For example, an
agent server which is only allowed to manage agent containers, will only be allowed to
invoke AC related methods.We refer to the cookie, the role bitmap, and the resources
associated with a cookie as arole. A cookie is essentially acapability [105, 11].

During start-up of AOS, aninit role is generated, that may invoke any method on the
AOS API. Theinit role is used by aninit processthat controls usage of AOS (think of
init process in UNIX).Given the init role, the init process can generate other roles, called
child roles,for middleware processes that request a role.Generally, a role created by the
init process allows the middleware to create additional subroles, e.g., to be used by com-
ponents within the middleware that manage a particular task. Upon role creation, AOS
veriŒes that the bitmap for the child role does not exceed the creator's role bitmap. Sib-
ling roles (roles created by the same role) cannot access each other's resources.

Roles determine ownership of resources. Resources include agent containers, com-
munication channels, and child roles.Child roles are owned by the creating role. This
way, the init process can control (and delete) all AOS resources; effectively, AOS roles
form a tree. Child roles (and their subroles and associated resources) can be deleted by
their creating role only. When a role is deleted (using an AOS call), all resources associ-
ated with this role are deleted, including subroles and their resources.All roles are stored
in an internal AOS table, together with an (initially empty) list of resources owned (cre-
ated) by each role.Using roles, AOS can verify whether a method invocation is allowed
and whether the resource that is referred to is owned by the invoking role.

4.4.4. Middleware compartmentalisation and security

An interesting challenge is to determine how roles are assigned to different processes in a
middleware system. In a simple implementation, all processes within a middleware can
have access to the same cookie, and thus to all AOS resources of this middleware.
Another example is where a service may only use communication related calls and
resources, and agent servers may only access the ACs of the agents they manage. Assign-
ing a different role to every middleware component allows for compartmentalisation of
the middleware system. This avoids a situation in which a single compromised middle-
ware component can compromise the state of other middleware components, for example,
by destroying AOS kernel objects such as ACs.
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Roles can, if required, be passed between processes. As an example of using roles,
consider a central middleware process that receives incoming ACs using AOS, and then
dispatches these to appropriate agent servers. Thiscentral middleware process creates a
new role before invoking the AOS call to receive an AC. The received AC is now owned
by, and only accessible to, this role. At this point, the middleware process can inspect the
AC's content and enforce a central access control policy. If the agent is permitted to
enter, the central middleware process passes the role's cookie to an agent server process
which can then retrieve the agent's code segment from the AC and start the agent.An
agent server can only access ACs for which it was given a role, and only takes care of life
cycle management; in this example, it is not allowed to receive new ACs itself.

The role model speciŒcally allows construction of modular middleware that adheres
to the principle of least privilege. Compartmentalisationavoids that a single compro-
mised middleware component can exceed its privilege (as it has a role which only allows
the minimum required operations), and prevents compromise of resources owned by dif-
ferent middleware components, such as ACs and communication channels. As illus-
trated, different compartmentalisation strategies can be implemented.

4.5. Implementation

This section provides an overview of the AOS implementation, and the AOS API.AOS
is implemented using a number of internal modules; agent containers, the agent container
transfer protocol (ACTP), and communication.

4.5.1. Internals of AOS and RPC dispatchers

AOS supports multiple so-calledRPC dispatchersfor different RPC implementations.
Multiple dispatchers can run simultaneously, so that middleware components written in
different languages can use different RPC interfaces. Each dispatcher can serve multiple
clients concurrently.

AOS consists of the main AOS kernel, which implements the AOS interface. Linked
in with the main AOS kernel are one or more dispatchers which provide an RPC interface
using which the AOS methods can be called.Dispatchers implement a speciŒc RPC
interface, using which a middleware system can invoke AOS calls (Sec. 4.3).

In the current implementation, RPC dispatchers have been written in XML-RPC,
SunRPC, and Java-RMI. The SunRPC and Java-RMI dispatchers are currently used in
the C kernel and the Java implementation of the AOS kernel, respectively. An XML-RPC
dispatcher is implemented for both kernels. All dispatchers are reached on a different
communication endpoint. Each dispatcher writes its endpoint into a Œle (in a directory
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~/.aos/) in the home directory of the user whom started AOS. Middleware processes are
linked with a stub library that is initialised with this endpoint (usually, a  TCP port). Com-
bined with a cookie, the middleware can invoke methods on the AOS kernel. Every dis-
patcher has at least one thread that waits for incoming connections or RPC requests.

As an example, the SunRPC dispatcher implementation written for the C++ kernel,
is reachable over UDP and TCP. One thread listens to incoming TCP connections.
Another thread handles incoming requests over UDP. Another TCP-based dispatcher
implementation can create a thread per connection to handle incoming requests. The dis-
patcher threads for handling RPC requests are decoupled from the main implementation
of the AOS kernel.

Fig. 8 shows multiple dispatchers on different kernels that serve requests from mid-
dleware processes.

AOS Kernel

Invokes AOS method(s)

Incoming RPC call (from middleware process on AOS)

Dispatcher 

Dispatcher 

AOS code
(does the job)

Inter-AOS kernel communication

AOS code

AOS Kernel

Dispatcher 

Dispatcher 

Fig. 8. RPC dispatchers. Two AOS kernels are shown, each having two dispatchers. Each dispatcher
handles invocations for one or more processes. Each dispatcher has at least one thread waiting for
RPC invocations, or it might have multiple threads (e.g., one thread per invocation).

The AOS kernel internally uses only two main threads. One thread handles incoming
connections and incoming data over (multiplexed) communication channels, another
thread handles incoming ACTP requests (forship/wait_ac, see AOS API below). These
two threads correspond to two internal protocols deŒned in AOS. One protocol is deŒned
for multiplexed communication, the other for agent container transport. The two threads
are not visible to the RPC dispatchers. The AOS kernel provides a native AOS interface
to dispatchers, which corresponds to the AOS API discussed in the following section.

The C++ kernel internally contains a number of modules. Each module handles spe-
ciŒc functionality of the AOS kernel. SpeciŒcally, modules exist for handling agent con-
tainers, (ScID-based) authenticated and encrypted SSL (over TCP/IP) `̀ base channels''
which are used for communication between AOS kernels. Themultiplexed communica-
tion protocol (MUXP) and the agent container transport protocol (ACTP) are layered on
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top of these base channels. All AOS modules implement thread safety using condition
variables and mutexes where necessary, to prevent problems that may occur due to con-
current access to AOS methods. This way, the AOS kernel can support the use of multiple
RPC dispatchers that handle multiple incoming RPC requests concurrently.

Note that it is theoretically possible to implement the AOS kernel as a library that
can be linked in with a middleware system. Assuming that the middleware and the AOS
kernel are implemented in the same language, doing so could even be straightforward,
depending on the language that the middleware is written in. Such a `̀ runtime AOS ker-
nel'' could be a performance optimisation for middleware systems in which using a sepa-
rate AOS kernel per process (each requiring its own TCP port) is not a problem, but
where performance is.

4.6. TheAOS API

Fig. 9 gives an overview of the AOS interface. Theinterface consists of methods for
managing roles, methods for managing AC's and AC transport, and of methods for man-
aging communication endpoints, including a socket-like interface for communication.A
full description of the AOS interface can be found in a separate document which contains
the AOS design notes [81].

Create_roleis the method used to create roles, as described in Sec. 4.4.3. The init
role's cookieis known to the init process, and can be used to create the Œrst child role(s).
A cookie is a 128-bit random number generated by AOS; the init role's cookieis created
when AOS is Œrst started up.Role_bitmapis a 32-bit bitmap, with a bit for every method
of the AOS API, with the Œrst method as the leftmost bit. A 1 bit means invoking the
method is allowed, a 0 bit means invoking the method is not allowed. Thecreate_role
checks that the child role does not have any bits on which were 0 in the parent's role; if
this check fails, an error is returned.Delete_roledeletes a child role and its subroles,
including associated resources.

Create_acallows for creation of a new agent container. Delete_acis used to delete
an existing one.Create_segis used to create a new segment in an AC. Typeindicates one
of a set of basic types deŒned by AOS, such asTOC, SIGNATURE, CODE, LIBRARY,
AGT_DATA, AOS_SYSandAPP_SYS. APP_SYSis used by the middleware, AGT_DATA
is used to store data on behalf of an agent.Subtypecan be used to associate additional
subtype to the above types. It can be any middleware-deŒned string. An example is a
linux_x86subtype with aCODEsegment.Descris a middleware-deŒned name, typically
just a name for the segment. Theread/write/delete_segcalls do what they indicate.
Write_segandread_segallow for writing data to segments, or reading from them. Anoff-
set is speciŒed; this deŒnes the place where the read or write should start. Anoffset
beyond EOS (end of segment) is not allowed (holes are not allowed).
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Method (ar guments) Description

create_role(cookie, role_bitmap, *childrole) Create a child role

delete_role(cookie, childrole) Delete child role/cookie

create_ac(cookie) Returns ACID

delete_ac(cookie, ACID) Delete AC

read_toc(cookie, ACID, offset, n, *tocent) Read table of content entries

create_seg(cookie, ACID, type, subtype, descr) Create segment with type/subtype/name

read_seg(cookie, ACID, seg_id, offset, n, *buf) Read data from segment

wr ite_seg(cookie, ACID, seg_id, offset, n, *buf) Write to segment

delete_seg(cookie, ACID, seg_id) Delete segment

make_persistent(cookie, ACID, seg_id) Make persistent (irrevocable)

Œnalize_ac(cookie, ACID) Finalize the AC

ship_ac(cookie, ACID, endp, xid); Ship AC to waiting middleware

prepare_wait_ac(cookie, suites, *actp_ep, *xid) Endpoint for ACTP

wait_ac(cookie, *peer, *xid, block_time); Wait for XID (0 for any XID)

create_listen_endp(cookie, index, suites, *endp) Create listen endpoint; returns descriptor

delete_listen_endp(cookie, por t) Delete endpoint

accept(cookie, descr, *peer_mcr, block) Wait for connection

connect(cookie, *mcr, suites) Connect. Retur ns descr

send/recv/peek/close (cookie, descr, len, *buf) Data send/read and close connection

get_par m(cookie, name); Obtain compile-time/conŒgured limits

reenable_role(cookie) Reenable role after AOS restart

Fig. 9. Overview of the AOS interface

Themake_persistentcall sets a bit in the table of content entry for the indicated seg-
ment, which turns the segment into a persistent segment. Initially, all segments are tran-
sient. After setting the persistent bit, the segment becomes immutable. This bit is used by
the audit trail mechanism described later in this chapter, to check whether any illegitimate
changes have been made to persistent segments later in the agent's itinerary. Persistent
segments help agents ensure that certain data (e.g., an offering for a product) ends up
with the agent owner in unmodiŒed form.

Finalize creates (updates) checksums of all segments, SHA-1 hashes, in the ToC
entries of all segments in the table of content, signs the ToC, and syncs all segments to of
the AC to disk for crash recovery. Œnalizemust be called before callingship_ac to
migrate an AC, because a Œnalized and signed (by AOS) AC is needed for integrity pro-
tection when receiving an AC. The latestŒnalize'd ToC is stored in a known location in
the AC (segment 0). The signature and the public key of the signing AOS kernel can be
found in segments 1 and 2, respectively.
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Prepare_wait_acprovides a way for a middleware process to create an endpoint (in
AOS) for AC's. Theendpoint consists of an AOS agent container transfer protocol
(ACTP) endpointactp_ep, combined with a unique 128-bit transaction identiŒer (XID).
The AOS endpoint is a normal AOS kernel contact record, as shown in Fig. 10, with the
indexŒeld set to to 0. The AOS endpoint may be shared for different AC transport trans-
actions;XID is used to disambiguate different agent shipments; it is a 128-bit number to
ensure that it is hard to guess. The protocol is described in detail in Sec. 8.3.2.

The middleware20 may wait for different AC's (different XIDs) at the same time
using a singlewait_accall. If the middleware, or a thread in the middleware, listens for a
speciŒc AC, it speciŒes the XID. If it waits foranyXID, it speciŒes a zeroed XID. The
wait_accall then Œlls in the XID of the Œrst incoming AC.

XIDs are coupled to roles;wait_acwill only return for AC's with a XID that is regis-
tered with the role that invokes thewait_accall.

A middleware system can register an AOS-level agent container transfer protocol
(ACTP) endpoint in a location service. It is however advisable to implement anend to
end handoff protocol at a higher level (Sec. 8.3.2). Mansion,for example, registers a
middleware-level agent transfer protocol (ATP) endpoint in its location service.This
middleware waits for connections from another middleware process. After a connection
is made and agreement is reached on whether an agent may be shipped, the receiving
middleware creates an ACTP endpoint on the AOS kernel obtained using thepre-
pare_wait_accall, and returns that endpoint including the XID to the sending middle-
ware, which can then invoke the ship_accall to ship an AC to this endpoint.Assuming
an end-to-end authenticated channel to exchange the ACTP contact record and XID
between receiving and sending middleware, this procedure ensures that an authentic AOS
ACTP contact record is used to ship the AC.

The AOS communication interface is quite straightforward. It is similar to BSD
sockets except for the way in which communication endpoints are created.

Create_listen_endpointis used by a middleware-level process to create an AOS end-
point. In this case, theindexŒeld in the AOS endpoint is used, indicating the speciŒc end-
point that has been created. The call returns an AOS contact record describing the end-
point in a caller-provided buffer; the AOS contact record is explained below.

Delete_listen_endpointcan be used to delete the endpoint.sendandrecv calls send
and receive data from and to a buffer in the sender's address space. Bytes are received in
the same order as they are sent; the channel is ordered and reliable.

Connectandacceptare used to establish a connection. These calls return a descrip-
tor that can be used bysendandrecv. Closecloses the descriptor and the channel.

Peek is identical torecv, howev er, the data are not removed from the buffer internal
to AOS. A subsequent read reads the same bytes from the stream as read before with
peek.

20 In Mansion, this would be the MMW process.
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Selecttakes a list of connection identiŒers (descriptors), and returns their status
(readable, writeable, exception). The semantics of select and its descriptor sets is identi-
cal to its counterpart in BSD sockets (see [108]).

Get_parmis used to obtain compile-time parameters or limits from AOS, such as the
maximum segment size or the maximum size of an AC.

Finally, reenable_roleis a method used for crash recovery. If an AOS kernel crashes
or is killed, and is used again, invoking one of its methods returns an error to indicate that
it has crashed.In this case, all resources (such as communication endpoints) are lost, but
Œnalized AC's can be recovered. Afterreenable_role, AC resources of a given role again
become accessible.

4.6.1. TheAOS endpoint record

The AOS endpoint data structure (Fig. 10) is quite straightforward. It contains an IP
address (IPv6, or an IPv4 address in IPv6 format), and a TCPport. This indicates the
TCP endpoint on which the AOS kernel listens for incoming connections. Further, the
endpoint contains a Self-certifying IDScID, and anindex. Note that AOS is part of a
communication stack, and that its AOS endpoint may be embedded in a middleware end-
point record.

typedef struct aos_endp {
char ip-addr[16];
short port;
char scid[20];
int index;

} a os_endp_t;

Fig. 10. AOS endpoint data structure

The indexŒeld indicates an endpoint relative to AOS that other processes can con-
nect to (created usingcreate_listen_endp), or an endpoint that an agent container can be
sent to. The ScID is in binary format, not base32 encoded, so it is 20 bytes.

The scid in the AOS endpoint is the hash over the public key of the AOS kernel.
AOS kernels always authenticate their peer. The connectcall takes anaos_endpas an
argument; if the ScID is Œlled in before connecting, the local AOS checks that the remove
AOS kernel has the private key corresponding to the ScID. If not, the connection fails. If
the ScID is not Œlled in before connecting, it is Œlled in by the AOS kernel as a result of
theconnectcall. The same applies to the accept call.
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4.6.2. Usabilityof AOS

AOS was designed to be used in the AgentScape and Mansion agent systems.This sec-
tion evaluates the usability of AOS in Mansion.

One of the reasons for using a layered approach is that certain (common) functional-
ity can be delegated to a lower layer in the stack. The main reason for choosing AOS as a
layer in Mansion is that it can implement the agent container abstraction and AC trans-
port mechanisms, such that Mansion does not have to implement this. Using the AC man-
agement and transport mechanisms is very convenient.

For communication, the main advantage of using AOS is that a single TCP port can
be used to accept connections for multiple processes on the same machine, for example,
behind a Œrewall. Another reason is that AOS can implement the mechanism for setting
up authenticated encrypted connections (using a ScID-based authentication protocol) for
the middleware, and thus that the middleware implementation can be simpliŒed. For
Mansion, this advantage is limited as it needs to implement various security mechanisms,
in particular end-to-end authentication, anyway.

There are advantages to having conŒdentiality (encryption) implemented in AOS
instead of the middleware layer. For one, setting up authenticated, encrypted connections
is computationally expensive. If multiple AOS can establish underlying encrypted ``base
channels'' over which connections from multiple independent processes that use the same
pair of AOS kernels, are multiplexed. Thisallows reuse of (possibly persistent) connec-
tions between two AOS kernels by multiple processes that use these AOS kernels, amor-
tising the cost of connection setup, establishing symmetric key material, etc. On the other
hand communication through AOS comes at the cost of increased latency due to the IPC
overhead imposed by communicating through AOS. For this reason, the communication
system of Mansion (Chapter 5) allows users to choose TCP/IP as the underlying substrate
instead. Also,Mansion makes sure not to use AOS for local communication; if the Man-
sion communication layer detects connections to a port on the same machine, it will con-
nect directly irrespective of the chosen `̀ substrate.''

How AOS is used to construct primitives in the Mansion middleware stack will be
discussed in Chapter 5. The remainder of this chapter will focus on AOS performance.

4.7. Performance of basic AOS primitives

For a central component such as AOS, used for all interprocess communication, mobile
agent code/data management and migration operations, performance is highly important.
This section presents the approach and performance of two AOS kernels implemented
and used in our department. In particular, communication throughput and scalability, and
AC shipment related overhead and scalability in terms of concurrently shipped ACs.
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Independently, two versions of AOS have been implemented, one in Java and one in
C++, based on a precise speciŒcation of the AOS interface and the internal protocols used
by AOS. Boththe Java and the C++ kernel are used to construct two different agent mid-
dleware systems, Mansion [79] (written in C) and AgentScape [127] (written in Java).
These two mobile agent systems differ in their design and implementation decisions; even
so, AOS has shown to be a solid basis for their construction.

This section evaluates the performance of the Java and C++ AOS kernels. Thetests
in this section were run on a dedicated 1 GHz dual Pentium-III machine with 1 GB mem-
ory, running Linux on an ext3 Œle system and using a Fast Ethernet (100 Mbit/s) local
area network. End-to-end tests described in a later section are run on a more recent
machine. Tests with the Java kernel used the Sun Java 15 standard compiler and Java
HotSpot server virtual machine version 15. The cryptographic libraries used in the Java
AOS kernel are from Bouncy Castle21.

The tests are run with modiŒed AOS kernels that included microsecond timers, and
are executed 5 to 10 times in a row, with averages shown in this section.For all tests that
use AOS-to-AOS communication, the connection is conŒgured to use 128 bits AES
encryption with SHA-1 message authentication.AES provides a reasonable trade-off
between security and efŒciency, compared to, for example, 3DES.

4.7.1. AOS-to-AOS communication cost

AOS uses an internal protocol to multiplex communication channels over a single internal
encrypted `̀ base channel'' Figure 11 shows the performance and scalability of AOS for
communication, for 1 to 16 threads communicating concurrently over AOS.

Fig. 11. Total throughput for multiplexed communication over a shared AOS-to-AOS connection.

21 http://wwwbouncycastle.org
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In this experiment, each thread sends 25 MB over an AES encrypted base channel to
a server process running on a different AOS kernel.

As shown in Fig 11, the C++ kernel has a substantially higher throughput than the
Java kernel. We attribute this to the fact that the OpenSSL library implemented in C is
faster than the (JIT compiled) pure Java Bouncy Castle SSL implementation used in the
Java kernel22. Both kernels apply locking strategies to make sure that only a single thread
can write payload on the base channel.

The Œgure shows that overall throughput differs between the C and the Java kernel,
but that the total throughput stays roughly the same for both kernels, irrespective of the
number of threads that simultaneously send payload over the wire, although some varia-
tion exists which remains unexplained. Althoughthe per-thread throughput decreases lin-
early with the number of threads for obvious reasons (i.e., sharing and overall saturation
of the underlying connection), the measurements show that the internal protocol used for
multiplexing in AOS do not adversely in•uence scalability.

4.7.2. Finalizecosts

Prior to shipping an AC, an AC is Œnalized to ensure that the AC's table of content is gen-
erated, and that all segments are stored in a zip Œle synchronised to disk.Finalizeis a call
that constructs a secure ToC of the AC and signs it, prior to shipping it to another AOS
kernel In addition,Œnalize syncs the AC to disk for crash recovery reasons.

Table 12 shows a micro-benchmark of the Œnalize costs of agent containers of 500
KB, 1 MB and 5 MB containing random data.These sizes are typical for many agents
used in our own agent middleware system.ToC checksumming and signing cause little
overhead, also for large ACs, and this increases linearly with the size of the AC; the
checksum (SHA-1 hash) generation takes place over every byte of every segment.

C++ Java
500KB 1MB 5MB 500KB 1MB 5MB

checksum 9 19 98 36 74 70
sign 51 52 70 5 16 51
zip 133 248 1356 145 303 1449

sync 166 238 922 179 401 1623
total 359 558 2446 442 878 3854

Fig. 12. Finalize micro-benchmarks (in milliseconds) for resp. the C++ kernel and the Java kernel.

22 Performance measures with an unencrypted (NULL) SSL channel show that Java performance in the unencrypted
case comes close to the performance of the C++ kernel in the same scenario.Please note that the HotSpot JIT compiler
useseventualJIT compilation of frequently used bytecode. Furthermore, note that JIT compilation efŒciency and optimi-
sations may have improved since the time of these tests.
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Creating a zip Œle and synchronising it to disk requires that each segment is copied
into the zip Œle.The resulting zip Œle is synchronises to disk. Table 12 shows both steps
cause substantial overhead, particularly for large ACs. Finalizetimes scale roughly lin-
early with the AC sizes for both the Java and the C kernel, although Œnalize takes sub-
stantially longer on the Java kernel than on the C kernel.

As mobile agents may migrate often during their lifetime, AC Œnalization and trans-
fer cost can increase the time for an agent to achieve its task considerably, and may in•u-
ence scalability of the mobile agent middleware as a whole.A straightforward optimisa-
tion for performance, is to have AOS ship segment Œles to another AOS kernel directly,
without zipping the Œles Œrst, in an FTP-like manner. Another straightforward optimisa-
tion for performance, is to let go of the crash recovery assurance by means of thefsync
system call.

4.7.3. AC shipment cost

AC shipment is composed of aship_acprimitive combined with await_acprimitive at
the receiving end, that returns after shipment is completed.Ship_actakes a Œnalized
agent container, and ships it over an SSL connection. The receiving AOS kernel extracts
the agent's zip Œle containing the agent's segments, and veriŒes the checksums in and the
signature over its ToC. Onlyafter this veriŒcation, wait_ac returns. After an acknowledg-
ment is received for all shipped ACs, the timer is stopped.The ship_accost measured
thus includes on-the-wire time and the extract/verify cost at the receiving end.

Fig. 13. Elapsed time to ship 1-16 agent containers of 500 KB resp. 1 MB for both the Java and the
C++ kernel.
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The totalship_accosts including AC extraction and veriŒcation are measured for
AC sizes of 500 KB, 1 MB, and 5 MB containing identical segments of 5 KB random
binary data. The cost of extracting and verifying an AC after it is received depends pri-
marily on the size of the AC. Thetimes for zip extraction (default compression ratio),
signature, and checksum veriŒcation in the C++ kernel are 0.064, 0.127, and 0.734 sec. in
total for 500 KB, 1 MB, and 5 MB, respectively. Extraction, signature and checksum ver-
iŒcation in the Java kernel takes substantially longer, namely 0.597, 1.033, and 3.472 sec.
in total, respectively. Of these times, about 80-90% is spent on unzipping the AC.

Figures 13 and 14 shows the results for both the C++ kernel and the Java kernel for
1, 2, 4, 8 and 16ship_accalls at the same time.The Œgures show that AOSship_accalls
scale roughly linearly with concurrent use. The Œgures also show that the time needed to
ship an AC is more for the Java kernel than for the C++ kernel. Thiscan be attributed in
part to the fact that cryptography (for encrypting the connection) and AC extraction and
veriŒcation take longer in Java than in C++.

Fig. 14. Elapsed time to ship 1-16 agent containers of 5 MB for both the Java and the C++ kernel.

4.8. Relatedwork

Existing mobile agent systems are designed with different goals and foci, for example, on
communication, mobility, security, agent model support, management, etc. [69].Most
existing agent platforms are implemented as monolithic systems, where all functionality
is integrated in a single code-base. Interoperability speciŒcations like FIPA or MASIF
deŒne higher-level functionality such as inter-agent communication protocols. These
speciŒcations do not deŒne low-level protocols for, for example, agent migration or for
communication within middleware systems. As AOS is not an agent middleware itself,
but rather a middleware building block, comparing AOS with full functional middleware
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can only be done partially by considering the leading design requirements.
The FIPA standard speciŒcation23 includes a series of documents describing the

functionality and operation of agent middleware FIPA compliant agent middleware can
interoperate which each other, e.g., agents can exchange messages, interact with, and rea-
son about agents on other middleware. Oneof the most widely used FIPA compliant
agent middleware is JADE [20]. Thelatest middleware design (version 35 as of today) is
modular in design and many parties (universities and companies) have contributed to
JADE. Themiddleware is implemented in Java and supports a Java API for agent devel-
opment. It is a complete self-relying system, with integrated location and yellow pages
services. This is different from the AOS perspective to agent middleware, where services
reside at the middleware level.

Ajanta [55] is designed to include a number of security primitives and architecture
features to protect both the host and the agent from malicious actions. It includes amongst
others a similar concept as the agent container in AOS, allowing for an audit trail mecha-
nism resembling the one outlined in this paper and in[79]. However, Ajanta is com-
pletely Java-based and is not designed to incorporate or interact with other software com-
ponents or services.

The Tacoma [51]project focuses on operating system support for mobile agents. In
that respect, it has many similar design goals as AOS by providing abstractions for, in
particular, data storage and agent mobility. Although it also provides a simple container
abstraction, called a ``briefcase,'' o nly simple protection mechanisms were implemented.
Tacoma supports multiple programming languages for agents, including C and Tcl/Tk.

The MadKit agent platform architecture [47] aims to provide a generic multiagent
platform. The architecture is based on a minimalist agent kernel decoupled from speciŒc
agency models Although there are similarities with the design goals of the architecture
model with AOS, the design and implementation is quite different. The aim of MadKit is
to allow a dev eloper to implement his or her own agent architecturesBasic services like
message passing, migration, monitoring, or management, are provided by platform
agents. MadKitcomes with a set of ``containers,'' r ealising different execution environ-
ments for running an application.

Compared to other work, AOS is unique in its goals. In contrast to existing systems,
AOS is not directly used by agents, but instead it aims to provide a generic, secure layer
that us usable for constructing different agent middleware systems.

4.9. Conclusion

This chapter discusses the design requirements, implementation, and performance of the
AOS kernel. AOS is a portable middleware building block speciŒcally aimed at

23 http://www.Œpa.org/
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constructing mobile agent middleware systems. It can be used by different middleware
processes, possibly of different users, where each such process may be implemented in a
different language. Programming language •exibility is facilitated by different RPC dis-
patchers, each providing a method invocation interface suitable for a speciŒc language.
The AOS design allows for secure sharing of a single AOS kernel between different mid-
dleware processes: it provides effective software fault isolation and safety by separating
resources created by different middleware processes.

AOS provides a minimal set of primitives for mobile agent systems, in particular for
agent code and data storage, agent transport, and for communication between mobile
agent middleware components.AOS provides basic security services which can be used
by higher-level middleware layers to construct more elaborate security, such as authenti-
cation mechanisms and secure agent transport and auditing of mobile agents.AOS does
not impose a speciŒc model on the agent middleware. AOS is used in two different agent
systems, illustrating that AOS provides a level of abstraction that can be used to construct
diverse mobile agent systems withŠe ven if those have rather different requirements or
designs.

Tw o implementations of AOS have been built and tested for interoperability. Perfor-
mance measurements of the AOS kernel are shown in this chapter. These show that AOS
performance differs between the Java and the C++ kernel. The C++ kernel outperforms
the Java kernel for most tests, primarily due to the fact that C is more efŒcient than Java
for tasks such as cryptography, which is used throughout the AOS kernel. On the other
hand, Java provides better portability, and the Java kernel has been used to run the
AgentScape mobile agent platform on Linux, Solaris, Mac OS X, and Windows systems
The C++ kernel is currently only available for Linux and Solaris platforms.

Both implementations of AOS are shown to scale well with respect to concurrent
usage by middleware systems for communication and transport of agent containers,
which is important when using AOS to construct mobile agent systems that operate under
load. Most of the time for agent container transport is spent on zip Œle construction as
part of the Œnalize call, which is needed for AC transport. Thiscan be optimized away by
shipping segments directly instead of in a zip Œle. Other operations (e.g., hashing Œles for
ToC construction) are quite efŒcient.

AOS offers a •exible basis for the construction of secure mobile agent systems, and
for deploying multiple services or middleware processes at the same time on a single
AOS kernel. Supportfor middleware thatinternally consists of components written in
different languages is a novel contribution of our work. The access control model based
on roles allows for applying the principle of least privilege within a modularly designed
agent system, and offers the required separation of resources in scenarios where AOS is
shared between different mobile agent systems or middleware components.
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Chapter 5
Communication Layers and RPC

This chapter describes the system from a layering perspective: all middleware compo-
nents make use of the same communication system, which consists of an RPC system
layered on top of a secure communication layer. This chapter describes the layers, their
interfaces, and how these are used.

The Mansion middleware internally consists of several components and services.
These include the Middleware process (MMW) hosting agents, the Mansion Object
Server (MOS), and services such as the location service and the basement, which are typ-
ically implemented as objects that run in a MOS.

Mansion views the operating system (and the Network) as the lowest layer of the
middleware stack. Mansion relies on the local operating system to provide a process exe-
cution abstraction, and network communication primitives. Every module, service, or
process in Mansion uses the same communication system, layered on top of the operating
system primitives. Thesecommunication layers provide the basis for secure (wide area)
communication, RPC, and for agent transport.

The reason for designing a layered system is simple: all middleware processes share
functionality, and it is useful to implement common functionality in a layer such that dif-
ferent components can reuse this functionality. This chapter describes the layered com-
munication system and the Mansion location service needed to make use of it.

5.0.1. Requirements

Security, particularly authentication, conŒdentiality and integrity are important design cri-
teria for the communication layer. Encryption of transport is a basic requirement to
ensure conŒdentiality of interagent communication, object method invocation, and agent
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transport. Some of these interactions require wide-area communication. Because of the
middleware's modular design, request/reply (RPC) communication patterns are common.
Using a form of secure RPC would be convenient.

Symmetric key cryptography is much more efŒcient than public key cryptography
(see [36]), A connection-oriented transport like SSL/TLS allows setting up authenticated,
secure channels that use symmetric key cryptography to encrypt data which is sent over
the connection efŒciently. SSL requires public key cryptography during authentication
and for secure exchange of symmetric keys in the initial authenticated key exchange
(handshake) phase.Once symmetric key material has been set up, the overhead of the
initial public key-based handshake can be amortised over the time that the connection is
used. Symmetrickey cryptography connections are much more efŒcient than a message
oriented communication system where every message has to be encrypted individually
[56]; this would also apply to encoding RPC messages.

Mansion (zones) cannot assume a local, trusted network. Zone member processes
may reside on hosts that are located far apart. Thus, where some (fast) RPC implementa-
tions used efŒcient asynchronous datagram communication, it is useful to bias Mansion
RPC towards security instead. In addition, if there is no need, it would be useful not to
assume Œxed side (RPC) messages in Mansion. Message lengths may differ in Man-
sion Š for example, the communication communication strategy of agents cannot be pre-
dicted; agents may send collected data to each other. Internally in Mansion, this may be
represented by a single RPC call pushing data to another agent's middleware system.
RPC message sizes may thus range from Œxed-sized records returned by a location ser-
vice to variable-length data streams resulting from communicating with an agent or
invoking an object.

As security is a requirement in all cases and wide-area communication is common, a
secure channel abstraction was chosen as the basis for communication and RPC.

5.1. Layering

Mansion uses reliable connections as the underlying abstraction for communication. The
basis is TCP/IP. On top of that, Mansion implements a (zone-based) authenticated trans-
port layer based on SSL/TLS.A remote procedure call (RPC) system is layered on top
of that.

Mansion processes use RPC to communicate with other Mansion processes. RPC
provides a synchronous communication mechanism based on request-response messages.
RPC is convenient: processes provide (deŒne) an interface that can be called by other
processes. Aprotocol (or interface) designer does not have to worry about deŒning mes-
sages or deal with communication issues. An RPC compiler generates RPC code (e.g., in
C or C++) which marshalls an invocation into a request message, ships it to a remote
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service, and after the response arrived, unmarshalls the reply and returns it to the caller.
The RPC layer is based on an underlying secure socket abstraction. These sockets

can in principle also be used directly by middleware processes.Irrespective of whether
communication channels are used directly or through the RPC layer, all connections in
Mansion are authenticated using self-certifying identiŒers (Sec. 3.2.1).

The Mansion communication and RPC layers are the basis for agent transport
abstractions, object method invocation, and interagent communication primitives. These
are the layers in the Mansion communication stack:
1) Thenetwork layer.24 The network is part of the operating system.Av ailability of

TCP/IP (both IPv4 and IPv6 are supported) on the local host is assumed.
2) On top of TCP/IP, a portable secure socket abstraction is constructed, with a BSD

TCP-socket like interface. This layer is called theZAC layer, for zone authenti-
cated communicationlayer. ZAC communication channels are reliable, ordered,
bidirectional, authenticated channels which protect conŒdentiality. The ZAC layer
uses SSL internally, but does not expose X.509 public key certiŒcates to the applica-
tion and does not require use of an X.509-based public key infrastructure.

3) Ontop of ZAC is theRPC layer, or remote procedure call layer. Our RPC system is
similar to the system devised by Birrell et al. [27], except that it uses authenticated,
encrypted connections provided by ZAC.

4) Themiddleware and theapplication layer are not strictly part of the communica-
tion stack. However, these layers are important for issues such as key management
and end-to-end authentication. Fig. 15 shows the layers described above.

All middleware processes in Mansion are a member of a zone. The ScID-based
zone authentication protocol described in Sec. 3.2.1 is used to implement authenticated,
encrypted ZAC connections.

Fig. 15 shows a Œgure of the layers used in Mansion, using a MMW process with
agents, an object server with objects, and a Mansion (internal) service such as a location
service, as examples. It also shows AOS as an (optional) layer used by ZAC. Fig. 15
shows three different middleware processes: the Mansion middleware (MMW), the MOS,
and a service, on three hosts. The RPC and ZAC layers are implemented as libraries
which are linked in with the middleware binaries. The AOS layer is implemented as a
separate process that cannot be linked in. Communication between ZAC and AOS takes
place using SunRPC or XML-RPC (see chapter 4).

Mansion's internal structure is modular. Separate components of the middleware are
typically implemented as separate processes. These components each handle certain
tasks, like managing objects, or providing contact information of other middleware com-
ponents. Middleware processes communicate with each other using RPC calls. If the pro-
cesses reside on different hosts, RPC takes place over authenticated, encrypted

24 Not to be confused with the OSI network layer.
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communication channels provided by the ZAC layer. For local communication, an unen-
crypted TCP connection is used in ZAC, although processes must still authenticate.

Operating System Operating System Operating System

Internal middleware serverMansion object server

Object Object Object

Object Server 

RPC

ZAC

AOS AOS

ZAC

RPC

Service 

Middleware process 

AgentAgentAgent

Middleware 

RPC

ZAC

AOS

Application
layer

Middle-
ware 
layer

AOS layer

(Inter)network

Fig. 15. Middleware layering for three different examples of middleware process (on different
machines). Layers in Italic font (OS and network) are not part of our software, but all Mansion mid-
dleware components depend on them. The AOS layer (dashed) is optional, except for the MMW
process which needs it to manage agent containers (ACs). Layers above the operating system are
described in the text.

This chapter explains the ZAC layer and the RPC layer in detail, beginning with a
bottom-up explanation of the layers shown in Fig. 15. Combined, this chapter gives a
complete overview of the communication infrastructure used in Mansion.

5.1.1. ScID-basedauthentication

This section describes the ScID-based authentication protocol, using which two connect-
ing processes authenticate each other. It is implemented in the ZAC layer.

All processes in Mansion have a public/private key pair. Every zone member
process has a public key certiŒcate signed by the zone owner which indicates that the
holder of the public/private key pair is a member of the zone.The ZoneID is the hash
over the public key of the zone owner. (Sec. 3.2.1). If a process isnot a member of a
zone, it has a self-signed certiŒcate, the hash of which is the ScID.

ZAC uses the RSA authenticated key exchange protocol. As part of this, processes
present their public key certiŒcate. Ifthe process is part of a zone, it must also present its
certiŒcate chain up to the zone certiŒcate (i.e., the certiŒcate of the zone owner).
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SSL is used to implement the RSA authenticated key exchange protocol to set up an
authenticated, encrypted connection. The symmetric key algorithm used for encrypting
data after authentication and the message authentication code (MAC) algorithm can be
conŒgured by the user. Examples are 3DES and AES. The default is AES with SHA-1.
A set `̀ cipher suites'' strings can be deŒned in the world design document (Sec. 3.8.1) to
override the default.

SSL has been chosen for pragmatic reasons: well-engineered, tested implementa-
tions of SSL exist, including tools and libraries (we currently use the open sourceopenssl
SSL/TLS implementation and toolkit), whereas implementing an authenticated key
exchange protocol from scratch is difŒcult and error-prone.

ZAC is not tied to SSL per-se; if a better toolkit or protocol than (open)SSL comes
along, it can be replaced. The ZAC interface hides implementation details. None of the
details are exposed to the application, except that the application program must be ini-
tialised with appropriate keys and self-signed (X.509) certiŒcates. The ZAC interface
knows about ScIDs only.

5.1.2. Implementation

SSL/TLS is designed around X.509 certiŒcates. Normally in SSL, a public key certiŒ-
cate is signed by a CA which binds information about the owner of the private/public key
pair to the public key. Information deŒned in X.509 certiŒcates are, among other things,
an organisation's name, or aCommon Name (CN), for example, a Web site's address [98].

Mansion uses SSL (x509) public/private key certiŒcates for implementation, but
these certiŒcates are not exposed to the application. The communication API used by
Mansion uses ScIDs. These correspond to self-signed (endpoint) certiŒcates or self-
signed zone certiŒcates. These certiŒcates are currently X.509 certiŒcates, but could be
replaced by another certiŒcate container without changing the model; the X.509 PKI
model is not used, nor are trusted certiŒcate authorities such as used in the Web (e.g.,
verisign) needed. Mansionuses X.509 certiŒcates only to store and exchange (signed)
public keys. Except for keys and possibly signatures, nothing is stored in the certiŒcates.

Zone-based authentication uses a few minor extensions to the existing openSSL
library25 These extensions are implemented in a library calledzonelib. Zonelib is inte-
grated in the ZAC layer. It customises the SSL certiŒcate veriŒcation procedure (which
assumes availability of a trusted CA list unused in Mansion). Zonelib retrieves the peer
certiŒcate(s) used for authentication of the peer process, and establishes the correspond-
ing ScID by hashing the public key of the peer. In case of a zone member, the certiŒcate
chain (of length 2) is retrieved by SSL, and what is hashed is the root of this chain, the
zone certiŒcate.

25 http://www.openssl.org/
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5.1.3. Mansioncontact records

Mansion has a standard contact record, which contains the information needed to connect
to a middleware process. This contact record is used for all entitiesŠm iddleware/MMW
processes, objects, agents, location service nodesŠh as a Œxed format, and can be stored
in a Mansion location service. It is called theMansion contact record (MCR).

The MCR is needed to resolve location independent-identiŒers orhandlesof enti-
ties, such as a MMW process that is ready to receive agents, an object (replica) in a MOS,
or the endpoint of an agent that can be connected to.The MCR is used by the ZAC layer
to connect (and accept) connections.

The MCR can be partially or completely Œlled in before being passed to the ZAC
communication interface to connect or accept a connection. The MCR has to contain at
least an IP address and a port, and it may contain an AOS contact record if AOS is used.
The MCR contain a ScIDs. If a ScID of the target process are not known and Œlled in into
the MCR before connecting, it will be Œlled in after authenticating the peer. Note that in
Mansion, the ScID of the peer is normally known before connecting, e.g., from a Roo-
mID that is used when following a hyperlink.

The MCR is depicted in Fig. 16. Note that the syntax of struct deŒnitions is slightly
different than for regular C-style structs. The syntax of the the Mansion IDL will be
described later in this chapter.

typedef struct scid {
char[20] scid;

} s cid_t;

typedef struct mcr {
struct aos_endp aos_ep;
scid_t peer_id;
scid_t zone_id;
int index;

} mcr_t;

Fig. 16. The Mansion Contact Record

The MCR includes the AOS contact record as indicated in Fig. 10. If AOS is not
used, by convention, theindexŒeld in the AOS contact record is set to 0.Aos_endpcon-
tains the IP address (in IPv6 format), the TCP port and the ScID of the peer process or
AOS kernel. TheindexŒeld in the AOS endpoint indicates an endpoint relative to AOS,
that is, an endpoint created by a middleware process.If indexis set to 0, the IP address
and port indicate the TCP endpoint of the middleware process.

Zone_idis the middleware process' ZoneID, if it is a member of a zone. Ifzone_id
is Œlled in when connecting to an endpoint, it is veriŒed by the ZAC layer and Œlled in
after authentication of the peer as part of connection setup, if the peer has a zone certiŒ-
cate. If the peer only has a self-signed certiŒcate,peer_idis Œlled in instead.peer_idis
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also Œlled in for zone member processes, so that individual zone member processes can
be distinguished from each other26. Finally, the MCRindexŒeld indicates an endpoint
relative to or in the middleware, e.g., an endpoint for a speciŒc object or agent.

5.1.4. TheZAC communication interface

The zone authenticated communication (ZAC) layer is a communication interface layered
on top of AOS or plain TCP sockets. TheZAC interface provides the basis for all com-
munication in Mansion, including RPC.

The ZAC interface contains primitives that closely resemble the BSD socket inter-
face. It contains the following methods:

Method Ar guments

create_listen_endp(substrate, por t, suite, *mcr) Create an endpoint (MCR) in *mcr

accept(listen_descr, *peer_mcr) Peer's authenticated MCR in peer_mcr

set_accept_callback(listen_descr, callback) Register accept callback

connect(*target_mcr, suite) Connect to target

accept(listen_descr, *peer_mcr) Accept; peer MCR is returned

send(descr, buf, len) Write len bytes from buf to channel

recv(descr, *buf, len, block) (Blocking) read from channel to *buf

close(descr) Close connection

select(*rd, *wr, *exc, block) Poll/await connection status

Fig. 17. Overview of the zone authenticated communication (ZAC) layer interface

The interface in Fig. 17 is similar to standard BSD TCP/IP sockets, and has similar
semantics. ZAC can use AOS or TCP as the underlying substrate. Whether AOS or TCP
is used is determined by the process that creates the (listen) endpoint. In both cases,
SSL/TLS is used to authenticate channels and set up the cryptographic material required
to provide conŒdentiality. Howev er if AOS is used, channel encryption for conŒdential-
ity takes place at the AOS level. Channelsset up by the ZAC layer are always mutually
authenticated using ScID-based authentication. Note that ``*' ' is C-style notation for a
pointer, used to denote call-by reference (out) arguments.

The connectandacceptcalls make use of the Mansion contact record described in
Fig. 16. As explained above, when connecting to an endpoint, the AOSindexŒeld in the
MCR allows ZAC to determine whether the connection should be established using AOS
or directly over TCP/IP. Acceptuses a descriptor that has been created earlier using the
create_listen_endpcall. The substrate argument of the create_listen_endpcall

26 This can be useful for tracking access or when zone member processes are blacklisted, for example.
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determines the substrate to use: TCP/IP or AOS. When accepting an incoming connec-
tion, the substrate is implicitly clear through thelisten_descrused foraccept.

Create_listen_endpdoes not exist in BSD sockets, but resembles a combination of
the bind andlisten calls of BSD sockets. It creates an endpoint that other processes can
connect to. Theport argument speciŒes a speciŒc TCP port to listen on when thesub-
strateis TCP; if the substrate is AOS, it deŒnes a speciŒcindexrelative to AOS (AOS lis-
tens on a TCP endpoint allocated when it is started up). If unspeciŒed, ZAC lets the
underlying substrate allocate a port.A local substrate can also be speciŒed; this is useful
to speciŒcally create an endpoint for (RPC) communication between local processes on
the same machine; here, a local TCP connection is used, with authentication but without
subsequent encryption of data. The ZAC layer puts the resulting endpoint in thestruct
mcr argument; this MCR can be announced in, for example, a location service or distrib-
uted another way. The calling process obtains the endpoint's contact record after the end-
point is created, in a call-by-reference argument ofcreate_listen_endp.

The suite argument is used to deŒne a (set of) speciŒc cipher suite(s) for connec-
tions to this port. The name is inherited from the SSL/TLS protocols; a cipher suite
allows the caller to select a symmetric key cryptographic algorithm and a message
authentication (MAC) algorithm used to encrypt the channel. Currently, the authenticated
key exchange mechanism cannot be conŒgured; this is always RSA. Thesuiteargument
is used by both thecreate_listen_endpointand the connect calls, and a cipher suite name
from the sets deŒned in both connecting and accepting party must match, else connection
setup fails. If sec_suite is NULL, the ZAC layer (or underlying AOS substrate) uses the
default cipher suite (AES-SHA1), or if applicable it selects a cipher suite from a the list
of cipher suites deŒned in the world design document.Mansion by default uses an RSA-
based authenticated key-exchange algorithm to establish an AES256 symmetric key. A
SHA-1 MAC'ing algorithm is used for integrity protection and authentication of data.

Acceptandconnecttake arguments of typemcr. These contain the Mansion contact
record of the peer. By passing these arguments call-by-reference, initially missing values
(e.g., AOS ScID or peer_ids) in the struct can be Œlled in by the ZAC layer.

An accept callback function can be registered using the methodset_accept_callback.
If registered, this callback is called at connection time, with mcr of the peer Œlled in as
determined during authentication, before turning control to theacceptcall. Theaccept
callback function may return 0 or 1, depending on a recipient's decision on whether to
accept or deny a call based on the peer's MCR. If the callback fails by returning 0, the
(blocking) accept call does not return; the connection is not established. Note that if
accept is used without a callback, pending connections simply wait untilaccept is
called27. The callback method can be used to signal a connection coming in asyn-
chronously.

Acceptreturns the (authenticated) peer MCR in thepeerargument, with all applica-
ble ScID Œelds (peer_id, zone_id, aos_endp.scid) Œlled in.
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For connect, the MCR should minimally contain the TCP/IP address and port of the
(AOS or middleware) process being connected. Usually, thezone_idŒeld is Œlled in, and
if applicable the peer's AOS indexŒeld. Any missing applicable scid Œelds are Œlled in
after authenticating the peer process.Any ScID that is speciŒed before connecting, will
be checked; if there is a mismatch, connect (or accept) will fail. A closecall can be made
to close a connection at any time.

Send/recvwrite or read data from a connection, respectively. Recvtakes a Boolean
blockargument; ifTRUE, the call blocks until data is available. Since the underlying sub-
strate is a stream,recv will return whenanydata is available, not necessarily the number
of bytes speciŒed bylen. LenspeciŒes the maximum number of bytes to return in *buf.

Selecthas slightly different interface and behaviour than BSD socket select, but does
the same: poll the status of a set of descriptors. The difference is due to the semantics of
SSL, in particular of the internal symmetric cryptography used: most symmetric key algo-
rithms are block ciphers [36]. An SSL read operation will only return when sufŒcient
decrypted data is available to decrypt ablockof data (and verify its authenticity using its
message authentication code), while a BSD socket select call returns whenany data is
available. Thedistinction is relevant because if data is available on the underlying socket,
it may not yet be decryptable. The ZAC selectcall only returns when data is available in
decrypted form.

A distinction with socket select is that ZAC select takes lists of descriptors (inte-
gers), while BSD socket select take bitmaps: descriptors in ZAC are not standard UNIX
Œle descriptors within a number range up to 1024 (bitmaps in UNIX socket select are typ-
ically 1024 bits), but integers that can have any value. Otherthan that, the ZAC select
call functions are the same as BSDselect. It is used intensively, for example by the RPC
layer to check if listen descriptors or connections are readable (rd set). Aset ofdescrip-
tors can be passed toselectby reference.Any descriptors withreadable, writeable, or
exceptionstatus are returned, unsorted, in the beginning of the array; other descriptors are
set to 0 by select.Like BSD socket select, a NULL argument speciŒes an empty select
set.

The block argument ensures thatselectwill only return if one of the descriptors in
theselect setis signalled with the relevant status.Listendescriptors can also be passed in
a select set: anrd status on a listen descriptor indicates that there is an incoming or an
accepted connection (the latter if an accept callback was set), and thatacceptcan be
called on this descriptor to obtain the connection descriptor; connections not accepted by
the accept callback will not be visible inselect. Placing both listen and connection
descriptors in a (rd) select set, is an often-used way to implement a service using one or
only a few threads.

27 Perhaps a timeout should be added to connect so that a connecting middleware process's thread does not block indeŒ-
nitely. This is not currently implemented. A connection may timeout automatically in cases whenaccepttakes too long.
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5.1.5. Prev enting AOS-level man-in-the-middle attacks

The basis for authentication in Mansion are self-certifying identiŒers such as ZoneIDs,
which are available at the application layer. The middleware can authenticate processes
end-to-end at the application level using ScIDs.

AOS provides a means to delegate functionality for setting up communication chan-
nels from the middleware level to AOS. If the middleware processes at both sides trust
their AOS kernel, AOS can provide conŒdentiality (over wide-area connections) for them.
However, middleware ScIDs are not known to AOS. AOS takes care of encryption, and
the ZAC layer takes care of authentication. This requires a challenge-response protocol
on top of a (previously set up) AOS-level connection, to authenticate the peer process.

A naive implementation can introduce a vulnerability. When the underlying AOS
kernels are not be authenticated as being the AOS kernels that the communicating mid-
dleware processes use, data may be routed through a man-in-the-middle and decrypted
there, without the middleware or its local AOS noticing it.

The problem is sketched in Fig.18. Middleware process 1 intends to set up a con-
nection to middleware process 2, over AOS. Becausethe AOS ScID is not known in
advance, theaos_endpinformation in the MCR is incorrect or can be modiŒed by a man
in the middle.AOS 1 may be connected to AOS 3, instead of to AOS 2.

middle'
'Man in the 

AOS 3 AOS 2AOS 1

Host 2 Host 3Host 1

. .

M/W M/W 
proc. 2proc. 1

Fig. 18. A conceivable man in the middle attack on conŒdentiality when using a multiprocess com-
munication stack

The solution is quite simple. If the top-level processes are mutually authenticated
end-to-end using ScIDs, these processes can, as part of the authentication handshake, pro-
vide (authenticated, signed) information to their peer that makes it possible to verify that
the underlying communication channel is not routed through a man in the middle. Practi-
cally speaking: a middleware should pass its own AOS kernel's ScID to its peer in an
integrity-protected/authenticated way so its peer can compare this ScID to the ScID that
its AOS kernel authenticated as its peer AOS ScID. After this check is done, both mid-
dleware processes can fully rely on their local AOS kernel to encrypt all trafŒc. Ifthe
locally obtained AOS ScID does not match the ScID obtained from the peer, ZAC aborts
the connection with an error. Because AOS implements a secure channel abstraction, no
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further authentication checks are required as long as the underlying connection is not
closed.

In ZAC, the above is implemented by starting an open SSL RSA-based challenge-
response over the AOS connection; after this, ZAC sends an authenticated copy of its own
MCR, including the AOS ScID, to its peer. As this information is signed using the peer
middleware process' key, it can be trusted.

Note that the above mechanism may be relevant to authentication in multiprocess
communication stacks in general.For example, trusted visualisation approaches some-
times make use of different layers (e.g., a virtual machine monitor, an operating system,
application) which need all be trusted when communicating with an application [40]).
Further treatment of this scenario is outside the scope of this dissertation. However, to our
knowledge the use of ScID-based end-to-end authentication to authenticate multiprocess
communication stacks is novel and has not been presented elsewhere.

5.2. TheRPC layer

The RPC layer is used pervasively in Mansion. The middleware is essentially RPC-struc-
tured: communication between middleware processes, including object invocation, takes
place using basic RPC invocations. Also, agents communicate with their MMW over
RPC, that is, Mansion API stubs and object interface stubs use RPC to communicate with
the MMW. Interagent communication also uses RPC internally (Sec. 8.2.13).

RPC implements communication between middleware processes.A process sends a
request, and a reply indicates the status of the request (e.g., processedOK, error), and if
applicable the result of the request (e.g., a contact record as the result of invoking a
method on the location service).An advantage of using a single RPC layer compared to
designing low-level protocols is that stubs and skeletons, to marshall request and replies,
can be generated automatically by an RPC compiler. The RPC layer (particularly, the
RPC compiler), avoids manual deŒnition of wire formats for requests and replies.

Our RPC system is layered on top of the ZAC layer. Authenticated, secure connec-
tions are used to ship invocations over; both the RPC service and the sender of a request
are authenticated.

RPC calls may be nested to implement layered functionality. For example, invoca-
tion of objects are RPC invocations on a layer in the Mansion Object Server (MOS),
invoked using an RPC interface of the MOS accessible to remote clients (chapter 7).
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5.2.1. Datarepresentation

RPC is layered upon a standard data representation layer. A standard for data representa-
tion is required for invoking methods over the Internet, in particular when the system has
to be portable across different architectures.

Mansion marshalls arguments eXternal Data Representation (XDR) [97], which is
also used in SunRPC.Alternatives are available, for example the object marshalling for-
mat used in CORBA' s IIOP system [86], or the format used for Java object serialisation in
Java-RMI [68].

A primary reason to choose XDR is its minimality and simplicity. In particular,
XDR supports only primitive data types, such as integers and byte arrays. It is important
to avoid complex data types (for example as used in Java and IIOP), since the RPC sys-
tem should be portable across languages and platforms. Minimality means that it is
straightforward to implement stubs for different languages using a simple RPC interface
deŒnition language, using XDR for its data representation. Writing an XDR compiler is
not very complex.

A disadvantage of XDR is that binary data such as integers are marshalled in net-
work (big-endian) byte order, even when the machines on both sides of the wire represent
integers in little endian. This could be alleviated by avoiding network byte order conver-
sion if not required, but this would require both sides of a connection to exchange infor-
mation about the byte ordering they use, which increases complexity. Combined with the
fact that most little endian machines (in particular, x86) have very efŒcient byte-swapping
CPU instructions, the advantages of having a simple, uniform data representation system
outweighs the (negligible) performance penalty.

5.2.2. Programming Mansion XDR

Mansion implements an XDR compiler that uses SunRPC-like struct deŒnitions28 in a Œle
as input. In contrast to the standard SunRPC XDR compiler, the XDR compiler written
for Mansion explicitly allows for stacking protocol headers by nesting XDR structs.

The XDR runtime library contains functions to create (allocate) memory, as well as
conversion routines for standard data types such as 32 bits and 64 bits integers, booleans,
and strings (which do not require byte conversion). TheXDR compiler takes a struct def-
inition as input to create a runtime library that can convert these structs to and from the
XDR wire format at runtime.

In contrast to standard SunRPC XDR, variable-sized (opaque) byte-strings may also
be deŒned in XDR deŒnitions, where by convention a named Œeld in the XDR struct
deŒnes the size of the string at runtime. Although minor syntactic differences exist

28 See RFC 1057. http://www.ietf.org/rfc/rfc1057.txt
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between the way in which data is speciŒed in Mansion RPC versus standard XDR, the
wire format is fully compatible with SunRPC XDR.

An example of a simple Mansion XDR struct deŒning a variable-sized array is
shown below. The XDR compiler translates this struct to a corresponding wire format.

string_str {
int a;
char[a] b;

}

A variable-sized character stringb is deŒned; the runtime library generated by the XDR
compiler ensures thata is pre-pended to the internal representation of arrayb. Client and
server should agree on the XDR deŒnition: the receiving party must ensure to allocate
sufŒcient data to receive the character array. In the current implementation, the receiving
library automatically allocates memory fora andb; a maximum amount of allocateable
memory is deŒned in a global XDR header Œle. Sending and receiving party should agree
on this maximum. If it is exceeded, a marshalling error is generated at the sending side.

As the result of XDR compilation, the Mansion XDR compiler currently creates C
code that contains the data conversion routines. These are compiled and called by the
RPC layer at runtime. Header Œles are created that contain the C structs and type deŒni-
tions of arguments used by applications that use RPC.C++ stubs can also be generated.
Note that because the XDR representation is simple, it is straightforward to implement a
compiler to create marshalling routines for another language, such as Java. An RPC com-
piler for Java is not currently implemented.However, XDR marshalling routines were
implemented manually using an identical wire format when implementing a Java imple-
mentation of AOS (see chapter 4), demonstrating feasibility of the approach.

5.2.3. TheRPC interface deŒnition language

An RPC interface is deŒned and generated from an IDL Œle. The Mansion RPC IDL lan-
guage is somewhat more •exible and intuitive than standard RPC in terms of syntax,
however, the end result is the same. An example of an IDL Œle used to create an RPC
interface Š partof the Mansion API interface Š is shown below:

scid_t {
char[20] scid;

}

mcr_t {
char[16] ipv6-addr;
short port;
scid_t aos_scid;



116 Communication Layers and RPC Chap. 5

int aos_index;
scid_t peerid;
scid_t zoneid;
int index;

}

interface MansionAPI {
...
int rmo_bind(out: mcr_t invoke_mcr);
int object_bind(in: int eid, out: mcr_t mcr);
int object_unbind(in: int eid);
...

}

The Mansion API is implemented as an RPC service which is instantiated by the main
MMW process. This service is called by agents when they inv oke methods on the Man-
sion API runtime library (see Sec. 8.2.8).

As depicted above, the IDL contains special markers forin andout parameters; for
example, theobject_bindcall takes anint eid as an `̀in'' argument (this indicates the
EntityID of the object relative to the agent's current room).Theobject_bindcalls return
an MCR as an ``out'' parameter, if the call is successful. Note that the above deŒnition
contains a deŒnition of the MCR,mcr_t (Fig. 16)which contains a nested deŒnition of
the scid_t type. Note that theaos_endpstruct is included inline for clarity; the resulting
wire representation is the same using a nested struct deŒnition.

A return value is also speciŒed, typically anint. By convention in Mansion, nega-
tive return values are reserved for error codes, where a few speciŒc (known) negative
numbers are reserved for predeŒned RPC or ZAC error codes, such as errors in mar-
shalling arguments, memory problems, or connection related errors. If a negative number
other than an error code may be a result of a successful method invocation, an out param-
eter should be deŒned for this return value, instead of letting the call return it.

The caller of a method should deŒne sufŒcient memory into which to copy out
parameters. Inthe C/C++ stubs generated by the RPC compiler, out arguments are
passed by reference.Clearly, the deŒnition of methods and arguments should be such
that no more information will be returned than can be copied into the user-provided buf-
fer. The underlying RPC system will not read (from the ZAC connection) and extract
more data to the buffer than speciŒed in the interface.

The IDL compiler provides a construct to help handle variable-sizedout buffers.
The construct looks like this:

int read_data (in: int len, out: char[len] buf);

LendeŒnes the length of the variable-sided array; the XDR unmarshalling routines gener-
ated from this example ensure that no more thanlenbytes are read intobuf.
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5.2.4. RPCservice management

A Mansion RPC service is implemented using an RPC invocation infrastructure that uses
skeletons generated by the IDL compiler. This section describes the RPC service man-
agement infrastructure.

An RPC service listens for incoming connections or invocations. This endpoint is
created by the RPC service management interface using ZAC29.

A summary of the most important RPC service management calls is given below:

Method(ar guments) Description

rpc_svc_create(substrate, por t,

*mcr, request, reply, *upcall)

Ser vice creation + register upcall.

Ser vice's MCR is returned in mcr

rpc_svc_connect(*mcr, request,

reply, *upcall)

Connect to service/MCR, register

callback

rpc_accept_cb(*peer_mcr, *cb) To accept or deny peer's connection

rpc_request_create(*r pc_svc) Retur ns rpc_client_inv

rpc_request_send(*r pc_client_inv)

rpc_reply_send(*r pc_client_inv)

rpc_reply_await(*r pc_client_inv)

Fig. 19. Overview of the RPC service management and invocation interface

The basic calls used to register an RPC service or connect to it, arerpc_svc_create
andrpc_svc_connect. Therpc_svc_createandrpc_svc_connectcalls, respectively create
a communication endpoint for invoking a service and for connecting to it. The calls
instantiate the data structures required for handling XDR marshalling/unmarshalling for
RPC request and replies, and the underlying communication systemŠa ssociated with an
RPC service (at both sides), is a thread that listens for incoming requests or replies and
handles them.A call exists to register a thread pool with the communication subsystem,
which allows handling of requests or replies using a separate thread (not shown). The
mcr argument is used to connect to a service. The request/reply pointers are pointers to a
struct containing the XDRtype deŒnition.This deŒnition is used to instantiate the data
structures which contain an XDR-marshalled request or reply.

A request/reply data structure is instantiated using the callrpc_request_create. This
call uses the data structure returned byrpc_svc_create/connectas an argument, and
returns a pointer to a data structurerpc_client_inv. The generated marshalling routines
use this data structure to push or retrieve arguments for a given RPC invocation and to
(un)marshall them.

29 To our knowledge, no SunRPC implementations exist that are layered on top of SSL/TLS at the time of this writing.
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To handle (incoming) requests, the RPC interface provides a number of mecha-
nisms. Abasic callback can be registered using which incoming ZAC connections can be
veriŒed. AnMCR containing (ScID) information about the peer process is returned for
each incoming connection; the callback function must indicate if the connection is
accepted or not.A connection has to be accepted before RPC calls are allowed. Each
service can have its own access control rules, that is, register its own callback.

Therpc_svc_create/connectcalls allow a caller to register anupcall,which is a call-
back function. If an upcall is registered, it will be invoked whenever a request (or reply)
comes in; this allows for asynchronous handling of incoming requests or replies. As an
alternative to registering a connect upcall, a client can callrpc_reply_await, which simply
blocks until a reply returns or an error occurs (e.g., as the result of a disconnected socket
or an error at the RPC service side). This allows for synchronous RPC method invoca-
tions.

Although the above discussion does not give a very detailed overview of the imple-
mentation of the RPC layer, it shows how an RPC interface and appropriate XDR types
are registered to allow for marshalling and unmarshalling requests and results, and to
allow for registering the RPC service.

5.2.5. Connection-orientedRPC

Connections are not a natural aspect of RPC systems, as traditional RPC is stateless and
often layered upon a connectionless UDP substrate. The connection-oriented nature of
our RPC system is due to the underlying ZAC connections.

Like most RPC systems, our RPC system is in fact connectionless from the point of
view of the RPC service: each call is handled independently. The RPC service can obtain
a peer's MCR independently to determine whether it allows the invocation and possibly
to keep state per client, but it need not be aware that reliable, orderedconnectionsare
used underneath. Also, if a client closes its ZAC connection, this is not noticed by the
RPC service. RPC services including the ones currently implemented in Mansion are nor-
mally stateless and only act on incoming requests, although they could maintain state for
speciŒc clients between requests if required.

The RPC system comes with an IDL compiler and XDR marshalling routines
roughly comparable to SunRPC.Underneath the RPC layer, at the level of the ZAC
layer, (1) a real connection-oriented communication channel is used, (2) because the
accept callback is visible in the RPC interface, and (3) because therpc_connectcall con-
tains XDR types which should match for client and server (even though this is currently
not veriŒed at runtime).

In all, usage of the term `̀ RPC connection'' is somewhat ambiguous. Our RPC sys-
tem combines connection-oriented with connectionless properties.
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5.2.6. Securityof RPC

The XDR types of thexdr_t arguments to therpc_svc_createand rpc_connectcalls
should match. If not, the server or client may decode (unmarshall) garbage. However,
mismatches can occur, as checking of types cannot be done securely at runtime: a mali-
cious, erroneously programmed, buggy, or wrongly connected client can always affect the
server side. A solution could be to have clients and servers check at connection time
whether the RPC interface they expect matches the one at the other end of the connection.
This is expensive and does not help against buggy or malicious peers.

In our implementation, client as well as server ensure that consistency checks on the
content of XDR data in invocations and replies are made. Internally, an XDR message
always contains a size Œeld preceding any (variable or Œxed-sized) data structure on the
wire, which allows the handling routines to allocate sufŒcient memory for decoding, and
to ensure that no more data is read than is allocated. Also, this size Œeld can be used by
the recipient of the data structure to see if it matches the amount of data expected, and
this allows the recipient to drop the connection if not (this gives a very evident message
to the other side of the connection that something was wrong).

Servers (or clients) may block when they receive less data than they expect or when
it arrives too slowly. With mismatching XDR types, a receiver may block to read data
that never arrives. Server and client should be programmed to ensure that they do not
block indeŒnitely in these cases. The current Mansion implementation does not protect
against these kind of problems.The best measure that can be taken in the current imple-
mentation is that a service (or client) can register upcalls with a pool of handler threads,
such that incoming data from several clients can be handled independently by different
threads, avoiding that one blocking thread blocks all other handler threads.This also
does not help against malicious or coordinated (Distributed) Denial of Service [(D)DoS]
attacks. To ensure protection against those our implementation could be re-engineered,
for example to drop connections after a timeout.However, even then it appears improba-
ble that one can defend the system against all kind of (D)DoS attacks.
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Chapter 6
The Mansion Jailer

Agents may be malicious. Agents may try to steal information such as local Œles, gain
root access, attack processes of other users, penetrate the (local) network to gain access to
other systems, or mount aŠd istributed Š denialof service attacks on other systems.Fur-
ther, if no speciŒc action is taken, agents can easily exhaust resources such as CPU time,
memory or disk space. As an exercise, see what happens to your Linux system if you
implement a C program with a recursive signal handler, that is, where the handler sends a
signal to activate itself. Save your Œles and get ready to hit the reset button.

There are two main defenses against malicious agents in existing systems:

ƒ Code signing. Agent code is signed, to attest that the code can be trusted.

ƒ Language-based sandboxing. Agents are executed in a language-basedsandbox
environment (interpreter), possibly speciŒcally modiŒed for mobile agent execution
(e.g., [59,55, 87]).

Neither of these two approaches provides sufŒcient protection. Below we explain why,
before describing the jailing system that was designed for Mansion.

Code signing. Although code signing has been used in some agent systems that do
not use mobile agents (e.g., JADE [32], the approach is mainly used in desktop grids such
as XtremWEB [34]. Here, the focus is large-scale computation where, often, only a lim-
ited set of programs are admitted that each need a large set of resources. Code signing is
also used in mobile agent systems, but here code signing is generally used only to bind
agents to an identity in a secure way, in the form of anAgent Passport[91]; this approach
is also used in Mansion.

121
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As a mechanism to provide security against malicious code, a code signing approach
does not scale.Even if some agent's code could be veriŒed and attested as ``secure,'' f or
example by its author or an independent code certiŒcation authority, many binary agents
will link with third-party libraries or with code written by other authors than the speciŒc
piece of code which implements the agent's task. What if the compiler has a bug in it and
produces •awed object code? Who will want to verify the code for many users, in partic-
ular for arbitrary code, and verify that it does not contain any vulnerabilities? Even so,
can we be sure that (dynamically linked) code cannot be exploited? With estimates from
1 to 50 bugs per 1000 lines of code, it seems impractical if not theoretically impossible to
ensure that any giv en agent will contain no potentially exploitable or harmful pieces of
code. Thereexist some automated code veriŒcation techniques, but these often do not
work for legacy programs, or are complex or inefŒcient [74]. Thus, code auditing/signing
will not sufŒce for a system that aims to support heterogenous, customiseabe agents for
thousands or maybe millions of users.

Language based sandboxing. An advantage of language-based sandboxes, effec-
tively interpreters, is that they can be made to support strong mobility. Another advan-
tage is that they often provide an operating-system and architecture independent execu-
tion environment. They are also useful for experimenting, since it is relatively straightfor-
ward to modify the interpreter to extend or alter the language.

Language-based sandboxing are the dominant execution environment for mobile
agent systems and have been explored extensively in this context. Many agent systems
use agent servers (Sec. 8.2.5) that implement a language-speciŒc sandbox. Due to its
platform-independent nature, Java is common, but other languages have also been used.
These include Scheme, Python, TCL and Telescript.

A disadvantage of language-based sandboxes is that it is difŒcult to get their security
model right. The JVMŠo ne of the most extensively used systems for secure, platform-
independent code execution Š still suffers from security issues today, which are mainly
caused by shortcomings of the Java language [14].Further, as soon as some interpreter is
adapted to embed agent system-speciŒc instructions or protections, a large burden is
placed on the agent system programmer, to adapt the interpretersŠi f applicable, for mul-
tiple interpretersŠt o other operating systems or language versions. From a software
engineering and a security perspective, it scales badly: due to the divergence of supported
features and versions, it is likely that bugs creep in. In other words, it becomes hard to
maintain atrusted compute baseconsisting of language-speciŒc sandboxes.

An additional problem is that policy management languages for conŒguring sand-
boxes differ between languages and interpreters, and are often complex [43]. And Œnally,
language-based sandboxing does not support binary compiled programsŠw hich still
form the most efŒcient type of programs today.

The above argues for a low-level, simple protection system, close to the operating
system for efŒciency and security, with a straightforward and language-independent
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policy model that supports binary code as well as interpreted code. This is described
below.

6.1. Introduction to the jailer

Mansion supports agents written in arbitrary languages.This includes binary (legacy)
applications. Current-day operating systems are not well equipped to protect a system
from malicious processes (in particular, these execute under a user's ID and can thus
access or damage Œles of this user). Therefore, a mechanism is needed to ensure that
agents cannot harm the local system. This mechanism is calledjailing .

This chapter describes the design, implementation, and performance of the Mansion
jailer30. An important contribution of the jailer is that it runs completely in user mode on
unmodiŒed UNIX (Linux) kernels, while being secure against race conditions that ren-
dered earlier user-mode jailing systems insecure [39].It allows for efŒcient execution of
arbitrary programs. The jailing model allows system calls given that these do not violate a
user-deŒned policy, and do not, for example, try to send signals to arbitrary programs on
the machine, or read arbitrary Œles which it has nothing to do with. This simple but pow-
erful jailing model, combined with a customiseable policy, determine what agents in a jail
are allowed to do. Most programs work in a jail with an unmodiŒed default policy.

This chapter explains the jailing model, implementation, and performance in detail.
The jailer is used to jail agents, and possibly objects if their implementation is not trusted.
The jailer is a stand-alone program used by Mansion31. It has been designed for portabil-
ity. It runs not only on standard Linux kernels using theptracedebugging interface (for
intercepting system calls), but also on a modiŒed Linux kernel that uses a custom-built
tracing system.Because it runs on two tracing layers with otherwise identical machines
and operating systems, it becomes possible to compare the performance of a jailer with
an optimised tracing layer, compared to one that used theptrace system available on
ev ery UNIX system. The resulting measurements are described in this chapter.

6.1.1. Approach

Operating systems currently do not provide sufŒciently Œne-grained protection mecha-
nisms to protect a user against the programs he or she executes. TheUNIX protection
model is based on a discretionary access-control model, where all programs executed by
a user inherit the user's permissions with regard to accessing resources, such as Œles.

30 This chapter is based on an article which appeared in 2007 [82].
31 The jailer has recently been re-implemented to simplify its code base, making use of Linux-speciŒc features to allow

for certain optimisations and leaving out certain complex solutions for problems that occur only rarely [128]. The jailer is
a stand-alone program so it can also be used in other systems, such as desktop grids, or as a command line tool for conŒn-
ing untrusted applications downloaded from the Internet.
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When using UNIX as a platform to execute untrusted programs, it is important to be able
to automatically protect a system and its users against such programs in a Œne-grained
way without requiring user intervention or complex conŒguration procedures.

System-call interception based jailing systems are most often based on a kernel-level
tracing mechanism (e.g.,ptraceor /proc) that allows a trusted jailer to intercept all system
calls of its child process(es), and accept, deny, or modify arguments of the system calls
made by a jailed process before the kernel proceeds with executing the system call.A
number of jailer designs have been described since the Œrst jailing system was described
in [117].

The most common use of jailing systems is to protect systems against untrusted
(downloaded) executable or interpreted code [117,96, 41], and for intrusion detection
[49]. All jailing systems come with a policy that describes which parts of the local Œle
system may be accessed, and which network addresses are reachable by the jailed pro-
cesses.

A number of jailing systems require modiŒcations to the operating system to func-
tion securely. Jailing systems that are implemented in user-mode, using theptrace or
/proc debugging facilities offered on standard UNIX, also exist. However, existing sys-
tems suffer from several race conditions, which allow an attacker to bypass the jailer's
control mechanisms[39]. Over time, jailing systems have become more mature, and
most in-kernel systems can be considered secure with regarding to enforcing the speciŒed
policy. Howev er, some implementation issues remain for jailing systems which are imple-
mented in user-mode, by using, for example, theptrace or /proc debugging facilities
offered by the operating system.

This chapter describes novel solutions to these race condition problems. These solu-
tions allows complex programs, including multithreaded programs that make use of IPC
mechanisms and signals, to be jailed effectively. The jailing system presented in this
chapter provides sufŒcient control to allow for effective conŒnement of untrusted pro-
grams using standard system call tracing mechanisms available on most UNIX systems.

This chapter is organised as follows. First, it describes the design goals of our jailer,
and discuss a number of practical issues that make system call interception systems difŒ-
cult to implement securely. Next, it discusses the jailing model and policy in some detail,
and how information leakage from a jail to the outside world may be prevented. It then
discusses how the system is implemented and aspects regarding portability. Finally, this
chapter describes performance measurements and related work, and it draws some con-
clusions.

6.1.2. Designgoals

The design of our jailing system is motivated by the need for a secure conŒnement
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system for mobile agents in the Mansion system. Agents are viewed as code (e.g., a pre-
compiled binary) that can migrate to different machines if required; agents are just exe-
cutable code.The jailing system should be realised as a user-mode program that can run
on standard UNIXes, initially Linux, which is simple to conŒgure and use, and which
allows us to guarantee that an untrusted agent cannot attack the system or read Œles from
the system to which it does not need access. In general, agents in different rooms (partic-
ularly, conŒned rooms), should not be able to communicate information directly to each
other. By default, an agent in one jail should not be able to communicate with an agent in
another jail. Although the current implementation does not prevent all types of informa-
tion leakage (in particular, covert channels [11]), jailing may provide a basis to prevent
information leakage in practical scenarios, and thus provide a basis to control information
•ow.

Although the jailing system can be (and is) used in Mansion, it is in fact a stand-
alone program that can be used to conŒne any untrusted application.

The main design requirements for our jailing systemŠn ote that these are separate
from Mansion as a whole, as the jailer must be usable as a stand-alone systemŠa re:

ƒ The system should be simple to use.In particular, it should be straightforward to
specify a sufŒciently secure default policy to conŒne untrusted applications, and
preferably it should be possible to run applications in a jail without modiŒcations.

ƒ The system should be portable to different UNIX systems, and runnable by any user
without requiring root privileges. Asjailer is intended to be usable in a distributed
system, it is not restricted to a single UNIX version (for now, Linux version). Sys-
tem administrator intervention, for example, to patch or reconŒgure the operating
system before a regular user can use the jailer, also needs to be avoided.

ƒ The system should support all types of applications.These can range from shell
scripts spawning many processes that communicate via pipes or other forms of IPC,
to interpreted programs, to heavily multithreaded programs such as a JVM, and
more. Theseprograms should run out of the box.

ƒ The system should be secure in view of race conditions or coordinated attacks by
malicious multithreaded programs.

ƒ It should be possible to conŒne processes, including multiple programs executed by
the same user. Direct communication channels between processes in different jails
should be prevented, unless explicitly allowed. (Covert channels are not considered).

The Œrst requirement implies that specifying a jailing policy should be a straightforward
task. Asimple, high-level policy language is deŒned, which can be used to adapt the pol-
icy to in particular, the local Œle system's directory structure (Sec. 6.2.2). The second
requirement implies that the system should be runneable using standard operating system
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primitives, such asptrace. The conŒnement property requires the jailer to keep track of
a number of system calls and their arguments to prevent jailed programs from directly
communicating with other jailed programs. Programs or threads within a jail, however,
should be capable of using most UNIX calls for interacting with the Œle system and for
inter-process communication within the jail. Only this way will complex, modern pro-
grams be able do useful work in a jail (Sec. 6.2.1).

Another important issue for jailing systems is usability. This impacts both the way in
which policies are deŒned by a user, and the jailing system's implementation. Thesys-
tem should be usable by regular UNIX users without requiring system administrator
intervention or operating system or kernel modiŒcations. The system described in this
chapter has been designed such that it can be implemented using rudimentary debugging
support available on every major UNIX system, such as theptraceor System-V's /proc
system call tracing interfaces (Sec. 6.2.3).Although earlier jailing systems are built using
these tracing interfaces [8,117, 49],none of these were fully secure. The system pre-
sented in this chapter is the Œrst which is completely secure even in view of race condi-
tions that rendered earlier attempts to build jailing systems in user space insecure [39].

6.1.3. Overview of terminology and technology

The terminology used in this chapter is the following:

ƒ The jailer is a trusted process that monitors an untrusted application and enforces a
policy on the user's behalf.

ƒ A prisoner is an untrusted application that is monitored by a jailer and is forced to
adhere to a predeŒned jailing policy.

ƒ The tracer is the interface offered by the operating system for debugging / tracing
an application. Every major UNIX system to date provides one or more tracing
interfaces, such asptraceor System-V's/proc interface.

The basic idea of system call interception is demonstrated in Fig. 20.Most if not all cur-
rent UNIX systems provide some form of debugging support that allows for catching and
inspecting the system calls that an application makes, allowing for inspection of the sys-
tem call's arguments. The primary example, which is rudimentary but still often used
(e.g., by gdb), is theptracesystem call. This section assumesptraceas the underlying
system call tracing interface, as it is the most primitive tracing system currently available
and demonstrates the minimal requirements of a user-level jailing system.



Sec. 6.1 Introduction to the jailer 127

Jailer Prisoner

Operating System

3/5 2/4 1

Fig. 20. General positioning of a system call interception system showing a jailer and a traced pris-
oner. When a prisoner makes a system call (step 1), the operating system suspends the invoking
thread and re•ects the system call to the jailer (step 2). The jailer inspects the system call's argu-
ments (e.g., by inspecting register values or values on the prisoner's stack) and decides if it should
allow the system call or not. It informs the operating system of its decision (step 3), which results in
the system call being continued or an error being returned to the prisoner. Step 4 and 5 repeat step 2
and 3 after the system call has been made, so that the jailer can inspect the result of the system call
before returning control to the prisoner.

Ptraceis a system call that allows a parent to monitor its child's behaviour. When a
traced process makes a system call, this call is automatically trapped by the operating
system and re•ected to the parent process, which can then inspect its child's current reg-
ister set and system call arguments. Basedon this, the parent (jailer) can decide whether
to let the system call proceed or whether it should return an error without being executed.
Ptrace allows the jailer to change the value of registers that contain the system call's
arguments, before letting the kernel execute the call.Ptraceintercepts every system call
just before it is executed by the kernel, and right after executing it. Only after the jailer
agrees to let the process continue on both the pre and post system call event, is the the
prisoner thread resumed.

6.2. Threats and vulnerabilities

Fig. 20 illustrates a signiŒcant problem in all system call interception based jailing sys-
tems that support multithreaded applications or processes that use shared memory. When
the operating system suspends the invoking thread and re•ects the system call to the jailer
(step 2), the jailer has to make a decision on whether to allow the system call based on its
arguments. These arguments often contain a pointer to a string (e.g., a Œle name) in the
prisoner's address space, which must be de-referenced and checked by the jailer.

Between the time that an invocation is made (step 1/2) and the decision has been
passed back to the operating system (step 3), a different thread of the prisoner (or a
process which has access to the prisoner's address space) could have modiŒed the argu-
ment in the original thread's address space.In this case, the system call would end up
using the modiŒed system call argument rather than the argument checked by the jailer.
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This race condition is called atime of check to time of use (TOCTOU) race, and it is a
realistic threat for all jailing systems that are intended to support multithreaded programs
or programs that use shared memory. This threat applies to system calls that take a Œle
name as an argument, but also to a connect call that takes an IP address as an argument,
for example.

Several solutions for the shared memory TOCTOU race have been proposed for
existing system call interception based jailing systems[41, 117, 96]. The most secure
approach among current systems is to let the kernel create a safe, normalised, copy of the
arguments before re•ecting that to a user-level policy enforcement module [96], to make
sure that the kernel will use the same arguments as those passed to the policy module
when it executes the call. Another approach is using a delegation approach, where the
jailer invokes the system call on behalf of the prisoner [41]; for the latter approach, some
portability issues were reported [117].Ostia, the research system that presented the dele-
gation approach Œrst, requires installation (as root) of a kernel module to implement part
of its functionality.

TOCTOU race conditions are a challenge to solve for user mode systems that rely
on existing tracing mechanisms such asptraceor /proc, which provide no protection of
the arguments of a system call at the time of inspection. The approach closest to solving
the shared memory race outlined above is described in [49].This solution is based on
relocating a system call's argument to a random location on the caller's stack before
checking it, so that another thread in the child's address space is unlikely to be able to
Œnd and replace this argument. However, it is certainly not impossible for another thread
to Œnd such a relocated argument and replace it32. Other jailing systems simply disallow
thread creation, or suspend all threads of a jailed process while a system call is being
evaluated [3]. Bothapproaches signiŒcantly limit the applicability of such systems for
executing modern thread-based applications.

Certain Œle system race conditions have also been documented for system call inter-
ception systems [39] and for operating systems in general [64]. These race conditions are
again caused by a lack of atomicity between the argument checking and system call invo-
cation steps.Between the time that a system call's Œle name argument isveriŒed by the
jailer and the time that the system call is executed in the kernel, another prisoner thread
(or even an altogether different process) may have substituted a part of the underlying Œle
system path for a symbolic link to a directory outside the paths that are allowed by the
policy, without the jailer being able to detect this.For example, the prisoner may invoke
open with /tmp/user/temp/passwd in the allowed path /tmp/user/temp, and substitute the
temp component for a symbolic link to /etc, hoping that the system call will be executed
just after that, resulting in /etc/passwd to be opened.Changes to the current working

32 Winning this race is not as far-fetched as it may seem, especially since the prisoner knows the argument which it orig-
inally speciŒed itself. By creating a large number of threads, a prisoner can increase the probability that one or more of its
own threads are scheduled between the time that the jailer relocated the argument and the time that the corresponding sys-
tem call is executed by the operating system, so that it gains more time to search for the relocated argument and replace it.
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directory while a system call is being evaluated by the jailer can evoke similar race condi-
tions. Anexcellent overview of these and other vulnerabilities in system call interception
based systems is provided in [39].

A weakness of most existing jailing systems is that the only way they can handle
system calls is to either always allow or deny them altogether, or to conditionally allow or
deny the system call by comparing its argument with, for example, a set of Œle names or
network addresses in a user-provided policy Œle. Whenthe policy provides insufŒcient
information, the jailer's only choice is to allow or deny the system call always, irrespec-
tive of i ts arguments. Somesystems make a callback to the user so he or she can make a
decision to allow or deny the system call based on information provided by the jailing
system [96]. Calling the user is not only inconvenient, it is also infeasible when a large
number of jailed processes are running simultaneously on a system.In addition, a user
does not often understand the meaning of the arguments of every system call of the UNIX
API, and the potential side effects of allowing the call. In particular, system calls such as
IPC calls or the kill system call take integer arguments which are determined at runtime.
Often, these arguments indicate some kernel object of which a user cannot determine
whether access to it should be allowed or not. Although some kernel-level security archi-
tectures (e.g., SElinux[4] and DTE [122]) allow for automatic tracking of system call
arguments this way, this is does not hold for the majority of existing system-call intercep-
tion jailing systems. The jailing system should provide a model for making policy deci-
sions based on such arguments automatically, to make sure that a prisoner cannot escape
its conŒnement.

6.2.1. Thejailing model

To address the requirements and threats outlined above, our system provides a clear jail-
ing model, which distinguishes an application's allowed actionsinsidea jail from actions
that in•uence the world outsidethe jail. Within a jail, the jailer allows the full UNIX
API, including IPC mechanisms such as shared memory, to be used by all processes
within the same jail, with the exception of root privileged calls.To make sure that a pris-
oner cannot export information to the outside world, the jailer keeps track of which com-
munication endpoints or IPC channels are created inside the jail, and only allows access
to internal endpoints. The jailer also controls who may connect to a communication end-
point created in a jail, to prevent external processes to initiate a connection to a jailed
process or IPC channels (see also Sec. 6.2.4).A prisoner cannot set up socket connec-
tions to arbitrary processes outside the jail. Jailed programs can send signals, but only to
processes running in the same jail.

In addition to the built-in jailing model, each jail has a simple policy using which
the user can deŒne which Œle system parts a jailed program may access (read-only) by
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default. Every jail provides its prisoners with a private directory structure in which they
can read and write Œles.This directory is protected from other users using standard
UNIX protection mechanisms.A jailed process is by default started up in a (normally
empty) scratch directory. Different jails are not allowed to have read/write access to
directories shared with other (jailed) processes. This is an important constraint, as it pre-
vents uncontrolled information •ow between untrusted processes in different jails.In
their own jailing directory, prisoners can write / read Œles and create subdirectories.

An important assumption of the jailer is that a user will jail all untrusted programs,
to make sure that untrusted programs cannotaccess any Œles created by a prisoner in
another jail. The user who has started up a jail is able to access the Œles and processes
within this jail directly. This user can also send signals to processes in the jail, for exam-
ple to kill a prisoner.

A jail always starts with a single program, but this program may (modulo policy)
fork or execveother programs or create new threads. Childprocesses are executed in the
same jail under the same policy as their parent. The jailing process hierarchy is shown in
Fig. 21.

program
Jailer

Jail

process

process process

process

Child Child

Child

First jail'd

Fig. 21. A jail's process hierarchy. The jailer starts the Œrst jailed process in its own jail, and controls
this jail by enforcing the jailing model and the jail's policy. The Œrst jailed process can create child
processes (using fork and execve). These processes are now in the same jail as their parent and exe-
cute under the same policy as their parent. All processes within a jail can communicate with each
other using UNIX IPC primitives (e.g., using pipes or shared memory primitives like shmemor
mmap) or signals, or by writing Œles in their jailing directory. Communication with processes out-
side the jail is controlled by the jailer's policy.

The jail concept describes whether a set of processes may communicate with each
other or not: processes within a single jail may freely communicate with each other, but
communication with the outside world is not allowed unless explicitly permitted by pol-
icy. The jailing model enforces information •ow policies even when the jailed programs
run under the same UNIX UID.Within its jail, the jailer allows almost the full UNIX
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API, including IPC mechanisms such as shared memory (but no root privileged calls) to
be used by all processes. Because the jailer allows most UNIX calls to be used freely
within a jail, it allows for execution of the majority of programs, even modern multi-
threaded and multiprocess applications, within the conŒnement rules of the jail.

6.2.2. Thejailing policy

For modern (UNIX) systems with a large number of system calls, understanding the
potential side-effects of any particular system call that a program can make is a hard (if
not impossible) task even for well-informed users. When a user executes many untrusted
programs, it becomes infeasible to generate a policy for each program individually. The
jailing model simpliŒes the procedure for specifying a secure policy by providing default
rules which are aimed at providing strict conŒnement of the jailed programs. The system
has a built-in policy which allows harmless calls (e.g.,getpid ) by default, such that the
user only has to consider high-level policy aspects for sensitive system calls, such as
which Œles or directories a jailed program may access.

Each jail is associated with a single policy, speciŒed at jail startup as a user-editable
policy Œle. Different jails may use a differentjailer policy , although in most cases a sin-
gle policy is used for jailing all applications.A policy Œle's syntax resembles that of
environment variables in a shell script. An example policy is shown below. This is an
excerpt of the policy Œle used for the benchmark tests in section 6.5.

# -- E nvironment adaptation
ENVIRON=HOME=$JAILDIR
# -- R ead-only / read-writeable paths.
ROPATH=/usr:/lib:/bin
# J aildir is read-write accessible.
RWPATH=$JAILDIR:/tmp/$USER/$JAILDIR/tmp/
# -- C HRDIR directives (see text) --
CHRDIR=/:$JAILDIR
# The '/' CHRDIR is escaped for /usr, /lib, and /bin
CHRDIR=/usr:/usr
CHRDIR=/lib:/lib
CHRDIR=/bin:/bin
# / tmp must be CHRDIR'ed (see text)
CHRDIR=/tmp:/tmp/$USER/$JAILDIR/tmp/
# -- C ommunication / IPC configuration
# Here we deny accept calls, but we can also allow (IP addresses) or use a
# c ommand-line IPC escape
INET_STREAM_ACCEPT=DENY
# Allow TCP connect to a local web server (port 53) and to $IPCESCAPE,
# which contains addresses specified on the jailer's commandline.
INET_STREAM_CONNECT=127.0.0.1/80,$IPCESCAPE
# Allow UDP sendmsg to a local nameserver (port 53) and to commandline
# addresses. Note that in a confinement setting, traffic to a remote
# nameserver could conceivably be used to leak information to the outside
# world.



132 The Mansion Jailer Chap. 6

INET_DGRAM_SENDTO=127.0.0.1/53,$IPCESCAPE
# UDP recvfrom seems safe, as there is no way to export information via
# r eceiving a datagram. However, a prisoner could snoop on
# NFS traffic, which could be used as a covert channel by other prisoners
# if R OPATH contains a mounted NFS directory.
INET_DGRAM_RECVFROM=DENY
# Shown for completeness: Pipes, socketpairs, MMAP and other IPC calls are
# c ontrolled by the jailer. Therefore it is safe to allow these system
# c alls (they are allowed by default).
PIPE=ALLOW # or DENY
SOCKETPAIR=ALLOW # or DENY
MMAP=ALLOW #or DENY
# . ..

Fig. 22. A (default) policy for the jailing program

A user only editsŠt ypically onceŠt hose parts of the policy Œle that concern access
to the local Œle system, such that jailed programs can access important Œles such as
shared libraries.Every policy contains an explicit list of read-only and read-write acces-
sible directories, called ROPATH and RWPATH. Directoriesthat are not in either of
these lists are not accessible to prisoners. As an example, a prisoner will normally be
allowed read-only access to certain other directories (e.g., /lib or /usr/bin), so that it can
load standard libraries or execute regular programs (e.g., a Perl interpreter or a JVM exe-
cuted by a script). Note that because these programs are executed by a jailed program,
they are run in the same jail as their parent and are subject to the same policy.

In addition to the policy Œle, the jailer program accepts a number of command-line
parameters that allow the user to specify, for example, a set of network addresses or ports
that a particular jailed program may access. This makes it possible to change some
parameters for the jail at runtime without changing the policy Œle, for example if the pro-
gram needs access to a local DNS resolver or a local Web server. The policy has a few
reserved variables which are set by the jailer program, to keep the policy Œle independent
of a particular jail's settings. Examples are $JAILDIR and $IPCESCAPE. $JAILDIR con-
tains the pathname of the jail's private jailing directory. to deŒne one or more (external)
TCP, UDP, or UNIX domain endpoints which may be connected to by the prisoner.

In addition to ROPATH and RWPATH, the policy contains a directive CHRDIR that
allows the user tochange-rootthe program's visible directory structure using a simple
path-preŒx substitution algorithm built into the jailer program. In the example policy, the
prisoner has read-only access to /usr, /bin, and /lib, and read-write access to $JAILDIR
and /tmp/$USER/$JAILDIR/tmp. A CHRDIR directive applies a change-root to the jail-
ing directory (CHRDIR=/:$JAILDIR), so that when the prisoner attempts to access the
root directory `̀/' ', it really accesses its private jailing directory. A CHRDIR directive is
also speciŒed for /usr, /bin/ and /lib, to escape the ``/' ' CHRDIR directive, such that when
the prisoner accesses a Œle or directory relative to these directories, it accesses the real
/usr, /bin and /lib directories. The ROPATH and RWPATH directives are applied before
applying the CHRDIR directive: ROPATH and RWPATH deŒne the absolute, real paths
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that are accessible; the CHRDIR path preŒx substitution is only provided to customize
the prisoner's environment. Thisavoids that regularly used Œles or libraries have to be
copied into the jail's change-rooted directory structure before the jail can be used.

Many programs (e.g., the Java virtual machine) require write access to /tmp. How-
ev er, allowing every jail to use the shared /tmp directory for writing / reading Œles, would
allow jailed processes in different jails to communicate easily through Œles in this direc-
tory. Thus, /tmp is change-rooted to a private directory /home/$USER/$JAILID/tmp,
such that different jails use different underlying directories when they access /tmp.

All unknown (or unspeciŒed) system calls are denied by default by the jailer. This
also applies to some known system calls, for example because we were unsure about the
potential side effects of a system call (for example, we currently deny a number offcntl
andioctl subcalls). Also,system calls unknown at jailer compile time (e.g., system calls
added to a new version of the operating system) are denied by default.

The policy Œle can be used to override default policy decisions hardwired in the
jailer, or to allow unknown system calls using their raw system call ID. A user can Œnd
out about denied system calls by running the jailer in verbose mode. In our experience it
is not necessary to override the default policy, as most applications and their libraries
simply run as expected Š even if some system calls are denied.All tested programs and
their libraries are quite resilient to system calls denied by the default policy. This also
applies to Œles not found by the prisoner, for example Œles in /etc.All prisoners make at
least a few requests (generally, throughlibc) for inaccessible Œles, but turn out to work
Œne when access to these Œles is denied33. We found that we could successfully run many
different programs in the jail, ranging from simple UNIX commands like ls to more com-
plex programs like the bash shell or Java, using the default policy shown in Fig. 22.

6.2.3. Winning the shared memory race

The most important implementation issue to solve is how to secure the arguments of a
system call in view of the shared memory TOCTOU race conditions outlined in Sec. 6.2.
This section describes the Linux solution Œrst, and then explains how this solution can be
applied to other operating systems. After this explanation, it describes the architectural
design of the jailing system.

33 In practice, most refused system calls for the programs we tested were made by glibc.Glibc tries to open a number of
Œles (e.g., in /etc) and tests a number of system calls, probably to test its environment so it can conŒgure itself (glibc should
be able to run on various versions of Linux); most refused system calls are made when the program is started up and when
glibc is initialised. Glibc is quite resilient to refused system calls or unavailable paths on the system, and most tested pro-
grams work Œne even under a very restrictive jailing policy, for example, only allowing (read-only) access to /bin and /lib.
Some programs require access to speciŒc Œles in /etc or /proc (Linux' process information database).
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Fig. 23. The Mansion Jailer's Shared Read-Only (ShRO) memory solution for avoiding user-level
multithreading and shared memory race conditions. The shared memory region is mapped in trans-
parently (usingmmapor shmem) by a library loaded at the time of prisoner startup using a standard
ELF preload technique. In addition to the shared read-only memory (shRO), a small library with
executable code for managing certain post system-call issues is also loaded in at prisoner startup
time. The prisoner program itself is not modiŒed, it is normally not even aware of its preloaded
ShRO memory region or the library in its address space.

Fig. 23 depicts the solution. When a new prisoner process is executed, it is provided
with a region of shared memory which is shared between the prisoner and the jailer. The
prisoner has only read-only access to this region; the jailer can write into it. This shared
memory region is calledshared read-only memory, or ShRO in short. The shared
memory is set up by using a library preloading technique (see section 4.3).During
preload, the library contacts the jailer to obtain information about the shared memory
region, after which it usesmmapto map this region in its own address space. Preloading
avoids that we have to patch the prisoner binary. The preload library also contains some
additional code which is required for handling certain post-system call processing tasks.
These tasks are described in Sec. 6.4.1.

Once a system call is made, the system call is re•ected as explained in Sec. 6.1.3.
After this, the jailer fetches the arguments from the kernel using a standard (ptrace) call.
An argument can be a Œle name or an IP address, for example, depending on the system
call. Thejailer makes a safe copy of the arguments pointed to in ShRO and adjusts the
argument values (i.e., registers pointing to the arguments) in the Linux kernel to point to
these copied arguments, my making aptracesystem call. Then the jailer does a policy
check using the safe copy of the arguments in ShRO, and informs the kernel of its deci-
sion to let the system call proceed or not.If the system call is to proceed, the kernel now
uses the updated system call registers, that is, pointing to the safe copy of the arguments,
to execute the system call. No prisoner thread can touch the registers or the safe copy of
the arguments.

The ShRO solution alone is not sufŒcient to prevent all TOCTOU race conditions.
For example, there is a window of opportunity for a malicious program to substitute a Œle
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in its RWPATH (which has its canonical Œle name stored safely in ShRO) for a symlink to
a Œle outside the prisoner's RO/RWPATH, between the time where the Œle name is stored
in ShRO, and the time that the system call is executed. This race is prevented by serialis-
ing all system calls that can modify an object in RWPATH (i.e., all create/write accesses
to elements in RWPATH) while anopensystem call is in progress. Serialising is imple-
mented by placing a readers/writers lock around the open and modify/create/write-type
system calls. This provides an effective solution to the shared Œle system TOCTOU races
outlined in Sec. 6.2, making it impossible to mount symlink substitution orchdir based
attacks from within a jail. (In theory, an attacker outside a jail could conspire with a pris-
oner to mount a symlink substitution attack; however, the jailing model ensures that dif-
ferent jails cannot access other prisoner's RWPATHs, and it assumes that a user jails all
untrusted processes, excluding this attack possibility).

In Linux, the system call arguments are stored in registers at the time of invocation,
and immediately copied to the operating system's process table when the system call is
made. Theseregister copies are secure from modiŒcation as they cannot be altered by the
invoking process.However, the way in which system calls are passed to the kernel is
operating system speciŒc. Other UNIX operating systems (e.g., BSD) place the system
call's arguments on the stack and pass the invoking thread's program counter (i.e., return
address) and the stack pointer to the operating system, which fetches the the system call
number and arguments from the stack.To secure system call arguments when these are
on the stack, the jailer must copy the stack frame containing the system call arguments to
ShRO memory, and modify the stack pointer in the kernel such that it will use the (possi-
bly modiŒed) stack frame in ShRO to execute the system call.

6.2.4. Prev enting information leakage

Many UNIX system calls can be (mis)used to export information from a program in one
jail to a program in another jail.For example, prisoners can escape their conŒnement by
agreeing in advance on certain 32-bitIPC tokensprior to being started up in a jail.IPC
tokens are used for identifying shared memory (shmem) segments, message queues,
mutexes and semaphores in the kernel, and are speciŒed by the program at creation time.
IPC tokens have user permissions to ward off other users on the same machine, but pro-
cesses executed by the same user (in different jails) can bind to a shared IPC channel
using the IPC token. Whenthe jailing system does not take special measures, a prisoner
in one jail can bind to an IPC channel created in another jail or even by another user
using a pre-agreed token. Usingthis IPC channel, a process in one jail can pass informa-
tion to an agent in another jail, thus potentially bypassing information •ow control rules
imposed by the application. Existing jailing systems cannot automatically constrain such
communication, except by always denying vulnerable IPC calls or signals. As many
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programs make use of IPC calls and/or signals, denying those calls makes the jailing sys-
tem unusable for executing many programs. For example, a Java virtual machine makes
heavy use of signals internally, so it will not run in a jail which denies access to the kill
system call used for sending signals.

Using the jailer avoids having to conŒgure a different security policy for each lan-
guage run-time system or version thereof, even if that system would provide sufŒcient
hooks for preventing information •ow. This particular issue is solved by keeping track of
the pids and IPC tokens used in one jail, and ensuring that prisoners cannot bind to an
IPC channel that was not created in this jail or send signals to processes outside the jail.

There is also a vulnerability in thestatsystem call. Stat shows access times of Œles,
ev en when these are only read. This means that when a prisoner in one jail reads from a
Œle in ROPATH, a prisoner in another jail can stat this Œle's access time, leading to a
covert channel. This issue is solved by zeroing thest_atimeŒeld34 of the stat struct
returned bystatusing a post-system call intercept construction, which is discussed in Sec.
6.4.1. Thisis a costly operation, but fortunately this is only required when accessing Œles
outside the jailing directory or RWPATH, as within a jail processes are free to exchange
information, also by using Œle access times.

6.3. Jailer architecture

The architectural design of our jailer separates generic functionality (i.e., policy enforce-
ment) from platform-speciŒc functionality. The jailer is split up in two layers. Thelowest
layer is called theinterception layer. This layer interfaces with the underlying system
call tracing interface, e.g.,ptrace or /proc. Two interception layers have currently been
implemented, one that usesptrace and one that uses a specially-built in-kernel system
call interception interface, calledkernel jailer. Above the interception layer lies thepol-
icy layer, which takes care of enforcing the jailing policy. Both layers have access to a
shared memory managermodule, that manages the ShRO memory region. It has a
high-level interface that allows the interception layer and the policy layer to allocate
memory for writing system call arguments or stack frames into when required. The jailer
architecture is shown in Fig. 24.

The interception layer handles the tracer-speciŒc mechanism for attaching to a pris-
oner process, and it sets up the shared memory between the prisoner and the jailer. Pris-
oner code never runs uncontrolled. Before prisoner code is exec'ed, the forked child
(which still runs the trusted jailer code) attaches to the jailer. From that moment on, it

34 As far as we are aware, thestatsystem call has no other covert channels. The Œle size reported in the stat struct, for
example, can only be modiŒed by prisoners that have write access to a Œle. Since jailing policies are designed to avoid that
prisoners in different jails have write access to shared directories or Œles, modiŒcation of Œle size by a prisoner is not possi-
ble. The distinct problem with thest_atimeŒeld which leads to it becoming a covert channel, is that it can be modiŒed by
readingthe Œle. Different jailsdohave read access to shared directories, like /bin.
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runs in a mini jailing environment. Then, the child exec's the prisoner binary. The pris-
oner is provided with a preloaded library when it is started up. This library is invoked by
the ELF dynamic loader (ld.so) before the prisoner's code is run. This library sets up the
ShRO region, connects to the jailer using a UNIX domain socket, and contains some code
required for post-system call processing tasks as explained in Sec. 6.4.1.

Policy layer 

Jailer process

Interception 
layer 

Shared 
memory 

manager

Prisoner
process

syscalltrace event

Operating System

ShRO memory region
shared with prisoner

Fig. 24. The jailer's internal architecture. The jailer consists of an operating-system speciŒc inter-
ception layer and a portable policy layer. A portable shared memory manager module manages the
ShRO memory region(s) of the prisoner process(es) in the jail, and is used by both the policy and the
interception layer. It is used by the interception layer to write a normalised copy of the system call
arguments to, and by the policy layer to read these race condition-safe arguments from at policy
evaluation time, and to write any modiŒed arguments into if required. The interception layer drives
the jailer by handling trace events from the operating system and by calling the memory manager
and policy layer accordingly. The interception layer also takes care of resuming the prisoner's call-
ing thread after policy evaluation is done, using an OS tracing primitive.

Preloading takes place in the mini jail environment. Inthis environment, the pris-
oner is allowed to only make those system calls necessary to initialise the preload library.
The ShRO region set up is completely controlled by the jailer, which checks the correct-
ness of the system calls and arguments made during the preload phase.The mini jail
environment ensures that even if the pre-load procedure can be tampered with, no harm
can be done. At most, an agent could mess up its own state, but the jailer's enforcement
mechanisms are always in place before the prisoner's code is run.

The prisoner's own code is invoked only after after preloading and ShRO setup is
complete. Preloadtechniques can be applied to (custom) dynamic loaders other than the
ELF dynamic loader, and alternative techniques (e.g., using binary patching) are conceiv-
able for static binaries also.

The interception layer handles copying of the system call arguments to ShRO, after
which it passes control to the policy layer. The policy layer makes a decision on whether
to allow or deny the system call depending on the arguments. The policy layer also nor-
malises and expands symbolic links in Œle name arguments, such that it uses an absolute
pathname for comparison with the policy, or for applying pathname substitution when a
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CHRDIR directive is speciŒed in the policy Œle. The policy layer informs the interception
layer of any changed arguments (e.g., pointing to a new ShRO region where an expanded
Œle name is located) if applicable.

The policy layer does not have to fetch system call arguments, which is to some
extent platform speciŒc35. It receives the system call arguments in a system-independent
(normalised) format from the interception layer. The policy layer bases its decision on
the safe copy of the arguments in ShRO, as provided by the interception layer. The pol-
icy layer may replace any argument (e.g., by preŒx substitution for a virtual changeroot
environment) according to the policy. To do so, the policy layer allocates a piece of
ShRO memory, writes the substitute argument in this piece of memory, and modiŒes the
original arguments to point to the rewritten argument in ShRO memory.

The interception layer ensures that the safe, possibly rewritten, arguments are used
to execute the system call, rather than the original arguments in the prisoner's address
space. Afterthe policy layer agrees with the system call (determined by the return value
of the policy layer upcall), the interceptor allows the system call to proceed using the pos-
sibly modiŒed argument values, possibly after updating some registers in the operating
system. How these updates are made is hidden inside the interception layer, as this is
operating system speciŒc.

6.4. Implementation

The user-level jailer under Linux is implemented using the architecture outlined above.
The modiŒed strace [5] program is the basis for ourptrace-based interception layer.
Strace is an open-source program that is normally used for debugging purposes to display
the system calls that a process makes36. Strace provides code for interfacing with a num-
ber of tracing systems (such asptraceand/proc) on different platforms. This can make
porting the interception layer to other platforms simpler.

A second interception layer has been implemented for a modiŒed Linux kernel that
maintains an in-kernelaction table. An action table keeps an in-kernel cache of policy
decisions for a given jail, such that it can prevent upcalls to the jailer program for system
calls without complex arguments that the jailer has made a decision for before. The ker-
nel jailer is implemented as an extra Linux system call. This kernel jailer automatically
jails all children of a traced process. System call events are exchanged between the ker-
nel jailer and the user-level jailer program via messages over a System-V message queue.

35 Ptraceis rather inefŒcient at reading data from a prisoner, as it allows only one word to be read at a time. However,
most operating systems provide more efŒcient mechanisms (e.g., Linux has a /proc/mem device) for reading from a child
process's address space. When this is not the case, a poor-man's /proc/mem device could be implemented by mapping in
the address space of a jailed process at fork/exec time using shared memory primitives.

36 Strace may be replaced by a custom-build, small tracing layer which can be more easily scrutinised on possible secu-
rity holes than strace, which was not designed for security. Howev er, strace provides mechanisms for system call normali-
sation which are useful for prototyping.
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The kernel jailer provides a mechanism for fetching arguments (registers and de-ref-
erenced arguments such as Œle names) from a traced process's address space using a
request/reply mechanism that uses standard System-V IPCmsgsnd/msgrcvsystem calls.
Except for short arguments (where the System-V message queue is actually more expen-
sive than aptracecall), this is more efŒcient than theptracemechanism that reads one
word per system call from a traced process's address space. Similar toptrace, the kernel
jailer allows for updating system call argument registers in the Linux kernel. A new
interceptor layer for integrating the kernel jailer was written; other than that, nothing was
changed to the user-level jailing system's code. Nopolicy decisions are hardwired in the
interceptor layer: the Œrst time a prisoner makes a particular system call, the call is
always passed to the policy layer in the user-level process which makes a decision.

As the kernel does not have to implement a mechanism for securing system call
arguments, its implementation can be kept small. The main part of the in-kernel jailer
extension consists of 390 lines of code. The Linuxptracebased jailer is the focus of the
remainder of this section. Performance of the kernel jailer is assessed in Sec. 6.5.

A number of implementation issues in theptracebased interception layer need to be
resolved, which are not unique to our system. For example,ptracedoes not always guar-
antee that forked children of a prisoner are automatically traced. Linux allows setting a
•ag on the Linux variant offork, clone, which determines that a child is traced. The inter-
ception layer sets this •ag for eachclonecall by a prisoner. For other systems, a solution
described in an earlier paper[49], is used, which consists of placing a breakpoint just
after fork. This gives the jailer time to attach to the forked process using aptraceprimi-
tive, after which the jailer removes the breakpoint and the child continues execution.
Note that this is a potentially vulnerable solution, as care must be taken that no process in
the same jailer can access the part of the prisoner's address space where the breakpoint
resides (e.g., usingmmap), and remove it prematurely. This can be mediated by suspend-
ing other prisoners during execution of a fork. Fortunately, in Linux such issues are
avoided as itsclone call provides a •ag that speciŒes that children of a traced process
must also be traced.

A new ShRO region must be preloaded at the time that anexecveis done. The argu-
ments of theexecvecall are modiŒed such that the loader forces preload of the ShRO
environment. When a process creates a thread (i.e., callsclone on Linux), this thread
shares the ShRO region with all other threads of this process, so no further work is
required; this also applies tofork. The jailer makes sure that ShRO is safe in view of con-
current access by multiple prisoner threads within a single jail.

The policy layer is called by the interception layer using a very simple interface. The
policy layer provides asyscall_preand asyscall_postmethod. These methods take a
pointer to a normalisedsyscallargument buffer as an argument. This buffer is Œlled in by
the interception layer with a (normalised) copy of the arguments (i.e., the system call's
register set in Linux) of the system call.In addition, it contains the (normalised) system
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call number and the caller's process-ID and thread ID (if applicable). Based on the nor-
malised system call number, the policy layer can deduce the meaning of the arguments of
the system call. If required, the policy layer can request the interception layer to de-refer-
ence a speciŒc system call argument (e.g., a pointer to a Œle name or a network address)
from the prisoner's address space, which it does using OS-speciŒc mechanisms.If
required, checked and possibly modiŒed arguments are frozen in ShRO (Sec. 6.2.3), with
the corresponding argument register changed and updated in the kernel by the intercep-
tion layer.

Fetching arguments and freezing them in ShRO is only done when required, on
request by the policy layer, depending on the system call that was made.Whether
syscall_pre or syscall_post is called is determined by the interception layer depending on
the call that was made, in some cases depending on earlier results of calling the policy
layer. For example, thesyscall_premethod may return a code which indicates thatthe
policy layer is only interested in post-system call notiŒcation for this particular system
call for future events. Basedon the information obtained from the interception layer, the
policy layer makes a decision on whether it allows or denies the call, possibly after
rewriting the argument.

Theptrace-based interception layer maintains anaction tableinternally. The policy
layer in some cases decides that a system call is always allowed or always denied. It noti-
Œes the interception layer by returning an appropriate return value to the interception
layer. Theptracebased interception layer stores this return value in its internal action ta-
ble, such that if the same system call is made again, it is immediately allowed or denied,
depending on the policy layer's decision. If denied, the policy layer speciŒes an errno
(return value of the system call) to be reported to the prisoner. If the in-kernel tracing
mechanism supports this, it can maintain an action table in the operating system, such
that the jailer will not have to be notiŒed of all system calls. Some system calls can then
be allowed or denied instantly by the kernel, which improves efŒciency signiŒcantly, as
always decisions avoid the overhead of switching to the user-level jailer program for
these calls. For example, read or write calls are almost always safe, as they use a Œle
descriptor that was returned earlier by a successful veriŒedopenor similar system call,
e.g.,connector accept37. An in-kernel action table is maintained by our Linux in-kernel
tracer implementation.

When a system call is denied, the policy layer returns this decision and a normalised
error code(errno) to the interception layer. Ptrace, however, does not provide a straight-
forward mechanism for denying a system call [49]. Therefore, theptracebased intercep-
tion layer executes a harmlessgetpid call instead of the original call, and substitutes this
call's return value for the error code speciŒed by the policy layer before resuming the

37 There is an issue with using read or write on an UDP socket, which may have to be checked if the policy speciŒes a
limited set of peers from which datagrams may be received -- then allrecv andread calls on such a socket must be checked
by the jailer individually. Howev er, for most policies this will not apply (see Sec. 6.4.1), andread andwrite system calls
will therefore generally be allowed instantly.



Sec. 6.4 Implementation 141

invoking thread. An interception layer that uses a more sophisticated tracing system can
typically specify an error code and truly deny the call using a tracer primitive.

6.4.1. Post-system call policy evaluation

The ShRO region provides an efŒcient and simple security measure for arguments that
are speciŒed by a prisoner before making a system call. There are a few system calls for
which a potentially policy sensitive argument is only known after the system call has
been made. This applies in particular to TCPacceptcalls and UDPrecv / recvmsg /
recvfromprimitives: the peer address is only known to the kernel afteracceptor recvfrom
takes place.The problem is that the result of the call is written into the caller's address
space by the kernel, and between the time that the result (e.g.,peeraddr)is returned and
the jailer checks this, another thread of the prisoner could have modiŒed the returned
value such that it passes the jailer's policy check. Notethat the operating system has
already created the Œle descriptor as the result of executing theacceptcall. For this rea-
son, keeping the invoking thread from resuming until checking is done is not a feasible
solution, as the Œle descriptor can be easily guessed and used by another thread to send
out information even before the jailer has had a chance to check the peer's address against
its policy.

An approach Œrst introduced in the Ostia system [41] is used to handle this issue.
The Ostia approach is based on adelegation mechanism,where every sensitive call (such
as openor accept)is executed by the jailer instead of the prisoner. As the jailer is the
process that executes the system call, it can be sure that the prisoner has no possibility of
modifying the system call arguments or using the Œle descriptor before a peer's address
has been veriŒed. Mostsensitive system calls return a Œle descriptor. The jailer can pass
this Œle descriptor to the prisoner over a UNIX domain socket, after which the prisoner
can use it. The authors of the Ostia paper implemented a kernel extension (implemented
as a loadable kernel module) to handle transferring the Œle descriptors from the jailer to
the prisoner. This solution is not usable in our system, as it is at odds with our require-
ment of being able to run on unmodiŒed UNIX systems without system administrator
intervention.

In our jailer, post-system call processing is implemented using atrampolinecon-
struction: when a post-system call routine has to be invoked by the prisoner after a system
call has been made, the jailer sets the return address (program counter) of the invoking
prisoner thread to an address of a dispatcher routine in the preloaded executable library.
When the jailer allows the kernel to proceed with execution of the call, the operating sys-
tem resumes the calling thread at the modiŒed return address after executing the system
call. As a result, the dispatcher routine is run, which calls an appropriate handler routine,
e.g., to receive the Œle descriptor from the jailer, and then returns to the original prisoner's
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return address.Note that when the jailer executes the delegated call, the original call of
the prisoner must be aborted to make sure that the prisoner does not do an actual (unveri-
Œed)accept. In the ptracebased jailer, this is achieved by replacing the original system
call number for that of the harmlessgetpid system, call.

The post-syscall processing mechanism makes sure that these mechanisms are com-
pletely transparent to the prisoner. The dispatcher routine is written in assembly language
to handle certain architecture speciŒc things, such as saving / restoring registers accord-
ing to the i386 convention. Except for these 20 lines of assembly code, all the jailer code
is written in C to be portable.

The trampoline construction is only invoked for a few calls. Two calls are not secu-
rity critical, but important for consistency. The readdir andgetcwdcall's returned direc-
tory names need to be modiŒed by the jailer before return to the calling thread, such that
the returned directory names are consistent with the virtual change-root environment
applied to the prisoner. Theacceptcall is invoked in the jailer, that must check the peer's
address after the call is made. After that, the jailer passes the Œle descriptor to the pris-
oner. This is achieved by letting the preloaded dispatcher routine read the Œle descriptor
from the UNIX socket between the prisoner and the jailer. Recvmsgon an UDP socket
requires similar handling in the jailer when the policy speciŒes a limited set of peers that
may send datagrams to the prisoner. When a prisoner invokes recvmsg, the jailer Œrst
PEEKs the socket (PEEK leaves the datagram in the socket's queue so it can be read
again) to check the sender's address, and if not allowed discards the datagram by reading
it from the socket and discarding it before reading the next datagram.If a message is
found whose sender is allowed, the prisoner's thread is resumed, so it can read the data-
gram from the socket. Theprisoner is unaware of any failed connectcalls or discarded
datagrams.

Listenmust also be post-processed, such that the jailer obtains a copy of the allo-
cated Œle descriptor (via a UNIX domain socket) so that it can later do anacceptusing
this Œle descriptor. The jailer does the necessary bookkeeping in order to correctly han-
dle read andwrite (or recv andsend) calls on socket descriptors. In particular, it has to
keep track of the type of a socket, i.e., whether it is a TCP socket or an UDP socket to be
able to handle calls on these sockets correctly.

Note that the delegation approach as outlined above is only required when the policy
speciŒes that only some senders are allowed to connect or send datagrams to a prisoner.
Otherwise, a server process is allowed to accept connections from any party, and pro-
cesses that are only allowed to communicate with speciŒc parties will typically use con-
nect only and will simply not be allowed to accept. The delegation technique outlined
above imposes some extra overhead due to the system calls required for Œle descriptor
passing. It is therefore bypassed in case of a policy that does not specify conditional peer
addresses for TCPacceptor UCP recvfrom calls, or which simply refusesacceptor
recvfrom.
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6.5. Performance

This section shows performance results for both jailing systems implemented, theptrace-
based jailer and the kernel jailer. Micro-benchmarks are used to investigate and analyse
the overhead of some representative system calls, and present the performance of three
applications whose performance is dominated by system calls, so they represent a ``worse
case'' f or jailers.

All experiments are conducted on an Athlon 64 3200+ with a Linux 2.6.13.2 kernel,
compiled with our kernel jailing patches.The same benchmarks are presented when run
outside the jail, and under control of strace [5], a system call tracer that usesptrace,
modiŒed to intercept all system calls but to generate no tracing output. The latter compar-
ison exactly shows the overhead incurred by theptracemechanism, from which the time
spent in the jailer can be deduced.

The kernel jailer offers the possibility to do one important optimisation: system calls
that are always denied or always allowed and thus need no intervention from the jailer
process are handled completely in the kernel by the kernel jailing code.

6.5.1. Microbenchmarks

Table 25 presents the performance of microbenchmarks that each invoke one system call
in a tight loop. The time presented is the average time for one system call. Measurements
are presented for unjailed benchmarks, benchmarks run under the control of strace with
output disabled, and under control of our ptrace and kernel jailers.

Syscall Unjailed Ptrace Ptrace Kernel calls in
jail jail loop

geteuid 0.07 5.1 6.2 0.08 100000
stat 0.85 7.2 14.0 14.3 10000
getcwd 0.51 6.4 12.7 9.5 10000
accept 91 169 537 466 1000
connect 98 178 508 466 1000

Fig. 25. Microbenchmarks of selected system calls. Time is in µs per system call

Geteuidis a system call that takes no argument and is always allowed by the jailer.
This benchmarks shows that the impact ofptraceintervention is considerable in compari-
son to system call times; the overhead is dominated by context switching between the
benchmark process, the kernel and the jailer. This benchmark does not require argument
fetching or rewriting, or nontrivial policy logic by the jailer; accordingly, the extra time
added by the jailing part is small, 1µs. Because this system call is always allowed, the
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kernel jailer allows it without consulting the user-space policy engine. Its performance is
therefore comparable to the unjailed case.

Stat takes a relative Œle name `̀junk'' ( in the prisoner's jaildir) as an argument and
returns this Œle's status. It requires securing of the Œle name in ShRO and updating the
register for this argument in the kernel. Theuser-level jailer program keeps track of the
prisoner's current working directory, and uses this information to convert the relative
pathname to an absolute pathname.The ptrace jailer requires two ptracesystem calls to
retrieve the 5-byte Œle name from the prisoner, where the kernel jailer requires amsgsnd
and amsgrcvcall. However, the latter calls are each more expensive than aptracesystem
call. The contribution to the overhead of various parts of the jailer is analysed below.

Getcwdreturns the prisoner's current working directory. It requires a rewrite of the
returned directory name in the prisoner's address space using a post-syscall processing
routine when the prisoner runs in a change-rooted directory. In this case, only the post-
syscall routine is called, but no rewriting is necessary. The ptrace jailer requires seven
ptracesystem calls to retrieve the directory name, whereas the kernel jailer requires only
one pair of system calls. This difference makes the kernel jailer faster.

Acceptandconnectshow that these calls are relatively expensive. For these bench-
marks, a client and a server program are run on the same machine, one in a jail and one
free. Each connection setup requires process switches between benchmark processes.
Acceptis done by the jailer, and the resulting descriptor is returned to the prisoner over a
Unix domain socket.

jailer ptrace kernel

intercept bookkeeping 1.1 1.1
read syscall args 1.02 2.35
canonicalize args 0.86 0.81
check pathname 0.52 0.54
update kernel registers 0.27 0.58
microtimers, various 0.69 0.54

total jailer costs 4.46 5.93

basic tracer overhead 6.35 unknown
system call 0.85 0.85
kernel extra 2.34 unknown

total time 14.0 14.3

Fig. 26. Breakdown of the time spent by the jailer for a stat system call, in microseconds (µs, aver-
aged over 10000 runs.)

Connectalso requires freezing the argument in ShRO. Both in the ptrace and the
kernel jailer, accept causes more overhead than connect, compared to the unjailed case.
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The delegation mechanism (Sec. 6.4.1) requires the use of different threads in the jailer.
For the ptrace jailer, the difference between accept and connect is larger than with the
kernel jailer. This is attributed to a peculiarity of theptrace implementation, which
allows only the main jailer thread to make ptrace calls. In contrast, the kernel jailer
allows all threads in the jailer to make controlling jailing system calls.

Table 26 shows a breakdown of the various parts of the jailer code for astatsystem
call, measured by nanosecond timers inserted into the jailer code. As for thegetuid call,
bookkeeping in the jailer costs 1.1µs. Reading the Œle name from the prisoner address
space is implemented by reading a word at a time with theptracesystem call, and this is
the largest of the jailer costs; for the kernel jailer, an even more expensive pair of System-
V IPC msgsnd/msgrcvcalls is done. Calculation of the canonical path name and check-
ing this against the policy paths is also a noticeable contribution. Anotherptraceor ker-
nel jailer system call is involved in copying the pointer that points to the immutable copy
of the Œle name (in ShRO) into the prisoner's register set.For the ptrace jailer, the time
spent in the jailer should equal the difference between a jailed system call and an
unjailed, ptraced system call.However, 2.34µs are unexplained. This difference must be
attributed to kernel peculiarities: timers indicate that the time the kernel takes to actually
perform the system call for the prisoner, is approximately this much longer for a jailed
prisoner than for a prisoner that is controlled by strace.

6.5.2. Macrobenchmarks

Three macrobenchmarks were run to measure the overall performance of the jailing sys-
tem. These macrobenchmarks emphasise different aspects of the jailing system. All mac-
robenchmarks are non-trivial for a jailing system: they make a relatively large number of
system calls compared to the time used for doing computations, as shown by the columns
for system time and user time in Fig. 27.Many applications require (far) fewer system
calls than the benchmarks presented.

Unjailed Ptrace Ptrace jail Kernel jail
system user total total total jailer upcalls total jailer upcalls

con�gure 2.2 3.4 6.7 9.14 (36%) 14.3 (113%) 367,320 11.7 (75%) 147,947
make build 3.5 10 14.6 19.0 (30%) 27.4 (88%) 598,770 24.0 (64%) 264,815
ant build 1.2 15.5 16.7 22.4 (34%) 24.5 (47%) 669,557 18.1 (8%) 62,562

Fig. 27. Results of anstraceconŒgure script, amakebuild, and a build of a large Java source tree
usingant. Times in seconds, between brackets the percentages overhead imposed by jailing.

The Œrst macrobenchmark is to run a conŒgure shell script for the strace source code
tree. This script executes a number of programs that test availability of required
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functionality on the operating system. It presents a worst-case scenario for the jailing sys-
tem: execvecalls require preloading and setting up a new ShRO region for the new
process.

The second macrobenchmark is a build of this jailer system itself using make. To
Œnd out dependencies and compile accordingly, make and its spawned subprocesses must
open many Œles and generate many new Œles. This benchmark is dominated less by sys-
tem call time than the conŒgure script.

The third macrobenchmark is a Java build system (ant ) which compiles a large Java
source tree. The sources consist of 1005 Java source Œles of a total length of 181073 lines
(5554227 bytes), which are compiled to Java bytecode using the IBM 1.4 Java compiler
and virtual machine. Ant is a multithreaded Java program. Considerabletime is spent
both in compiling the source code and in reading and writing Œles.

What these benchmarks show is that it is possible to run nontrivial, multithreaded or
multiprocess applications within a jail with reasonable performance. The measured appli-
cations make a large number of system calls.Despite that, the overhead imposed by the
ptrace based jailer is a worst-case of 113%.The columns `̀ jailer upcalls'' in t able 27
show the number of times that the user-level jailer process is consulted for making a deci-
sion in both the ptrace and the kernel jailer. In the ptrace based jailer, the user-level jailer
process is consulted for every system call, whereas the kernel jailer consults this process
only once for many of the system calls.With conŒgure and make, the kernel jailer is
capable of deciding the system call verdict immediately from its action table, without dis-
patching to the jailer process, for about half the number of system calls made by the pris-
oner. As a result, the jailing overhead drops to 75% for make for the kernel jailer. A sig-
niŒcant part of the jailing overhead in these cases, although more so for conŒgure than
for make, is caused by the expensiveexecvecall.

The Ant Java build system (a nontrivial Java program) incurs signiŒcantly less
ptrace jailer overhead (47%). Most of the overhead in this benchmark is caused byptrace
overhead. Thisis due to the fact that the system calls made by Ant are generally less
expensive to handle than the system calls made by conŒgure and make. Whenusing the
kernel jailer, the user-level jailing program is only consulted for one tenth of all system
calls. Themajority of system calls that is immediately allowed is for manipulation of
thread signal masks, which the tested version of Java does very frequently. As most of the
jailing overhead is incurred by switching to the jailer process, the kernel jailer provides
signiŒcant performance gain compared to the ptrace jailer. In conformance with the rela-
tive time spent in user mode and system mode, the total overhead for jailing Ant is much
smaller than for the other two benchmarks, in both jailing systems.

The benchmarks shown in this chapter tested `̀ hard cases'' f or the jailer. For appli-
cations that spend much of their time in user mode, better performance is expected than
for the benchmarks presented above. Indeed, experiences with some applications (e.g.,
gzip of large Œles, results not shown, where the majority of time is spent compressing
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data in user-mode) conŒrm theŠt rivial Šassumption that jailing overhead drops to
nearly zero for both jailers when the application spends only a tiny fraction of its time in
system mode.

6.6. Relatedwork

A number of different designs exist that address system-call interception based jailing of
untrusted programs[96, 117, 49,41, 106]. A number of systems [96,41, 106, 93, 118]
depend on modiŒcations to the operating system to function. Jailing systems that require
changes to the operating system have deployment drawbacks, as few system administra-
tors are willing to modify their operating system kernel. Systrace[96] is a notable excep-
tion in that it has reached signiŒcant deployment:systraceis part of a number of open-
source BSD UNIX systems.Systracerequires manual policy generation for every pro-
gram. It is primarily aimed at generating policies forknown programs, such that these
cannot exceed their normally required permissions, for example, after an intrusion took
place. However, like most jailing systems,systracecannot deal effectively with conŒne-
ment issues due to the lack of a jailing model that deals with runtime-determined system
call arguments such as IPC tokens, as explained in Sec. 6.2.

A number of system call interception based jailing systems[8, 117, 49] run on
unmodiŒed UNIX systems using standard debugging support such asptrace or /proc.
However, these systems suffer from a number of race conditions that rendered them inse-
cure for many modern (e.g., multithreaded) applications [39]. Consh [8] provides a virtu-
alized environment for applications. In consh, an untrusted application's resources (e.g.,
Œle system) are mapped onto local or remote resources, giving the user some control over,
for example, the directories that a prisoner can be access. Consh is based on the original
Janus [117]/proc based jailer, and as such it suffers from the race conditions that made
Janus and other/proc or ptrace based jailing systems insecure. None of the above
described jailing systems provide a model that deals with conŒnement and runtime argu-
ment based policy decision issues as our system does.Liang et al. [62] describe an
approach for isolating effects (in particular, on the Œle system) of executing untrusted
programs on standard Linux; their implementation uses the stack relocation approach dis-
cussed in Sec. 6.2.

An alternative to system-call level jailing is language-based sandboxing such as pro-
vided by, for example, Java or Safe-Tcl [87]. Compared to language-based systems, sys-
tem call interception based jailing has the important advantage of being language-inde-
pendent. Also, language-based sandboxing systems are complex: getting a language's
security model right is far from easy[15, 123]. System call interception based jailing is
independent of (and can effectively safeguard the user from) vulnerabilities in, any lan-
guage's security enforcement mechanism.
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Various operating system level techniques or new operating systems have been pro-
posed to achieve better security, • exibility , or software fault isolation for different concur-
rently executing applications. Notable examples are[42, 33, 64, 31].In addition, operat-
ing system security enhancements are proposed or implemented that support enforcement
of mandatory access control policies, such as DTE [122] or Security Enhanced Linux [4].
Several of these designs could increase security or software fault isolation. Contrary to
these approaches, our jailing system supports secure conŒnement of applications on top
of existing, standard UNIX platforms.

Other current approaches for securing systems are based on operating system visual-
isation or virtual machines.For example, Solaris containers [67] are virtualized instances
of the Solaris operating system within this operating system; FreeBSD jail [53] provides
a similar, near-complete virtual instance of the FreeBSD operating system.VMware [6]
or Xen virtualization [30] can be used to run multiple operating systems concurrently on
a single machine.Vi rtual machine approaches are relatively heavy-weight as a full oper-
ating system instance runs in each virtual machine; for this reason, virtualization is not
suitable for isolating a very large number of concurrently executing programs individu-
ally. Also, it is unclear how information •ow can be controlled between different virtual
machines or operating systems.

A number of (recent) host protection systems focus on software fault isolation (SFI
[66, 121]) techniques to protect against software vulnerabilities [37,89, 90]. These
approaches use binary translation [66,121] to dynamically rewrite all potentially vulnera-
ble parts of a program that could lead to exploitation of vulnerabilities (e.g., using code
injection) such as memory writes, jumps to potentially malicious code, etc., to safe code
that runs in a protected part of the program that cannot be reached by an attacker. The
translated code securely guards all sensitive operations. A common attack scenario used
to guide SFI designs is where an initially trusted program (sometimes securely loaded,
sometimes privileged) is compromised by an external attacker; techniques exist to prevent
these types of attacks. Current SFI systems often do not come with a system call argu-
ment based jailing model or policy38. If jailing policies are used at all, these are typically
rather simple and must be conŒgured by hand [89].

Process Œrewalls [118] present an approach where certain attacks can be prevented
automatically using a ``Œrewall' ' i mplemented in the kernel, that can detect common
attack patterns such as TOCTOU race conditions on Œle names. The advantage is that
these patterns are detected system-wide, irrespective of what user or process invoked a
call: any call that may lead to a TOCTOU vulnerability in another process can be stopped
automatically. The approach requires modiŒcation of the operating system.

Similar the systems indicated above, the process Œrewall does not come with a jail-
ing model that automatically limits the scope of what prisoners are allowed to do. In a

38 Another disadvantage of using current binary translation approaches in mobile agent systems, is that these do not
readily support self-generating code, as used in for example JIT compilers [90]. This is a disadvantage when using mobile
agents, which for portability reasons are often written in Java.
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mobile agent system, safe defaults and a strong jailing model are needed to protect the
user who executes Mansion, as well as other agents, against potentially malicious agents.
The Mansion jailer comes with such a model. The jailing model works for most programs
without modiŒcation, providing safe defaults and including dynamic system call argu-
ments that are not known at policy deŒnition time. The Mansion jailer never trusts the
prisoner. It may be possible to use SFI techniques to augment the jailing approach or vice
versa; either way, the Mansion jailer provides a safe user-mode fallback that can with-
stand TOCTOU races to safely evaluate system call argument policies in all cases.

The Mansion jailer distinguishes itself from existing (jailing) systems by providing a
clear jailing model that deŒnes precisely what a jailed process can and cannot do, both
inside and outside the jail. Making a distinction between a prisoner's allowed actions
within a jail and outside, the jailer allows complex multithreaded programs, or multiple
programs that use IPC, to be executed unmodiŒed in a jail, while these programs' interac-
tions with the outside world can be tightly constrained.

6.7. Conclusion

The jailing system presented in this chapter provides a simple but effective jailing model.
Our solution is the Œrst that presents an effective and secure solution for alleviating
shared memory and Œle system race conditions, without requiring special in-kernel sup-
port for securing system call arguments. Thissolution is based on copying sensitive sys-
tem call arguments to a user-level shared memory region to which the prisoner only has
read-only access, before allowing the system call to continue. This solution is portable to
any (POSIX compliant) UNIX system, even if it has only rudimentary system call tracing
support such as provided by theptraceor /proc system call tracing interface. Themain
advantage is that the jailer allows execution of untrusted programs in a secure way with-
out any changes to the operating system, and without system administrator intervention.

The jailer adds unavoidable performance overhead to system calls that require evalu-
ation of its arguments by the user-level jailer program, and thus require a context switch
to this jailer program before the system call can proceed. By using a kernel jailer with an
in-kernel action table, upcalls to the user-level jailing program can be avoided for many
system calls (such as read and write), and measurements of the kernel jailer based imple-
mentation indeed show a signiŒcant performance improvement compared to the ptrace
based jailer for the programs that we tested. In the case of the ptrace jailer, the jailing
costs are comparable to the basic system call tracing (ptrace) overhead for the majority of
system calls, although a few system calls (such as execve and open) cause more jailing
overhead. Usingptrace, a worst-case program (conŒgure) causes 113% compared to not
jailing this program; a less system-call intensive but non-trivial Java program causes 47%
overhead.
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The jailing model provides hooks to prevent information •ow between untrusted
processes, yet allows processes within the jail to use regular IPC mechanisms and signals
in the normal way. Actions thatin•uence the outside world are guarded by a simple,
user-deŒned policy. Policy modiŒcation, in particular to adapt the policy to the local sys-
tem's directory structure, is straightforward, and generally required only once. The jailer
can impose strong conŒnement on programs to protect systems against malicious agents,
yet it allows modern programs to run in a jail directly, without any modiŒcation.

Future work on using the jailer for resource management will have to demonstrate
whether constraining system time by managing system calls is feasible in all cases, but
initial experiments show promising results (App. 3).



Chapter 7
Objects and the Mansion object server

This chapter explains the design and implementation of the Mansion object server
(MOS). The MOS is one of the most important components of the middleware. Although
invisible to agents, all objects, including the room monitor object, are run in a MOS.
Many services (such as the location service) are implemented as objects that run in a
MOS. TheMansion (object) security model includes zone-based access control policies.

The MOS is written in C/C++, and currently supports objects implemented in C++.
The MOS IDL and data representation (Sec. 5.2.3) are designed to be portable. Imple-
menting stubs for agents in different languages, such as C/C++, Java, Python, etc., is
straightforward. Thesecurity model is based on per-object ScID-based access control
lists to constrain access to Mansion objects, and general zone-based policies that restrict
access to the MOS (Sec. 8.2.10). The MOS is designed as a stand-alone component that
hosts nonreplicated objects. Possible mechanisms for object replication are described in a
future work section.

7.1. Requirements

Mansion objects are remotely invokeable objects, hosted in a stand-alone object server.
The implementation of a Mansion object is currently tied to the MOS. The requirements
of the Mansion object model and the Mansion object server are described in this section.

ƒ The object server should be simple. Complex designs lead to errors and vulnerabili-
ties. Thereis no need for an object server to be complex. All it has to do is host
objects. Currently, objects are not replicated, but there may be multiple MOSes in a
zone each hosting different objects.

151
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ƒ AMOS should be able to host many objects, as it may have to host many objects in
a zone; an object management interface should allow creation and deletion of
objects in a MOS.

ƒ A MOS should support persistent objects, i.e, objects that can survive a crash or
restart of the object server.

ƒ Like AOS, the MOS is not distributed, and it should not depend on external services.
(In principle, registering objects in a location service is the responsibility of the
client program and not of the object server, to avoid dependencies).

ƒ A MOS should use the same RPC system as other components in the middleware.
The invocation and marshalling system should be portable and usable from stubs in
different languages; the requirements are similar as outlined in chapter 5.

ƒ A MOS should use ZAC and be able to operate on top of regular TCP connections
as well as AOS; in both cases, the client process should be authenticated using the
ScID-based authentication protocol (Sec. 3.2.1).

ƒ Mansion objects should have clear ownership, and at least support simple ScID-
based access control lists (ACLs) that deŒne access on a per-method basis.

ƒ The object server should support the zone-based authentication model outlined in
Sec. 8.2.10.Within a zone, a MOS trusts the client middleware (MMW) to pass an
appropriate ScID (e.g., AgentOwnerID) to it, which is passed to the object.For
world-wide services reachable from outside the zone, a MOS authenticates the client
process and passes the client's ScID or ZoneID to the object.

ƒ A MOS should be able to jail certain objects, or certain object types (classes).This
to protect the system or the user executing a MOS against untrusted, malicious or
faulty or vulnerable object implementations.

A MOS is a simple infrastructure to instantiate and run hosted objects, and to invoke
them. Client programs create objects, and are responsible for registering the object's con-
tact address in a location service.

A MOS uses the same ZAC/RPC system as other Mansion components; the MOS
interface for creating and invoking objects, as well as the individual objects, have Man-
sion Contact Records (MCRs, Sec. 5.1.3), which can be registered in the Mansion loca-
tion service.Client programs connect to a MOS over a (zone) authenticated channel. If a
client program is identiŒed as belonging to the same zone as a MOS, it accepts that a
client middleware process (which is then trusted) passes a ScID calledAgentOwnerID
with each invocation. This ScID is passed to the object and is used by it to check its
access control list (ACL). Dependingon conŒguration, a client program outside the
MOS'es zone may be allowed to connect, for example if a MOS hosts Mansionservices.
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In this case, the connecting program is not trusted: the ScID (ZoneID) of the connecting
program passed to the object to check the ACL. Note that in both cases, the object sees a
ScID; the access control mechanism using ACLs is collapsing both types of
ScID Š whethera ScID identiŒes a zone, or an agent/userŠi n both cases, the object sees
a ScID. ACLs are deŒned per object, by the object's owner.

Fig. 28 depicts an example distribution of MOS and middleware processes on differ-
ent machines in an single zone. Services such as the object location service are not
shown. Each Mansion object server can host a number of objects.

MOS

MOS

Agent Agent Agent

MMW MMW MMW MMW

AgentAgent

Host Host Host Host

.
.

Host

.

Zone

Fig. 28. A set of MMW processes (hosting agents), and two Mansion object servers in a zone, dis-
tributed over 5 hosts.

In Fig. 28, agents are hosted on different hosts than the object servers. Two object
servers are shown, which each may contain different objectsŠR MOs of rooms in the
zone, or regular objects containing Œles such as images that agents can search.

In Mansion, contact addresses of objects are registered in the location service using
a location-independent handle (Sec. 3.3.4). The handle contains the ZoneID of the
object. With each object handle, multiple contact addresses can be registered, one for
each object instance in a different MOS. As a result, object replicas in different MOSes
can be registered under a single name.

Mansion does not provide mechanisms to replicate state or invocations automati-
cally as part of its object model.Although zones can in theory be geographically distrib-
uted widely, it is unlikely that this will occur in practice. Agents are shipped to objects
(rooms), making it possible to limit the geographical distance between (a replica of) an
object and the agents that use it. This in contrast to, for example, the Globe distributed
object system [107] where a driving use case is that clients may be located anywhere in
the world. In such cases, wide-area replication of objects can be a solution [17], for scal-
ability problems that occur in this context. Note that for objects that are often updated
(e.g., the RMO) and which serve only limited amounts of data (e.g., a few attribute sets)
to closely located clients (e.g., on a LAN), as may often be the case in Mansion, having a
single object running on a high-performance machine may be a better solution than object
replication.
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7.2. TheMansion object model

Mansion objects are remote objects, which can be invoked by client processes or by Man-
sion agents. All Mansion objects are hosted by a Mansion object server process, or by
more than one MOS if the object is replicated.

An object is a passive entity whose state may be read or manipulated using remote
method invocations. Anobject contains data (state) which can be accessed through its
interface, by agents or possibly by a middleware process, for example, in case of a mid-
dleware adding a record to an RMO when the agent enters a room. Objects cannot invoke
methods on other objects.

Mansion is object-based. Objects are passive software entities, that is, only respon-
sive to method invocations. Objectsin Mansion reside in one or more (in case of a repli-
cated object) object server processes. Mansion objects are currently implemented in C++,
but can also be implemented in other languages such as C or Java. They are called
objects because they encapsulate state behind an interface

All Mansion objects implement a set of methods deŒned using the Mansion IDL
(Sec. 7.3). All objects inherit a mandatory interface containing a set of methods that
implement basic access control related primitives; an implementation (in C++) is also
provided. This interface is termedMansionObject.Conceptually, all objects in Mansion
can be seen as inheriting theMansionObjectinterface.

The MansionObjectmethods are not directly visible or usable by agents; instead,
they are used, in collaboration with the MMW, to control access to a given object by cer-
tain agents. This is described in detail in Sec. 7.4.

Mansion provides a default MansionObjectimplementation as a C++ object, which
all Mansion object implementations can use by means of C++ object inheritance [109].
Objects are however free to replace the default MansionObjectC++ object by another
implementation Š orto not make use of object inheritance internally.

7.3. Theinterface deŒnition language

Mansion has an IDL compiler for objects, that extends and uses the RPC IDL and XDR
compiler (Sec. 5.2.3).The syntax of the IDL resembles the C/C++ programming lan-
guage, with some notable differences, in particular the use ofin/out andinout markers for
parameters, similar to the Mansion RPC system.

The IDL uses the basic data types supported by the RPC/XDR system (e.g.,int32,
char, opaque characterstringsandarraysof primitive types). Constants(const) and enu-
merations (enum) can also be deŒned. Astruct is used to construct a composite type. An
interfacecontains the interface deŒnition, which consists of a grouping of method deŒni-
tions with arguments and return value. Arguments may be primitive types, constants,
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enums, or structs. It is possible to include IDL Œles containing struct deŒnitions, con-
stants or enums in another IDL Œle.

As an example, the IDL of theMansionObjectinterface is shown in Fig. 29:

include "zac/aos/aos.x" // includes SHA1_SIZE definition
// from RPC IDL file aos.x

const MANSION_OBJECT_ROLE_SIZE 16;

struct mmw_role_t {
char[MANSION_OBJECT_ROLE_SIZE] bitmap;

}

struct mmw_scid_t {
char[SHA1_SIZE] scid;

}

struct mmw_aclent_t {
mmw_scid_t principal;
mmw_role_t role;

}

interface MansionObject {
int init(in: mmw_oh_t handle);
int reset();
int reset_acl();
int set_restartable();
int delete_me();
int acl_get_role(in: mmw_scid_t who,

out: mmw_role_t role);
int acl_set_role(in: mmw_scid_t who,

in: mmw_role_t role);
int acl_get_aclents (in: int offset,

in: int count,
out: mmw_aclent_t[count] aclents);

int delete_principal(in: mmw_scid_t who);
int ping (in: int dummy);

}

Fig. 29. TheMansionObjectinterface deŒned using the Mansion IDL

The IDL generates server-side skeleton objects in C++, as well as client-side stubs
in C and C++. In addition, the RPC/XDR compiler generates the marshalling routines
which used by the stubs and skeletons to pack and unpack arguments. Thesemantics of
theMansionObjectmethods are explained in the following section.

The IDL differs from the original SunRPC IDL, in thatin andout markers are used
in the method deŒnitions, rather than different structs forin andout parameters as is the
case for standard RPC.in parameters are sent from the client to the server; out parame-
ters are returned from server to client, andinout parameters are passed to the server with
the return value placed at or copied to the same location, similar as explained in Sec.
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5.2.3. Inthe generated C/C++ stubs,out andinout parameters are passed by reference at
the client side. The return value of normal method invocations is a positive value or 0;
negative values indicate an error, with speciŒc error codes deŒned mansion-wide for con-
nection errors or RPC, MOS (invocation), or other speciŒc errors, including authorisation
failure.

The methodacl_get_aclentshas an in parametercountthat is used as part of a sub-
sequent argument deŒnition in the same method. This is a novelty compared to SunRPC,
allowing the invoking program to deŒne the size of a variable-sized array at invocation
time. Arraysize arguments are parsed by the IDL compiler and can be either constants,
or arguments of the same method, as shown in Fig. 29.Note that this extension mandates
that the object that implements the method deŒnes the semantics of its arguments clearly:
for example, if a client program speciŒes an overly-large countor if insufŒcientaclents
(ACL entries) are available, the number of available ACL entries up to an object-deŒned
maximum can be returned. Theint return value of a method is typically used to indicate
the number of returned data, aclents here, to the caller, or a neg ative error code.

The IDL compiler makes use of the XDR compiler to generate marshalling routines.
When applicable, the generated code allocates sufŒcient memory for marshalling/unmar-
shalling data to or from XDR, if applicable using an argument's runtime value. Internally,
there is always a predeŒned maximum of allocateable data, and memory allocation (e.g.,
usingmalloc) may also fail; in that case, the method invocation returns an error.

7.4. MansionObjectfunctionality and access control model

Access to Mansion objects is governed by a straightforward access control mechanism.
Every object has anaccess control list (ACL) . An ACL allows an object's owner to
deŒne which methods may be invoked by what principal. A principal is an entity that
invokes a method (e.g., an agent), or the person behind that entity. For example, an agent
owner. A principal may also be a zone or the zone owner. All principals are identiŒed
using a ScID. Unless speciŒed otherwise, principals in Mansion are agent owners,
object/room owners, or zones or zone owners39. Initially, an ACL is created with only an
entry for the object's owner. An object's owner (the principal who created the object)
may invoke all methods of the object. Initially, only an object's owner may invoke meth-
ods on an object.

An ACL is based on self-certifying identiŒers. It contains a ScID for each principal
who is allowed to invoke methods on the object.Associated with each ScID is a set of
bits, called therole bitmap, that deŒnes what object methods may be invoked by the cor-
responding principal (ScID). The role bitmap takes the order of the methods in theIDL,

39 An agent acts on behalf of its owner; normally, the agent owner's ScID is encoded in the agent's AC at world entrance
time. This AgentOwnerID is passed to the object by the agent's MMW, which Œnds it in the agent's AC. Thisis described
in Sec. 8.2.10 and is described in more detail later in this chapter. ZoneIDs usually do not map directly to their owner but
instead are bound to an owner or the organisation that manages them via the zone list in the basement.
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including theMansionObjectmethods:MansionObject::init is bit 0 in the bitmap.A
defaultACL entry (a zeroed ScID) can be created that speciŒes the allowed methods (if
any) for principals who do not have an explicit entry in the ACL. In most cases, it will be
straightforward to deŒne a default ACL, which can be set every time an object is
created40. For example, the default role bitmap for aMultiFileContainer object will
allow read methods to everyone, but disallow methods that write state into the object.

MansionObjectimplements the above access control mechanism. TheMansionOb-
ject methods mostly deal with the access control list.Every Mansion object must imple-
ment theMansionObjectinterface; this is needed because ACL methods (i.e., for obtain-
ing a principal's or the default role) are called for every invocation. Apartfor the object
implementing access control, theMansionObjectinterface is used by the MOS to check
the status or implement management tasks, such as registering the object as a persistent
object, or deleting it.

The ACL related methods onMansionObjectare used to deŒne coarse-grained, per
method access control. By default, an object checks the ACL for every method invoca-
tion, and returns anaccess deniederror if the method invocation is not allowed for the
invoking principal (ScID). If required, objects can implement additional, more Œne-
grained authorisation based on ScIDs internally, based on the ScID (of the caller) which
is passed withevery method: the object skeleton generated from the IDL contains a ScID
as the Œrst argument of every method. This ScID is Œlled in by the MOS before invoking
the method, using the convention described in Sec. 8.2.10 and 7.1.

Fig. 30 shows some important methods of theMansionObjectinterface, equivalent
to the IDL deŒnition shown in Fig. 29.A notable difference between the IDL and Fig. 30
is that in the IDL deŒnition, the Œrst argument scid is omitted. This is done for
brevity Š the IDL deŒnition shows the interface from the client's side. Fig. 30 shows the
same interface from the server side. At the server side, an argumentscid_t scidis auto-
matically added as the Œrst argument ofevery method, to contain the ScID of the invok-
ing principal, as outlined above. Internally, the ScID argument is always there: the IDL
compiler generates the ScID Œeld for all internal XDR messages. In some cases, the ScID
Œeld is hidden at the interface level. For example, the Œrst argument ScID is suppressed in
an agent's stub, because the agent itself cannot modify the ScID argument. Butit is
present since it is Œlled in (overwritten) by the MMW process when the XDR message
passes through the MMW as a result of invoking a method (Sec. 7.4.1). The ScID Œeld is
necessary in the wire representation so that a MMW process can Œll in the Agen-
tOwnerID of the invoking agent in the message which is passed to the MOS.The object
uses this ScID for access control.

40 The utility program for creating objects provided by Mansion does this forRMO, FileContainer,andMFC (MultiFile-
Container)objects.
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Method Ar guments

int init in: scid_t scid, in: oh_t object_handle

int reset in: scid_t scid

int reset_acl in: scid_t scid

int set_restartable in: scid_t scid

int delete_me in: scid_t scid

int acl_set_role in: scid_t scid, in: scid_t who, in: role_t role

int acl_get_role in: scid_t scid, in: scid_t who, out: role_t role

int get_aclents in: scid_t scid, in: int offset, in: n, out: aclent_t[n] aclents

int delete_principal in: scid_t scid, in: scid_t who

int ping in: scid_t scid

Fig. 30. SelectedMansionObjectcalls

Before explaining the methods shown in Fig. 30 in detail, this section describes how
access control lists (ACLs) are constructed and checked at invocation time.

7.4.1. ACL implementation

An ACL consists of a list of entries with the following format:

<ScID> <Role bitmap>

ScIDis the self-certifying identiŒer of a principal, for example, an agent owner, or a
ZoneID depending on the party which makes the call. An ACL entry with a zeroed ScID
is thedefaultACL entry. The default role speciŒes the methods that unknown principals
may invoke.

Role bitmapis a bitmap with a bit per method of this object, corresponding to the
methods in the object's IDL deŒnition. If a bit is set to 1, the principal named byScID
may invoke the method. If the bit is set to 0, the principal is not allowed to invoke the
method. Bits have the same order as the order in which methods are deŒned in the
object's IDL deŒnition (see Sec. 7.3), starting with 10 bits for theMansionObjectmeth-
ods.

MansionObjectmethods are included in the object's role bitmap. An administrative
program is provided by Mansion for setting role bitmaps for principals in objects, includ-
ing the default role, which uses theacl_set_rolecall. By default, the administrative pro-
gram does not enable theMansionObjectmethods in the role bitmap when creating new
roles. An object's owner can enable these methods if he/she creates an administrative
role.
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Initially, when an object is created, only the object's owner (creator) may invoke
methods on the object. The object owner's ScID is passed to an object when it is created;
at this time, the object's init method is called by the object server: the object instantiates
the object and passes the invoker's ScID and the object handle to it by calling theinit
method. Theinit method initialisesMansionObject's internal ACL data structures. The
Œrst-created owner role bitmap has all bits set to 1. This allows the object's owner to
invoke all methods. No other ACL entries exist: if another principal needs access, the
object's owner needs to create a new (default) ACL entry using aMansionObjectmethod.

The Œrst argument of each Mansion object method is a ScID. This argument is
passed to the object by the object server, and contains the ScID of the invoking principal.
This principal may be an agent (owner) or a middleware process (a zone member), as
explained above. Using this ScID, the object looks up the corresponding ACL entry to
Œnd out if the principal has permission to invoke a giv en method. Ifthe invoking princi-
pal is not known to the object, the bitmap of the ``default'' A CL entry is used to check
permissions. If no matching (default) ACL entry is deŒned in the object, access is denied.

In the current implementation, checking the ACL using theMansionObjectinterface
is done by the generated skeleton code before invoking the method on the actual object.
Therefore, the object need not use the ScID argument or check the ACL itself41.

Below, an example role bitmap-based ACL for a 5-method object is shown. Besides
its own methods, every object inherits the 10 standard methods of theMansionObject
interface; these are the Œrst 10 bits of the role bitmap, giving a total of 15 bits.

4sv5wd4hz0ksjv5wd4n1344sv5wd4hdf:111111111111111 // owner do all
jn1344sv5wd4hz0i0lksjdkljfh742hy:000000010010100
4dw4hzksjdkz0lksjdk5wd4hv54n1dwp:000000010010110
0: 000000010010000 // default

Shown are an administrative role bitmap (all 1's), a default bitmap (some methods
allowed), and two speciŒc ScIDs which are allowed to invoke additional methods com-
pared to the default role. Note that except for the administrative role of the object's
owner, no principal is allowed to invoke MansionObjectmethods, except for the
get_aclentscall.

The current MOS provides a standard implementation of theMansionObjectin C++.
This implementation is linked with and used by the generated skeleton object, that con-
sists of generated C++ code. The skeleton currently contains unmarshalling code, ACL
checking code, the code needed to invoke the method of the object, and code for mar-
shalling the out arguments and return value. Usingthe IDL deŒnition, the IDL compiler
generates a C++ object which contains (initially empty) object code, which should be

41 If required or useful, the object may do further permission checks (e.g., based on past behaviour, or based on the
value of additional arguments) to determine whether permission should be granted.Per-method access control logic can be
implemented inside the object, based on the ScID argument passed to each method. This way, an object may implement
more Œne-grained access control by keeping state per invoking principal.
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Œlled in by the object implementer. After compilation and linking, the object is ready to
use.

Concretely: the generated skeleton code receives a marshalled invocation from the
MOS, and calls the relevant XDR functions to unmarshall the call. Then, the skeleton
invokes a library function generated by the skeleton compiler, called allowed. Allowed
checks if the caller may make the call by obtaining and checking the principal's role bit-
map (or, if applicable the default role bitmap). If allowed, the skeleton invokes the
method. This means that an object which uses the standardMansionObjectaccess control
mechanism need not concern itself with access control, as the skeleton checks the ACL
before invoking an object's method.

When forwarding a method invocation by an agent to the MOS, the MMW can Œll in
the invoking agent's AgentOwnerID in the Œrst (ScID) Œeld of the marshalled XDR mes-
sage. Internally, this is done by modifying the Œrst (ScID) argument of the marshalled
invocation that is passed to the MMW when an agent invokes the object's client stub. This
works because, by design, the Œrst ScID argument is always there42, and because it is a
Œxed-size uninterpreted byte string (20 bytes). The marshalled invocation with the modi-
Œed ScID is forwarded to the MOS and onward to the skeleton, which uses it for access
control before invoking the object's method. Notethat if the object server runs in service
mode (see above and Sec. 8.2.10), the MOS does not trust the information in the ScID
Œeld, and modiŒes it to contain the ZoneID of the invoking process before passing the
marshalled invocation to the skeleton.

Note that there are alternative uses for the ScID argument besides simple method-
based access control.For example, a variant of theMultiFileContainer object called
OwnedMFChas been implemented, in which an agent can view and store data in a pri-
vate directory. Agents can only see or modify Œles in a directory that corresponds to their
AgentOwnerID. The implementation makes use of the ScID by interpreting all requests
relative to this ScID, which internally maps on the name of a directory. If no directory
for the ScID exists, an error is returned. This variant of the MFC is currently used to
implement the Morgue in which returned agents of different agent owners are stored.

7.4.2. TheMansionObject interface

This section describes theMansionObjectmethods shown in Fig. 30.
Init is automatically called by the MOS after instantiating the object.It is used to

instantiate the internal data structures ofMansionObject.It takes the caller's ScID, and
sets the role bitmap of this ScID to all 1's, to indicate that the creating principal is the
owner of the object. Typically, objects are created by a zone administrator, whom sets the
invoker ScID to ZoneID so that thezone owns all objects in a zone.Normally,

42 The RPC forwarding service (Sec. 8.2.11) checks that an incoming method invocation has sufŒcient size.
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(depending on a MOS startup •ag) a zone member program manages (create or delete, or
deŒne ACL's) objects.

An object handle is also passed to theinit method. Anobject is typically given a
dedicated directory by the MOS but, depending on MOS conŒguration, objects may also
share a directory structure. The object handle argument allows MansionObjectto create a
directory to store the object's state in. As object handles are unique (only one object with
a giv en handle may run in a MOS), each object has its own directory. This directory can
be used by the object implementer to store persistent object data. MOS directories remain
on disk, so an object's persistent state can be recovered after a MOS crash or restart.
MansionObjectalso creates a separate directory containing the object handle, in which it
stores the object's ACL state so that this state can also be recovered after a restart.

Related toinit is theset_restartablemethod; this method can be used to trigger an
object to call back on the MOS using a run-time interface (see Sec. 7.5), to indicate to the
MOS knows that it is restartable.It also results in a bit set in the MOS. If the restartable
bit is not set for a given object, any left-over state of the object (typically, a private per-
object directory) are removed at startup time. The call on the runtime interface ensures
that the object's data (which is stored in a per-object directory structure) is retained when
the MOS is shut down or restarted.Theset_restartablemethod is normally called by the
object's owner at object creation time, but the object's implementation may also itself
indicate that it is restartable by calling the runtime interface. Theway an object serialises
its state to disk (e.g., using an object-speciŒc directory structure) and recovers it after a
restart, is up to the object implementer.

Restarting objects is not done automatically by the MOS; this should be done
explicitly by the object owner. The client program used to create objects outputs the
names (object handles) after creation, which can be stored on disk. These can be used to
invoke arestart_objectmethod on the MOS for all objects. This returns a contact record
for the object, which should next be registered in the location service; the contact record
may differ from one created before for a given object. Mansion comes with a ``restart-
all' ' script that allows a zone owner to recreate all of a zone's rooms and objectsŠw hich
are kept track of when being createdŠa utomatically if needed.

The acl_set_roleand acl_get_roleare important methods for ACL management.
acl_set_roleallows the object's owner to associate a role bitmap for a speciŒc ScID.
Object administrators can deŒne new ACL entries using theacl_set_rolemethod. The
implementation checks the current ACL to avoid double entries for a given ScID.
acl_get_rolereturns a speciŒc role bitmap for a given ScID. This call is used by the
allowed call of the skeleton which checks the ACL before invoking a method.The
MMW may also invoke acl_get_roleto check whether a given agent is allowed to invoke
methods on the room monitor object at all, before accepting it.

Get_aclentsallows an authorised principal to obtain all ACL entries (a list of
ScID Š role bitmap combinations) from the object.Delete_principaland reset_aclare
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used to delete a speciŒc ACL entry by specifying it's ScID; reset_aclremoves all ACL
entries (except for the object owner's entry).

Delete_mecan be used to let the object self-destruct. This is the only way to delete
an object. Having thedelete_mecall be part ofMansionObjectinstead of implementing a
delete_objectcall directly as part of the MOS's object management interface (Sec. 7.5),
has the advantage that the object's ACL can be used to determine whether a principal is
allowed to delete the object. Typically only the object's owner (its creator) may delete an
object, but it is conceivable that an object owner creates an ACL for another principal in
an administrative role. This can be achieved if the role bitmap has the administrative
MansionObject delete_memethod enabled. An object can, technically, not self-destruct.
To delete itself (as the result ofdelete_mebeing called by its owner), an object has to
invoke acall on a runtime interface that the MOS provides, so that the MOS can Œrst
clean up any (persistent) state of the object; next, the MOS invokes a mechanism to delete
the object (Sec. 7.5).

Finally, the ping method simply returns 0 as fast as possible.Ping can be used to
measure round-trip times to the object. It can also be used to verify that a given is still
alive. If required, access toping directly by agents can be denied by setting its bit in the
role bitmap to 0. It is useful to allow zone member (MMW) processes to invoke ping, so
they check availability of the object (or a given replica of an object) as part of binding
(Sec. 2.3.10).

7.5. MOSlayering

The Mansion Object Server internally consists of two layers. One layer, called theObject
Management (OM) layer, provides an RPC service for managing and invoking objects
which is accessible from the outside world. The second layer is internal to the MOS, and
takes care of the actual instantiation of objects (currently, C++ objects) and of invocation
of their methods. This layer is called theObject Instantiation and Invocation (OII)
layer (pronounced as̀`O2'' ). The OII layer can (dynamically) link in precompiled
libraries that contain object implementations (including generated skeletons). TheOII is
started by the OM layer as a program every time a new object, or an object of a new type,
is created. (Various ways in which the OII can be started, are described in Sec. 7.5.3).
The OII program provides an RPC interface to the OM using which objects can be instan-
tiated and invoked. TheOII also provides objects it hosts with a runtime interface. This
runtime interface currently contains adelete_mecall, which causes deletion of the object
and all its state, and arestartablecall that sets the restartable bit in the OM layer as
explained in the previous section. The OM and OII layers are explained below.
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7.5.1. TheObject Management (OM) layer

The main MOS process implements the layer that takes care of object management, that
is, it provides an RPC interface using which client processes can create or delete objects.
The object management (OM) interface is the main entry point of the MOS, and it con-
tains three methods,create_obj, restart_obj, and invoke. The signatures ofcreate_objand
restart_objare identical; onlycreate_objis discussed here. The invoke method allows a
client to ship marshalled invocations to the MOS to invoke a method on an object.

The method for creating objects iscreate_obj(object_handle, *mcr). Each object is
identiŒed by its object handle. This handle must be constructed before creating the object
(or the object replica) in the MOS. A handle is constructed using the MOS'es ZoneID,
the object's type identiŒer, and the room number and the number of the object in the
room (Sec. 3.3.4).For a service, a handle can be constructed in a similar way. At object
creation time, the program which creates the object passes the object's handle to thecre-
ate_objcall.

The object handle is used by the OM to determine thetypeof the object at creation
time; this is done using the type identiŒer which is part of the object handle.The OM
layer knows what object type (orclass, in C++ terms) to instantiate; it can instantiate the
appropriate OII.A l ibrary is present for every object type, in a local repository of the
MOS. This library contains the generated skeleton code for the object and the object
code in compiled form, currently statically linked to an OII (Sec. 7.5.3).

The call-by-reference argument*mcr returns the MCR of the object created to the
caller; this MCR can be stored in a location service.To delete an object, it sufŒces to
invoke the object's delete_mecall. Beforedeletion takes place, the object Œrst checks the
ACL to see whether the invoking principal is allowed to invoke the delete_mecall.
Objects may also do an internal check on whether the invoking principal's ScID is the
same as the ScID which created the object (the ScID of the creating principal is stored in
a Œeld inMansionObject,together with the object handle, byinit), before deleting itself.

Besides the management interface, the MOS also provides aninvoke method for
invoking objects; currently, this method is provided by a dedicated RPC service. For
ev ery created object, the MOS provides an invocation forwarding service, which listens at
the communication endpoint returned by thecreate_objcall. Thiscommunication end-
point may be created over AOS (if the MOS uses AOS), or as a TCP endpoint; typically, a
single TCP endpoint is used for the invocation forwarding service, where theindexŒeld
in the MCR is used to indicate the object to which the invocation should be routed. Inter-
nally, the invocation is routed to the OII in which the object resides (see Sec. 7.5.2).

The invocation endpoint of an object is indicated by the MCR returned by thecre-
ate_objcall. This MCR indicates the invocation forwarding service.The object's MCR is
used by the MMW to bind to the objectŠw hich is effectively a binding to the invocation
forwarding service. The invocation forwarding service will route incoming marshalled
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requests to the appropriate object's OII using the index Œeld from the MCR, where the
invocation is passed to the object's skeleton. The skeleton unmarshalls the invocation,
invokes the object, and marshalls and returns the result.

7.5.2. TheObject Instantiation and Invocation (OII) layer

The OII takes care of managing and instantiating objects, and contains the object
type's(linked in) skeleton/object code. The OII provides an RPC interface to the OM
layer with which it allows the OM to instantiate or delete objects.

Multiple objects (of a given type) may be instantiated in the OII's address space.
The OII create_objectcall takes a class identiŒer as an argument, which corresponds to
the object's type. Eachinstantiated object has an identiŒer (anint) which is returned to
the OM by the OII's create_objectcall. This integer is passed with every operation to
indicate which object an invocation is intended for.

The OII is responsible for passing marshalled invocations to the appropriate skeleton
routine at invocation time, which which unmarshalls the request and invokes the method
on the instantiated object. After return of the method, the skeleton marshalls the return
value andout arguments and sends the result back to the OM layer, which ships it back to
the caller.

7.5.3. OII management

The OII is a program, started up by the OM. This way, • exibility is provided to the
object server on how it manages and runs objects. Depending how objects (OII's) are
started, objects can be completely isolated from each other (a single object per OII), or
isolated per type (all objects of a given class are run in one OII), or not isolated at all
(every object runs in the same OII; here, the system can be optimised by linking the OM
and OII layers in a single address space).Running objects as separate processes provides
memory isolation and protection against bugs, however, this does not protect persistent
state on disk from being tampered with. By jailing OII's, further protection can be pro-
vided, as jailing can guard access to (per-object) directories and communication end-
points. Seeexamples below.

Some options for the MOS to run objects are shown in Fig. 31. These options are
governed by MOS startup •ags. As shown in Fig. 31, a MOS can be instructed to jail or
group objects in different ways. TheMOS can run OIIs, with or without jailing; it can
jail individual objects (OIIs running only one object instance).
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Fig. 31. Example conŒgurations of a MOS running OII programs and objects

Conceivably, the MOS can be provided with a repository of ``trusted'' object types
(e.g., the standard RMO implementation provided with Mansion), and that new object
types care placed in an ``untrusted'' r epository (e.g., world-speciŒc object types, or possi-
bly in the future objects provided by agents). A similar approach is taken in Java's sand-
boxing system. In the current implementation course-grained MOS startup •ags govern
aspects such as whether jailing is used for all OII's in the MOS at once.

The tradeoff to decide between above-mentioned options is typically whether or not
the added security of jailing an object is worth the overhead (both in terms of increased
latency for IPC and in terms of the extra jailer and OII processes needed).

Another scenario is where all objects are instantiated in the same OII process. If the
implementation of these objects is trusted, the OII does not need to be jailed. In this case,
the MOS can be optimised by including the OII layer directly in the OM layer, avoiding
the overhead of IPC (and related memcopy operations) for shipping data across protec-
tion domains. Note that such optimisation has not yet been implemented; currently, the
OII always runs as a stand-alone program in a separate address space in one of the ways
indicated in Fig. 31, by default with one object per OII, unjailed. Note that if an OII runs
in a jail, the jail must be conŒgured so that the OII process can connect to the OM layer
after startup. This connection is used to ship RPC requests over, in both directions (i.e.,
object invocations and replies, and runtime system calls from OII to OM).

7.5.4. Puttingthings together

Fig. 32 gives a schematic overview of how a binding to an object in a MOS is established.
This schematics reiterates some of the points made so far. Shown are an object server
(right) with three objects, each in an OII.To the left, a MMW process is shown that hosts
an agent.The agent has a runtime system in its address space (the Mansion API), which
contains abind call. Binding is used to connect a stub (shown) to an object in the agent's
room. As part of binding, the MMW creates an RPC connection to the appropriate object
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server (found by resolving the object handle in the location service), and it creates its own
invocation forwarding endpoint to which the object stub can be connected.Shown is the
situation where an object binding is established to Object 1 in the object server. The bind-
ing forwards incoming invocations to the appropriate invocation service of the MOS
(right) in which the object server resides.

RPC connection
to invocation forwar-
ding service of MMW
(created by bind call) OII

. .

OII OII

(jailed) agent with object stub

Obj
 1

Obj
 2

Obj
 3
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Network
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MMW process
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Fig. 32. Schematic of how an agent binding to an object is established. (A) and (B) indicate places
where the marshalled ScID argument may be overwritten.

An invocation in Mansion takes the following route. The agent invokes a method on
its object stub. This stub marshalls the invocation, and ships it to the invocation forward-
ing service of its MMW to which it was connected as part of binding. The MMW knows
the AgentOwnerID of the agent, having looked it up in its internal agent table (chapter 9).

When an invocation from the agent is received, the MMW process replaces the Œrst
ScID Œeld of the marshalled invocation by the agent's AgentOwnerID(A) (leaving the
rest of the marshalled invocation unmodiŒed), and then forwards the marshalled invoca-
tion to the MOS. The MOS receives the invocation and checks from where the invoca-
tion came. If the invocation came from a process within the zone, it simply forwards the
invocation as-is to the OII in which the object resides. If the invocation came from a
process outside the zone, then depending on conŒguration it either rejects the invocation,
or it replaces the scid Œeld of the marshalled request by the invoking process' ZoneID(B)
(Sec. 8.2.10).Next, it forwards the marshalled request using an internal forwarding table
to the OII in which the object resides, where the request is passed to the appropriate
skeleton code for unmarshalling and invocation of the object. The skeleton code will
check the object's ACL before invoking the method, and returns an error if not allowed.
Otherwise, it invokes appropriate object instance's method, and marshall the return value
andoutarguments. Returnof the call takes the opposite route.

As a practical consideration, in many worlds, objects may have default entries to
specify the permissions of arbitrary (not earlier known) agents or principals.Many
rooms and objects in Mansion may contain public information.In such cases, an object's
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ACL is used to distinguish administrators from regular users, or to allow for creating
exceptions for agents that can do more than others, or lessŠt hat is, to deŒne more spe-
ciŒc access control rules for speciŒc agents (agent owners) in a world43. In other worlds,
as indicated in Sec. 3.10, AgentOwnerIDs can correspond to arole or an identiŒer for a
(world-wide) payment scheme, instead of an identity. This makes using ACLs more scal-
able. If useful, both approaches can be mixed; objects see just ScIDs for access control,
irrespective of their semantics. This makes usage of the mechanism •exible.

The basic Mansion access control model is simple.ACLs are not a very scalable
solution, but often effective, and if required world designers and object implementers can
implement extensions to the model such as mapping ScIDs on roles, as sketched above.

7.6. Conclusion

This chapter describes the design and implementation of the Mansion Object Server
(MOS) and theMansionObjectaccess control scheme.The MOS is simple by design and
secure. Objectscan run alone or grouped per type in a separate process, possibly jailed to
protect the system against potentially buggy or even malicious object implementations.

The Mansion zone model provides the basis for authenticating clients. If a client
process runs in the same zone as the MOS, it is trusted. A MMW process can pass the
AgentOwnerID of an agent it hosts to the MOS, which passes it to the object for access
control. The standardMansionObjectaccess control model is simple and straightforward
and uses an ACL with a role bitmap per principal (with possibly a default role) for each
object. If required, more sophisticated access control mechanisms can be implemented by
objects internally using theScIDargument that is passed with every method invocation.

The MOS is a stand-alone program which is not dependent on other services, such
as a location service. The client programwhich creates an object has to register the MCR
of the object in the location service. A simple mechanism for active replication of objects
is conceivable. (Notethat in the case of replication, the MOS or a speciŒc object in the
MOS maydepend on another service, such as a sequencerŠs ee App. 4).

The MOS uses Mansion RPC based on authenticated, ordered connections provided
by the zone authenticated communication (ZAC) layer. The object IDL extends the Man-
sion RPC IDL, and allows for straightforward speciŒcation of object types and automatic
generation of stubs and skeletons. Stubscan be generated for C and C++, but other lan-
guages are possible.Objects are currently implemented in C++. The Mansion RPC sys-
tem internally uses a simple XDR-based marshalling format for portability.

43 In addition to using the standard ACLs provided byMansionObject,which function on a per-method basis, objects
can also implement additional access control policies that are based directly on the ScID that is passed passed with each
method information. If the ScID is a real agent owner ID or a pseudonym, the object can maintain (persistent) state with the
invoking principal that can be recovered when the same agent(owner) invokes the object a subsequent time.Such
approaches Š andtheir side-effects, for example, privacy issues similar to those that occur when using cookies in the
WebŠa re outside the scope of this dissertation.
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Chapter 8
The Mansion middleware

Mansion is supported by a middleware system that hides operating system details from
agents and presents an interface to it. The Mansion middleware (MMW) drives Mansion:
it starts, manages and migrates agents, resolves location independent identiŒers and cre-
ates bindings to distributed services and objects, establishes and manages interagent con-
nections, and interacts with the RMO for local (room-internal) operations.

The interface provided to agents, the Mansion API, implements the logical model of
Mansion. It mediates access of agents to objects and other agents according to the logical
constraints imposed by Mansion.

A Mansion world is a distributed system consisting of multiple components on dif-
ferent machines in different zones. The MMW is the glue between these components. Its
function, design and implementation is described in this chapter.

8.1. Introduction

Agents are provided with a runtime system that provides the Mansion Application Pro-
gramming Interface, theMansion API. The functionality of the Mansion API is imple-
mented inside the Mansion middleware (MMW) process. The MMW's main task is to
host and manage the life cycle of mobile agents, that is, starting, suspending, migrating,
and stopping them, and implementing the calls provided by the Mansion API.The
MMW, in turn, depends on a number of (distributed) services that are needed to make a
world work. Examplesare object servers, the location service and the basement.

The Mansion API is needed for agents to interact with Mansion entities in a con-
trolled way. The MMW ensures that appropriate protection mechanisms are in place so
that agents cannot escape the logical (security) constraints imposed by Mansion.As

169
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such, the MMW acts as areference monitorfor agents. A reference monitor checks
whether invocations made adhere to the system's (security) policy, and denies operations
which do not correspond to this policy [11]. Besideschecking security aspects (e.g.,
resource limits), the primary function of the MMW is to ensure that invocations adhere to
the Mansion conceptual model, for example, that an agent may not bind to an object in
another room.

The MMW has a modular structure.It has distinct components that deal with spe-
ciŒc aspects of the system, such as mobility and communication. The main components
and (protection) mechanisms of the middleware are described in this chapter. It also
describes relevant aspects such as agent migration and the implementation of the resolver
for accessing the location service.

8.2. TheMansion middleware: functional view and security

The main Mansion middleware (MMW) process manages agents, and mediates access of
agents to a system and to the resources required to get work done: access rooms and the
objects therein, and migrate. Sometimes they need to communicate with other agents to
get their work done.

Agents require local resources, such as CPU time, memory and disk space(most
programs write temporary Œles, for example). They need to access Œles such as libraries
shipped along with the agent or libraries or programs provided by the local operating sys-
tem44. Agents should not be able to use more resources than granted. The jailer is used
for this; it has been designed to protect system resources against (potentially malicious)
agents. Besideslocal resources, the system as a whole also needs protection against
rogue agents; using suitable parameters checked and enforced by the MMW, global
resource management protection can be achieved.

This section describes how the MMW implements global and local agent life cycle
management, agent shipment, binding to objects and interagent communication.

8.2.1. Agentlife cycle and resource management

An important function of the MMW is to manage each agent's life cycle. Inprinciple this
amounts to receiving, starting, stopping and migrating an agent.However, resource usage
must also be accounted and acted upon; for example, an agent that exceeds a limit of

44 If agents in a world have common requirements, for example on availability of basic programs such as a perl inter-
preter, the world administrator can request all zones to install such programs when adding zone members to the world; sim-
ilarly, a world designer may require availability of at least one machine with a standard operating system such as Linux per
zone, to allow execution of binary agents. A negotiation protocol may be required for the MMW to negotiate transfer to
such a host at zone entrance time (future work, see also [72]). This may require azone information systemand azone
entrance daemonper zone to replace the current round-robin load balancing scheme. These are not currently implemented.
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CPU-time for a period of time should be suspended or maybe even killed. Similarly, an
agent that has exceeded a globaltime to livehas to be killed and shipped to the morgue.
Agent life cycle management entails two things:

1. Global(possibly continuous) management of global life cycle aspects of an agent,
such as an agent's total lifetime in a world; global limits can be deŒned in the world
design document or, at world entrance time, by the world entrance daemon.

2. Local life cycle management of each agent's process on the current machine. This
involves controlling aspects such as starting, suspending, resuming, and killing the
agent, for example if some local or global resource usage limit is exceeded.

Sometimes, global life cycle related aspects are translated to local resource limits, such as
a maximum AC size or a time to live. Mechanisms also need be in place to protect global
resources in view of sloppy or malicious (non-)enforcement by MMW systems; these are
described below.

8.2.2. Globallife cycle management

Global life cycle management consists of enforcing global constraints on an agent's
resource usage during its lifetime in a world. Examplesare the cumulative time that an
agent and its children are in a world, which relates to the amount of CPU time used by an
agent and its children, or the amount of network bandwidth and storage that a given agent
uses. The latter is related to the (cumulative) maximum amount of data that is stored in
the AC of a giv en agent and perhaps a maximum (#bytes) on interagent communication.

Controlling agent resource usage may imply deŒning and checking parameters such
as the maximum total amount of data an that agent is allowed to store in its AC, and tak-
ing action when this limit is exceeded (possibly, returning an error to the agent when it
tries to follow a hyperlink, or killing it and sending it to the morgue).

The world entrance zone is responsible for deŒning world limits at agent injection
time; these are parameters used by the world entrance daemon and hardwired into the
agent's AC (the initial AC is signed by the world entrance daemon). There may exist
default limits or global maxima deŒned by the world owner, as well as possible ways to
extend limitsŠf or example, by payment.

Examples of global parameters that can be set at world entrance are:

ƒ The number ofhops(machines) that an agent is allowed to visit

ƒ Alimit on the number of child agents of an agent, and their hopcount limit

ƒ Aglobal time to live (cumulative or as an expiration time) for agent and children.
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The above parameters help protect the system as a whole against rogue agents that
use too many resources, erroneously or as the result of an attack. Some parameters may
be translated to locally enforceable resource parameters per agent such as:

ƒ The maximum AC size for an agent

ƒ Amaximum runtime per machine

In addition to per-agent limits, there may also be per-agent owner limits. An example is
the total number of agents that may be created by an owner, the number of agents that
may run at a single time, or the cumulative AC space or bandwidth or CPU time used by
them. Suchlimits cannot be enforced decentrally in a secure way and need to be kept
track of and checked by the WEZ. Global limits are typically set at agent (owner) regis-
tration or at injection time. Resource limits may be related to payment.

8.2.3. Enforcement and veriŒcation

Enforcing local resources is typically straightforward: an AC size limit can be enforced
by checking the size on arrival using its table of content, and checking how many bytes
are added by AC operations. CPU time can be accounted for using existing OS calls or by
querying the jailer; in other cases, an enforcement of a local policy can be delegated to
the jailer (e.g., maximum number of processes, memory, disk space)Šb ut these
resources are often governed by a local policy.

Global (world-wide) resource management poses a bigger challenge. This is due to
the world owner or the world entrance zone not governing every agent's execution Š this
would not scale and would con•ict with autonomy requirements for hosts and agents in
the system. As a result, the world entrance zone cannot enforce limits while an agent is
executing on a host in a zone. There are two moments where the world entrance zone can
in•uence what an agent can do in a world. Bothmoments involve acomponent of the
world entrance zone:

ƒ Physical agent migration

ƒ Cloning an agent

Below, central and decentral global resource checking mechanisms are described.

Decentral checks.When an agent migrates, its contact address needs to be updated on
the agent location service. In Mansion, this action requires both the sending and the
receiving middleware to agree on shipment; before the receiving middleware commits the
update, it has received the AC so it can verify certain parameters. Decentral checks are
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possible on whether the agent's properties do not exceed the parameters deŒned in the
AC, such as the total AC size. Exceedinga time to live can also be detected at the time
an agent follows a hyperlink. If some limit is exceeded the protocol for updating the con-
tact record in the ALS can be aborted.

The world depends on trust in the (majority of the) middleware processes for the
above to work. Should processes cheat and (together) decide to accept agents which have
exceeded the limit, the world entrance zone could conceivably detect this at best when the
AC is shipped to the Morgue (the agent is extracted there, and the Morgue can use the
agent's then-visibleaudit trail to check the time, location and size of all modiŒcations to
AC segments, see Sec.8.3.1). Enforcementcould become difŒcult if cheating becomes
structural. This is however unlikely if the parameters are reasonable: the parameters work
to protect the world as a whole, so it is likely that most zones would cooperate to enforce
them. Typically, the above mechanism will stop an agent that has exceed its limit, if not
immediately then at the next transfer.

The importance of decentralized veriŒcation is that it scales: the ALS is not involved
in making checks, while the update protocol provides the basis to have middleware pro-
cesses do so.If needed, the process can also provide the basis for auditing. If the world
owner has imposed requirements when accepting a zone in its zone list, it can have the
Morgue check at regular intervals whether the middleware processes in the world comply.

Central checks. Certain checkscan be made centrally, always or periodically, if
required. An agent's hopcountcan be checked easily and cheaply in the ALS, as it is
straightforward to maintain a counter for each AgentID.If an agentclonesŠa p rocess
which involves the world entrance daemon, Sec. 9.1.7), the WED can check a simple set
of counters which hold information about the number of agents cloned by its parent, and
if relevant and the parent of its parent (there may be a maximum depth), or a global per-
agent owner counter, depending on policy. This prevents an agent or its owner •ooding a
world with agents.

Since the cloning protocol involves sending the AC of the parent agent, or the ToC
thereof (a future optimisation, see appendix 6) to the WED, it can keep track of the cumu-
lative AC size of all agents of an owner with some certainty45 and enforce limits on this
by refusing to clone (effectively, by refusing to create a new AgentID).

The above measures pose inescapable consequences for agents that do not adhere to
limits. If an agent could migrate without updating its contact addressŠw hich can only
occur with colluding middleware processesŠi t would become untraceable and could no
longer be reached by other agents (or its owner) in a world. Normally, a MMW process
will not accept an agent when its currently registered contact address does not match the

45 A threat could be that a malicious middleware conspires with an agent to clone an agent several timesbeforethey
accumulate data in their AC, thus allowing many clones to be accepted which may later embody a huge cumulative AC
size; a world owner would thus do well to carefully choose a maximum number of agents in combination with a maximum
AC size per agent, to protect against this threat. A similar issue may hold for other parameters as not every detail can be
checked centrally with certainty.
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zone that the agent is migrating from.So, even if an agent is allowed to migrate without
updating its contact address in the ALS, it will not be able to go very far. If an agent
exceeds a limit, which may be detected while it is running or at migration time, the
MMW on which it currently runs can send the agent to the Morgue. If limits are
exceeded before an agent migrates, for example the agent's time to live, the MMW that
currently manages it can decide whether to kill the agent or give it a chance to exit grace-
fully46.

Global resource limits (such as an agent's time to live) are encoded in a special seg-
ment in an agent's AC which is created and signed by the WED at world entrance time.
Agents can use a Mansion API call to inspect their resource limits and usage at any time
(Sec. 9.1.2); the information returned by this call can be adapted to include relevant
resource information that applies to a given system conŒguration or world.

There is no such thing as a global `̀ kill switch'' f or agents. Due to Mansion's dis-
tributed design, this is impossible. MMW processes are autonomous in how they manage
agents. Agentowners can request their agent(s) to exit the world, by sending a prede-
Œned message to them. An agent's parent Š if the agents are so programmedŠm ay be
able to kill its children in a similar way. But agents are autonomous and decide them-
selves whether and how they respond to requests. Only the MMW that manages an agent
can kill it, for example if it exceeded one of its limits; thenits autonomy exceeds that of
an agent. Of course a MMW that observes an agent gone haywire should take action.

An agent may also get killed or suspended because the owner of the machine on
which the agent's MMW runs needs to use the machine. This may occur in open worlds
that use a volunteer computing-like model to get resources for agents to run on. This is
similar as the policy used in desktop grids: there are no guarantees that jobs will complete
their task or even return. Suspensionof agents is an option, subject to implementation.
Suspension is tricky as it means that the agent's time to live may expire while it is sus-
pended. `̀ Desktop liberation'' policies have not been studied in this thesis, but have been
studied elsewhere (Sec. 1.4.4).Note that there is also no global mechanism for dealing
with killed or unresponsive agents whose status is unknown47. Mansion currently takes a
best-effort view, meaning agents may be killed and lost, although the MMW will attempt
to ship its agents to the Morgue if it gets time to shut down gracefully.

46 In UNIX, a special signal (e.g., SIGHUP) can be sent to the agent a few seconds before its time to live expires, to trig-
ger it to write important information to its AC before it is killed; an alternative method to inform agents of (looming) limit
exhaustion is to return a special error code next time the agent invokes an API method.

47 There is no reliable mechanism to Œnd out if an unresponsive agent is killed, suspended, or simply lost. The only
information which can be recovered with some certainty, is the host that an agent was running on at the time it got lost, as
this information is stored in the ALS. Recovery mechanisms must be stored at the application level by agents, if required.
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8.2.4. Processes and local agent life cycle management

In Mansion, each agent is a process. A process consists of one or more threads in an
address space.Different agents cannot access each other's address space.Process
abstraction provides a simple and secure execution model for agents, which is portable
across (UNIX) operating systems.A similar abstraction can be implemented in most
other operating systems, including most versions of Microsoft Windows based on the NT
kernel. Agentsmay spawn subprocesses; these are executed in the same jail as the origi-
nal agentŠe very agent has its own jail.

In UNIX (and other operating systems), it is straightforward for a parent process to
monitor its child processes.Actions such assuspend, resumeand kill operate fast and
effectively in most modern operating systems. The UNIX process abstraction is therefore
an effective basis for local resource management.

Agents are started up, in a jail, by their Mansion middleware process. The MMW
monitors all its agent directly. Since the MMW is the reference monitor that controls an
agent and its invocations in the system, it is important that the MMW has direct control
over the agent processes that it manages. It should be impossible for agents to bypass
security mechanisms or logical constraints.The MMW should be able to kill an agent if
it misbehaves, or suspend an agent temporarily if it consumes too many resources, or del-
eg ate this responsibility to the jailer (chapter 6 and appendix 3).

Mansion is designed to support agents written in different programming languages;
the programming language or binary type (for a compiled agent) is annotated in the AC
by the agent's owner. A special segment contains information on the agent type, possible
options (e.g., when an agent is precompiled for multiple platforms) and dependencies
(e.g., libraries for different systems if the agent is not statically compiled). The MMW
selects one of these if it receives an agent48. If needed, the MMW can start up an agent in
a suitable interpreter, such as the Java virtual machine (JVM) or a python interpreter.
Note that Mansion does not trust the interpreter any more than it trusts the agent; it is
viewed as part of the agent. Due to weak mobility no adjustments of interpreters are
needed to support strong mobility.

Mansion supports multiprocess agents. A multiprocess agent can, for example, be a
(binary) agent process that is started from a script which also spawns other processes for
certain subtasks. Mansion groups all processes of an agent in a jail.The jailer is a
trusted Mansion component and can be instructed to kill or suspend all agent processes or
threads using a protocol, currently using UNIX signals.

48 The agent code description segment may describe an ordering, that may be autonomously evaluated by the receiving
middleware. For example, it could indicate a preference for binary agents with a fallback for an interpreted agent in case a
zone has no system supporting the indicated binary type, or in case execution failed. These aspects were not implemented
in the current system.
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8.2.5. Alternatives to process-based agent management

Many mobile agent systemsŠA gentScape, for example Š implementlife cycle manage-
ment usingagent servers [127]. Agentservers are language-speciŒc execution environ-
ments. For example, a Java agent server can consist of a Java program, consisting of one
Java thread which waits for incoming agents, and starts each of them as a separate Java
thread. Here, one agent may in•uence execution of another agent.

Most languagesŠo r operating systems, for that matterŠa re not designed with the
notion of executing mutually distrusting threads within the same interpreter, that is,
within the same address space, which makes it hard for agents to keep secrets from other
threats or defend themselves against malicious agents executing in the same agent server.
Few if any interpreted languages implement functionality such as starting/stopping
threads within a single address space in a secure way [25, 14]. Thismakes agent servers
that are based on a thread model a less suitable choice for systems that require a large
degree of security between and controllability over potentially malicious agents.

One conceivable advantage of using agent servers is that these could minimise
resource usage (e.g., memory footprint, CPU usage) by running different agents as
threads in the same address space, compared to executing agents as separate processes.
However, process execution is rather efŒcient on most current-day operating systems. For
example, the memory overhead of executing multiple interpreters simultaneously is lim-
ited due to shared instruction pages.Five JVMs effectively use the same code space as
one49.

8.2.6. Agentcontainers

Agents carry state. They contain an agent's code and initialisation data, and often require
Œles as input. An agent's code may be precompiled for different operating systems.The
MMW may also need to associate some information with an agent when it migrates,
including data received from currently open interagent connections which are not read
yet. Inaddition, an agent may require other programs (possibly precompiled for different
platforms), library Œles, input data, etc., Finally, the agent may pick up data and store
results. Theagent stores this data in its AC.

Internally, the MMW uses the AOS AC, with similar API calls to create segments
and read and write data50. These can be simpliŒed slightly, as the agent need no access to
segment types and cookies. Agents can only access AC segments of typeDATA.

49 The same applies to a jailer, but here the offset is that a jailer imposes system call interception process switching over-
head. This is considered acceptable for Mansion since security is considered more important than raw performance.

50 The content of segments in an AC must be stored in a platform-independent way by agents when, for example, writ-
ing binary data to a Œle on a little endian machine which must be read in later on a big endian machine; the content of seg-
ments in an AC are opaque to AOS and MMW.



Sec. 8.2 The Mansion middleware: functional view and security 177

SYSTEMsegments are not accessible to agents. These contain code for internal use of the
middleware; this information can, if useful and if stored in a persistent segment, be
viewed by the agent's owner and by MMW processes, but is little use to agents.

An example of a system segment is a segment similar in function to anAgent Pass-
port (AP)An AP binds an agent to its owner for authentication purposes. the ``AP'' only
binds an agent to certain properties such as its owner; it does not imply trustworthiness of
the code.The agent-agent owner binding is implemented by the WED which signs the
Œrst content of the AC. It then includes a persistent segment containing the agent owner's
AgentOwnerID.It also contains information about the Morgue to which the agent should
be shipped at exit time, the agent's AgentID, resource limits, and possibly other informa-
tion required by all MMW processes visited by the agent.

Segments may be persistent or transient. Apersistentsegment may not be removed
from an agent's AC anywhere on the agent's following itinerary; the AP segment dis-
cussed above is persistent, as it is needed for authenticating core properties of an agent on
each visited MMW. A transientsegment may be removed at any time. The MMW pro-
cesses can verify the integrity of the AC by checking that persistent segments have not
been modiŒed or removed after they were marked persistent. The AC is designed such
that such integrity veriŒcation is efŒcient (Sec. 4.4.1, 8.3.2).

8.2.7. Startingan agent

Previous sections and chapters described the basic components needed for agent shipment
and execution. Here is the procedure of how the MMW receives and starts an agent.

1. An agent comes in by means of the agent transfer protocol described in Sec. 8.3.2.
The AC is checked: does this system support an agent programming language from
the ones contained in the AC? Is any limit exceeded?

2. If this checks out, a new entry is created in theagent tableof the MMW. A scratch
directory is created by the MMW in which, by convention, a set of Œles (e.g.,
libraries) may be copied into from the AC. The selected agent binary (or interpreted
program) is copied to the jailing directory. The jailing directory is registered in the
agent table.

3. Thejailer is passed a TCP port number allocated by the MMW, on which it waits for
a binding connection from the agent; this is needed to enable the agent to instantiate
its Mansion API stub library and object stubs and connect them to the middleware.
This port is passed to the agent as a commandline argument. Theagent is also pro-
vided with a key in its jailing directory with which it can authenticate to the Middle-
ware. The agent table is updated accordingly.
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4. Theagent is started by the jailer; if agent startup yields no errors, the agent Œrst ini-
tialises its runtime system, which includes binding to the Mansion API and invoking
an init method on it.

5. If the the agent has called the Middleware by binding and invoking its runtime inter-
face, the MMW believe it is running; it will it (re)instantiate the agent's communica-
tion buffers Š if needed by reinstantiating suspended buffers from the AC (Sec.
8.2.13) and ensure the agent's communication endpoint is reachable to outside
agents.

6. TheMMW commits the AC migration on the agent location service and register the
agent's communication endpoint there, before setting the agent's state to RUN-
NING.

The order of the above steps is important. The moment the AC migration is commit-
ted on the ALS and the agent's new communication endpoint is registered by its current
MMW, its state is changed fromMIGRATINGto RUNNING. Next other agents may con-
nect to the incoming agent communication interface of the MMW to connect to the agent
or write data to incoming message buffers of already established interagent communica-
tion channels51

After all this is completed, a message is returned to the sending middleware, which
will then kill the agent and remove the agent's AC using an AOS operation. Should the
sending middleware Š a malicious caseŠn ot remove the agent and let it run, it will sim-
ply be an unofŒcial copy of the agent, that is unreachable as the AgentID now maps to the
next machine. Worst case, the sending middleware could eat a few incoming messages
from agents that were not yet aware that the agent had moved; by checking the ALS for
the agent periodically, these agents (or rather, their middleware) should eventually notice.

Each agent in Mansion is started up inside a jail.Each jail has its own private direc-
tory in which an agent can write Œles, thejailing directory; this directory contains a code
directory and a directory for data Œles. The MMW accepts a script as the initial program
to start. System Œles or directories (like, /bin/) are typically accessible read-only. The
jailer manages and controls all threads and processes in the jail, including child processes
created by an agent, and allows a network connections to the MMW to invoke Mansion
API calls. The MMW passes parameters to the jailer for basic resource management as
described earlier, and can use signals to suspend, restart or kill an agent andŠo nce the
prisoner is killedŠi ts jail.

51 The buffers have a maximum size, also dependent on the AC's maximum size because an agent should be able to
migrate to another host without having read the incoming data, and in that case there must be room to store the messages.
Obviously, there is some room for lenience but not much, also to prevent too many local resources from being used.
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8.2.8. Runtimesystem

Agents interact with the middleware (MMW and, indirectly, object servers) using stubs of
the Mansion API and object interfaces. Stubs are simple libraries that can marshall and
ship methods and their arguments. Thesestubs provide the language binding for the
agent. All interfaces in Mansion, including the API, are speciŒed using the Mansion
interface deŒnition language (IDL).Mansion comes with an IDL compiler, which cur-
rently generates stubs and skeletons for C and C++ (Sec. 5.2.3).Because the internal
data representation is simple, it should be straightforward to generate stubs for, for exam-
ple, Java, Python, and other languages.

The Mansion API is implemented in the MMW; the stubs themselves implement no
functionality. The reason for taking this approach is twofold. The Œrst is simplicity, as
porting a runtime interface stub is straightforward. Thesecond is that this way, agents
cannot tamper with the MMW implementation. The stubs are linked in the agent's
address space, and are initialised to connect to the MMW process which started it. Over
this connection, invocations are shipped to the MMW, and replies are returned as simple
messages consisting of basic types available in any programming language, such as inte-
gers and strings.

The Mansion API provides basic methods to an agent in a world. Mansionprovides
a small library (written in C) which wraps around the Mansion API to provide convenient
methods for common tasks, such as storing Œles in an AC. This library is comparable to
the way in which libc wraps around raw UNIX system calls. In addition, Œles stored in a
speciŒc directory in the prisoner's private jailing directory are automatically saved /
restored from the AC at migration time. This simpliŒes implementation of agents some-
what, although similar functionality can be implemented manually by writing information
to data segments in the AC.

8.2.9. Agentauthentication and access control

Authorisation in Mansion is based onaccess control lists (ACLs) associated with
objects. Every Mansion object has an ACL. TheACL of a room monitor object governs
access to a room. It is consulted when an agent comes in, before an agent is allowed into
a room; if an agent is not allowed in by the RMO's (default) ACL, migration fails.

Objects in Mansion are invoked by the MMW on which an agent runs. The MMW
passes information an agent owner's AgentOwnerID (obtained from the AC) to an object
at invocation time. Based on this information, the object can determine whether access to
a giv en method is allowed, as explained in chapter 7.

The AgentOwnerID currently corresponds to the agent owner's public key. In very
large-scale worlds, authorisation based on agent owner information may not be feasible;
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although effective and simple, ACLs do not scale well since every object has to maintain
a subject-permissions mapping. This makes that ACLs can soon grow extremely large. In
practice, a default entry in an object's ACL solves this problem (possibly allowing addi-
tional entries toblockaccess, rather than allow it). However, if meaningful access control
is to be applied, it is likely that a more scalable mechanism needs to be applied.

The Mansion ACL system can be used to implement attribute or role-based authori-
sation. For example, when a world supports a payment scheme, the semantics of the
ScID that is passed to objects52 may correspond to a payment scheme identiŒer. Similarly,
it may correspond to a role.To make this concrete: a world may have a set of roles, each
indicated using a 32-byte random string that has the same size as a ScID. The size of a
ScID is sufŒcient to encode a huge set of roles or attributes. The world entrance daemon
associates the appropriate role to the agent by storing it in the AC. This ScID is then
passed to each objects that the agent invokes. In addition to this role ScID, each agent
also has a unique AgentID; this allows the world entrance zone services to easily
(re-)identify the agent owner, if needed.

Like all application semantics, the object should be programmed to understand
about roles. Information about the roles of a world and their semantics should be passed
to object programmers and content providers using external documentation.

Besides having an ACL for basic per-method (yes/no) authorisation, the ScID Œeld
is passed with each object invocation. Object programmers may thus modify the object's
behaviour depending on the invoking role or attribute. Asfar as mechanism is concerned,
this is identical to how access control is applied when using AgentOwnerIDs.

Summarising: ScIDs used for authentication in Mansion may correspond to an
AgentOwnerID, a pseudonym, a role, or a payment scheme.Object ACLs can contain a
`̀ default'' entry. If an agent's AgentOwnerID is not in the ACL and a default entry exists,
the default permissions are granted.With role-based ScIDs, a default ACL entry should
not be created, since a default role should then be assigned at world entrance.Without a
default ACL entry and if an invoking agent's ScID is not in the ACL, access is denied.

8.2.10. Mansionobject server modes

The Mansion object server (MOS) was described in chapter 7.For clarity, it is howev er
useful to describe the two modes in which it can operate.A MOS can run in two modes:

ƒ Amode for running regular objects, which are objects that can be invoked by agents
in the zone. In this mode, the MOS can only be invoked by middleware processes
within its own zone, which pass the agent's ScID with each invocation. ThisScID is
passed to the object.

52 This ScID is simply placed in an AC SYSTEM segment; by default it corresponds to the AgentOwnerID but to the
middleware and the object server, the semantics is opaque.
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ƒ Amode for running `̀ service objects'' ( or `̀ services'') that are not invoked by agents
but can be invoked by middleware processes anywhere in the world. An example
service is the zone location service.In this case, the the MOS passes the ZoneID of
the clientŠa s authenticated by the MOSŠt o the service object to check its access
control list.

The interface for creating or deleting objects can only be invoked by aclient process in
the same zone as the MOS. Depending on a conŒguration option, it has to have exactly
the same zone member key as the MOS (Sec. 3.8.3); this means that only the (local) user
that instantiated the MOS process53 can create objects in it.

The object server is a critical component in each zone. There must be at least one,
but typically there are two object servers in a zone: one running in service mode to host
the zone location service, and another to host regular objects including RMOs.Room
monitor objects or other objects may be created in any MOS in the zone, on any machine.
Depending on conŒguration, objects can be jailed, to protect the system from potential
bugs or malicious objects. It is also possible to jail only objects of speciŒc types (e.g., of
a giv en C++ class).

8.2.11. Bindingto objects

While the Mansion API is a static run-time interface, object interfaces may be loaded
dynamically when needed.Every room can contain one or more objects (including the
RMO), to which agents can bind.A binding consists of creating an object's interface in
an agent's address space, and connecting it to the object (Sec. 2.3.10).How an object is
instantiated depends on the programming language and runtime environment of the agent.
In case of C agents, all object interfaces of a world are currently statically linked to an
agent. Incase of a C++ or Java agent, the interface may be instantiated from a class
object [109] which is either compiled in or available from a statically or dynamically
linked library.

An object's interface in Mansion is implemented as a stub interface that communi-
cates with a remote instantiation of the object using an RPC mechanism. Connection set-
up is mediated by the MMW, and RPC calls are routed through the MMW. Setting up a
connection so route RPC requests to is called binding.

The Mansion API contains abind call which takes an identiŒer of an object (relative
to the agent's current room) as an argument. Upon receiving this call, the MMW veriŒes
if a binding to a given object is allowed using the object's ACL by calling the object

53 Currently, objects in a zone are created manually using a set of scripts. These scripts create an object server, and then
create an object in it. The object server itself is simply a program run from the command line. It is straightforward to create
different object servers on different machines.Passing a valid zone member key to the MOS when starting it up makes the
MOS a member of the zone. By default objects are not jailed, but passing an argument to a script is sufŒcient to do so.
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server that contains the object.If binding is allowed, the MMW establishes an RPC for-
warding service endpoint to which the agent can connect.Next, invocations on the object
interface are routed to the appropriate remote object instance in a MOS (Fig. 33).

Fig. 33 shows two agents and three objects in a single zone. Both agents are in the
same room; they are connected to the same RMO, located in the object server on host 2
(solid line). Both agents have bindings to objects in different object servers.

Agent 1 Agent 2

Host 1

RMO obj 1

Host 2

obj 2

Host 3

MOS 1 MOS 2MMW

Zone

Fig. 33. Example bindings and internal connection routing through the MMW. Solid lines are bind-
ings to an RMO; dashed arrows bindings from agent 1 to object 1 and agent 2 to object 2. Square
dots are communication endpoints.

The small black boxes indicate communication endpoints. The agent's stubs connect
to an endpoint on the MMW; the MMW routes RPC calls to an endpoint of the appropri-
ate MOS. Note that the Œgure is a simpliŒcation: multiple communication or object end-
points may be multiplexed over a single TCP endpoint (port), so different endpoints do
not necessarily use a different TCP connection, and different connections between the
same MMW and MOS may be multiplexed over a single TCP connection as an optimisa-
tion. More details on endpoints were given in Sec. 5.1.

8.2.12. Implementationof the RTS bind call

The Mansion API runtime system exposes an internalbind call to agents. This is used to
allow an agent to connect a stub to an appropriate RPC forwarding port, that is, to con-
nect it to an object.Thebind call returns an MCR. This returns the endpoint of an invo-
cation forwarding RPC service provided by the MMW. This invocation forwarding end-
point is created by the MMW so it can forward an agent's marshalled object invocations
to the appropriate Mansion Object Server (MOS), whose contact adress is looked up Œrst,
and an internal binding established by the MMW so invocations can be forwarded to it.

Marshalled XDR data is forwarded as RPC payload data.Mansion object method
invocations are also marshalled using XDR; the compiler used to create object stubs (in C
or C++) makes use of the Mansion XDR compiler.
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For object invocations, all marshalled invocations are prepended by a header. This
header is part of theinvokecall of the MOS RPC interface. Theheader contains an object
identiŒer. Using this identiŒer, the MOS can locate the appropriate object to invoke. The
object identiŒer corresponds to theindexŒeld in the MCR of the object; this MCR is reg-
istered in the Mansion location service.Object invocations are thus layered on top of reg-
ular RPC invocations as nested RPC calls.

8.2.13. Interagentcommunication

Mansion provides calls for agents to communicate with each other. In contrast to most
mobile agent systems, which typically provide a message abstraction [52,126, 19],or
allow method invocations on another agent's (proxy) interface [58],Mansion can set up
connection-oriented, reliable, ordered and secure connections between agents.

The Mansion API provides agents a socket-like interface to communicate with each
other, without having to worry about aspects related to mobility, such as (temporary) dis-
connects: connections remain in place even if agents migrate physically. This section
describes how migration transparent channels are implemented.

The Mansion API provides the following BSD-socket-like calls: connect, send, recv,
close,andselect. If required, agent programmers can map an (ordered) message abstrac-
tion upon the Mansion channel abstraction, for example in a library for exchanging FIPA
agent communication language (ACL) messages between agents [7].

Internally, interagent connections are layered upon secure connections between
MMW processes. Each agent has an endpoint, created by the MMW. This endpoint is
registered in the agent location service (ALS) as the agent's contact address. It is used by
another MMW to establish a connection to that agent.

Because agents are mobile, interagent communication has a slightly peculiar imple-
mentation and semantics. Whereas in TCP socket communication, a successfulsendcall
indicates that the data is stored in a sender-side buffer in the local operating system, a
successful send call in Mansion indicates that the data is stored in a receiver-side buffer,
that is, a buffer in the MMW at the receiving side (Fig.34). Sendblocks until the data is
acknowledged by the receiving side or an error is reported back (e.g., if the target agent
migrated or the underlying connection failed). If the receiving agent migrates after
receipt of the data (in the buffer) but before reading it, the received data is transported as
part of the agent's AC to the next MMW, which reinstates the buffer before receiving new
data. Eachconnection has its own receive buffer at the receiving end from which the
receiving agent reads in-order.

The use of a receiver-side buffer avoids the situation that, in case the receiving agent
migrates, the MMW on the sending side will have to poll the ALS repeatedly after a suc-
cessfulsendtransferred data to the MMW's buffer, to see if the receiving agent is ready.
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Consider also what happens if a sending agent moves after data is sent in the sender-side
buffer before the data is sent out, and the sending MMW is partitioned off the network or
crashes. In this case, maintaining ordering guarantees becomes difŒcult. Eitherway, a
solution with a sender-side buffer is more complex than using a receiver side buffer.

A simplifying semantics is that if an agent sends data data is while a receiving agent
is migrating, and thus while no receive buffer is ready, the sending agent will be informed
through a (transient) error on the send call. The sender will then have to retry later. This
makes the interagent communication abstraction reliable and ordered, but not fully migra-
tion transparent. Fig. 34 illustrates the approach.

Fig. 34shows two interagent connections between different agents. Each agent has
an RPC endpoint, to which connections can be made. This endpoint is registered in the
ALS; after connecting, aConnectionIDis assigned, which is persistent. After migration,
a connection can be reestablished using the agent's current MMW endpoint, as found in
the ALS, combined with the ConnectionID.The connection identiŒer is used to (de)mul-
tiplex connections to the same agent.

buffer buffer

Host 1

MMW 1 MMW 2

Host 2

Fig. 34. Interagent connections. The •ow of data over a channel in one direction is shown (arrows);
the reverse route is identical to the one shown (but then with buffers in MMW 1). The relevant buf-
fer for sending data is identiŒed by a communication endpoint combined with a connection identi-
Œer. The connection identiŒer is created as the result of a connect call, and is persistent over the life-
time of the connection; the transient communication endpoint is created by the MMW.

Internally, the operation used to send data to the receiving buffer is an RPC call over
a secure (SSL) connection layered upon TCP. This call takes the connection identiŒer,
and results in data being placed in the receive buffer of the target agent. The target agent
can subsequently read the data from the receive buffer. The socket-like interface for
interagent communication provided by the Mansion API is currently layered over this
simple RPC interface. Theinternal RPC service used to establish connections and to
place data in the receiver-side buffer is calledSimpleComm.
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8.2.14. TheSimpleComm communication service

SimpleComm is an RPC service which can be reached by external MMW processes and
which implements the protocol for interagent communication described in Sec. 8.2.13.
One SimpleComm method is used to create a connection to an agent. The signature of
the SimpleComm connect call is as follows:

int connect(in: mmw_mcr_t connecting_agent_mcr,
in: mmw_gaid_t connecting_agent_gaid,
in: int connecting_agent_connID,
in: mmw_gaid_t target_agent_gaid,
in: int options);

This call is invoked by a client MMW process as the result of an agent's connectcall.
target_agent_gaidspeciŒes the agent to be connecting to; locally, on the connecting side,
a connection_idwas already created which is passed to the receiving MMW. Along with
the connecting_agent_mcr or the connecting_agent_gaid, this is stored in the MMW
receiving the connection, so that it can establish the route back. The agent's acceptcall is
merely a way for the connected-to agent to obtain theconnection_id. If the agent does not
want to receive the connection, it should explicitlyclosethe connection.

SimpleComm'sconnectcall is used both for room-local connects that take an Enti-
tyID of an agent and which are transient (close when one of the agent migrates to another
room), as well as for global, migration-persistent connections. The type of connection is
indicated to the recipient using theoptionsŒeld. Ifoption indicates a transient connec-
tion, the connecting agent's AgentID(gaid) is not passed to the recipient. Note that this
means that the connected-to agent or its owner can never Œnd out what the AgentID of the
connecting agent was ‰ that is, the connecting agent is anonymous. If agents wish to
exchange more information, such as their globalAgentIDs for longer communication,
they should exchange this information explicitly at the application layer.

The connecting_agent_mcr Œeld contains the Mansion contact record of the con-
necting agent MMW's SimpleComm RPC interface. This is an optimisation. Together
with the connecting_agent_connID Œeld, this allows the connected-to MMW to route
back return data to the connecting agent instantly, without having to resolve the connect-
ing_agent_gaid on the agent location service Œrst. Note however, that for room-local con-
nections (where connecting_agent_gaid is zeroed), this optimisation is needed as it is the
only conceivable way to exchange the required information for setting up a bidirectional
channel when the connecting agent'sAgentIDis not passed.

As a second note, a connecting agent that uses anAgentIDto connect to, but wishes
to remain anonymous, can set a •ag using the MansionAPIconnect_gaidcall to indicate
it does not want to pass its gaid to its peer agent; in that case, the semantics are identical
to the room-local connect case: the connection is transient and closed as soon as one of
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the agent migrates.In all cases, the connected-to agent can recognise whether a connec-
tion is transient/anonymous or not by inspecting thegaid out argument of theacceptcall;
if this argument is zeroed, the connection is transient and the connecting agent is anony-
mous. If gaid is Œlled in (non-zero), the connection is persistent and remains alive until
the connection is closed or one of the agents is sent to the Morgue.

If the connected-to agent exists and its status isRUNNING, a connection identiŒer is
created which is returned to the connected-to agent as well as registered in the corre-
sponding agent's agent table; the local connection identiŒer is returned to the caller. If the
status of the connected-to agent is notRUNNING,an error is returned to the connecting
agent. If the error isMIGRATING, the connecting agent should attempt to connect again
later. Note that send operations on persistent channels may return an error code
ERROR_API_COMM_AGENT_MIGRATINGat the agent level; this is a transient error
and indicates that the agent should retry sending sometime later, when the migrating
agent is (hopefully) Œnished migrating and a new SimpleComm endpoint (at the MMW
where the agent now resides) is registered in the ALS. The mechanics of resolving the
new SimpleComm endpoint of an agent is transparent to the agent and part of the imple-
mentation of the MansionAPIsendcall.

The SimpleCommsend_packet method takes a connectionID and a character array
and length as arguments. The data is then stored in the corresponding receive ring buffer
of the receiving agent's communication endpoint, up to a maximum determined by the
receiving MMW, possibly depending on available ring buffer space. Like socket write,
thesend_packet method's return value may indicate an error or the number of bytes actu-
ally sent, which may be less thanlength. Any read data is read as a whole, sequentially
from the beginning of the data buffer; if an error occurs (e.g., the receipt buffer is evicted
when the agent migrates), this is acknowledged to the sender; thesend_packet call returns
with an error. The amount of received data is indicated as a return value. Thus, receipt of
`̀ packets'' is reliable ‰ if acknowledged, the data is queued in theinbuffer of the receiv-
ing agent ‰ and if that agent migrates, the sender is ensured that this queued data is
packed in the migrating agent's AC except perhaps in case of a fatal error that causes the
peer agent to be migrated to the Morgue.

If an agent blocks on aread or selectcall for a given communication endpoint,
receipt of a new block of data raises a •ag that unblocks the corresponding call. In the
current implementation, this •ag is implemented as a pthread condition variable that
unblock the RPC method that blocked, which will next unblock. It can be useful to keep
the size of packets relatively small in order to keep latencies low, since packets will only
be acknowledged and delivered as a whole.A maximum packet size can be deŒned
world-wide for all MMW processes.A maximum is currently hardwired in the MMW
implementation in a global header Œle, but a placeholder for this parameter is present in a
special conŒguration section of the world design document (see Sec. 3.8.1).
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The SimpleComm interface Œnally contains aping_aliveand aclosecall, which poll
the agent's status, and close a channel, respectively. ping_aliveis currently used in a loop
in the MMW which regularly polls the status of an agent's connections; this is useful to
preempt unsuccessful attempts to send data to an agent which has already migrated. A
polling loop is triggered every second. For agents which are actively communicating with
other agents, error conditions (e.g., if a target agent starts migrating, or if the target agent
is being morgueiŒed, Sec. 3.3.2) are returned via thesend_packet call. Thereturn value
for errors is identical to what would be returned by an unsuccessfulsend_packet call.

Note thatping_aliveor sendmay may return an error that indicates an agent is being
shipped to the Morgue; although this status is indicated on the ALS too, and although the
agent table entry of the agent that is being morgueiŒed will be removed as soon as
morgueifying has completed (resulting in anAGT_UNKNOWNerror), reporting this sta-
tus may be useful for a MMW to mark the connection as closed for when its agent uses a
read, sendor selectcall next. The polling loop indicated above runs every second, which
makes it likely that migration and morgueifying events (which certainly take a couple of
seconds to complete) are noted before the agent's entry is removed from its current
MMW process.

For morgueiŒed agents, the polling MMW need not enquire the ALS about the
agent's status. For Migrating agents, the client MMW may regularly poll the old MMW
for the agent's status, and query the ALS for the new agent's address only after an
AGT_MIGRATINGstatus has been replaced by anAGT_UNKNOWNstatus, indicating
that migration was successful. (Should migration fail, the old communication endpoint
will be re-instantiated, resulting in anAGT_READYstatus).

Polling the peer MMW processes is useful to prevent the ALS from being •ooded
by unnecessary status requests from many client processes. Depending on the status
returned, the sending MMW may return an error to the sending agent, causing it to recon-
nect on a transient failure (as the result of the peer agent migrating), or to take note that
the connection dropped permanently as the result of the peer agent closing the connection
or exiting.

8.2.15. Implementationof conŒnement

From the middleware implementation perspective, implementing conŒned rooms is
straightforward. If an agent enters a conŒned room, the MMW notices this before it starts
up the agent in the room, by checking the parameterISCONFINEDin the RMO that the
agent is migrating to. IfISCONFINEDis `̀ yes,'' t he agent will be conŒned. In this case,
the MMW sets a `̀ conŒned'' bit in the agent table.

Setting the conŒned bit ensures that the Mansion API callconnect_gaidthat agents
use to set up connections to other agents is disabled.The SimpleComminterface is
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suspended, so inbound connections are also refused, and existing connections are not re-
instantiated when the agent is in the conŒned room. Combined with the properties of the
jailer, this ensures that the agent cannot communicate with agents outside the room.In
addition, the conŒned bit ensures that the agent cannot invoke methods related to its AC.
Files created in the agent's jailing directory are also not written to the agent's AC.

The conceptual model of Mansion describes that agents must connect to the
guardian agent (GA) in the room to export (Œltered) information to outside the room,
before it leaves the room (Sec. 2.3.11).The agent (or its owner) should contact the GA
after it leaves the room, to obtain the information (if allowed, possibly in return for pay-
ment). This approach is conceptually clean, but somewhat involved because it requires a
speciŒc communication protocol at the agent level54. The current implementation simpli-
Œes this approach. Our implementation avoids having to implement a speciŒc GA and
interagent communication protocol speciŒcally for conŒnement.

To export information from a conŒned room, an agent simply writes information
into a Œle called ``export'' in i ts jailing directory. This export Œle contains the equivalent
of what would have to be passed to the GA, for example, a list of Œles selected from a
MultiFileContainer object in the room matching some query implemented by the con-
Œned agent. The precise format should be speciŒed by the world designer, but it currently
is simply a newline-separated list of Œle names. When the agent leaves, the export Œle is
picked up by the MMW and stored in a special directory where it can be inspected by the
room's owner as needed, for example, after receiving a request by the agent's owner. It
can conceivably also be (encrypted and) mailed to the owner of the conŒned room, along
with the AgentOwnerID of the agent which created the Œle, however this is not currently
implemented.

In all cases, the GA stores some data into the agent's AC before Œnalizing it and
shipping it out of the conŒned room; currently, this Œle is hardwired in the middleware
but conceivably it could be obtained from a FileContainer object in a room, or be gener-
ated speciŒcally by a GA program. Using this information, the agent or its owner can
contact the room owner later, to obtain the data or negotiate terms. The information can
also contain an URL through which the data can be collected by the agent's owner, poten-
tially after payment, e.g., in an e-commerce room where an agent selected 3 music Œles.

Applications of the conŒnement scheme will be discussed in chapters 10 and 11.

8.3. Agentmigration

The Œnal important task of the MMW, is to handle migration. The functionality offered
54 Note that agents should also be aware of whether they are entering or left a conŒned room; this is complicated by the

fact that nothing is stored in the AC when the agent is in the conŒned room. A simple solution is to have the agent make a
note in its AC indicated that it enters an AC. If after restart it sees that it is not in a conŒned room (by checking theISCON-
FINED parameter of its current room), it apparently left the conŒned room again.
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to agents for migration is simple. Mansion uses a weak migration model, so agents are
restarted every time that they follow a hyperlink, even if the hyperlink points to a room
within the same zone or on the same machine.

After invoking a call to follow a hyperlink, the invoking agent is suspended. The tar-
get room's MMW is looked up and the agent's AC is Œnalizedand shipped to the target
MMW. There, various aspects are checked, such as whether the target room accepts the
agent (ACL checking), whether or not any global resource limits are exceeded, and
whether the agent's programming language is supported. If all this checks out and the tar-
get MMW accepts the agent and is able to start it, the agent's contact address is updated
in the ALS, after which the agent process at the originating host is killed, and all its inter-
nal MMW state (including bindings) is cleaned up. If migration is not successful, the
agent is resumed where it left off, with an error code returning from thefollow_hyperlink
call. A MMW process is autonomous and free to accept or deny the agent on any ground.

Mansion coordinates the agent transfer protocol at the middleware level to ensure
end-to-end security, to allow for veriŒcation of an AC's content, and to construct anaudit
trail that allows for detection of illegitimate alterations to an agent container by mali-
cious hosts on the agent's itinerary. The below sections describe the mechanism and per-
formance measurements.

8.3.1. Middleware-level audit trails

AOS provides basic integrity protection for ACs. It can verify whether an AC's content
corresponds to the ToC with which it was shipped.However, AOS cannot and does not
know what was supposed to be in an AC in the Œrst place: AC transfer and integrity veri-
Œcation involve only a single transfer of an AC. AOS is also not able to infer what
changes have been made to an AC prior to the previous AOS kernel (from now on also
referred to as a ``hop'') on which the agent ran. These aspects require application-level
(or rather, middleware-level) knowledge.

Because AOS cannot know the content or migration semantics of an AC, AOS can-
not make an informed decision on whether any malicious modiŒcations might have been
made along the the migration path that an AC has followed. Also, AOS does not support a
particular PKI, and by design, it does not come with a speciŒc (agent) location system; all
these aspects have to be managed by the middleware. Middleware-level audit trails can
facilitate veriŒcation of AC integrity over a multihop itinerary.

Establishing audit trails for mobile agents was Œrst described in[55] for the Ajanta
system. Inthis system,append-onlycontainers are used for agents to store data in, and a
speciŒc audit trail mechanism is used to detect tampering with the append-only container.
Compared to the Ajanta system, AOS agent containers are more •exible, as both persis-
tent and transient Œles can be stored in the same AC. Also, the AOS AC is platform-
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independent whereas the Ajanta solution is Java speciŒc. The AOS ToC is speciŒcally
designed such that audit trail construction and veriŒcation can be done efŒciently.

In Mansion, an audit trail is established by storing the ToC of an incoming AC,
together with the signature over this ToC created by the MMW process that shipped it
and the public key of the signer, in a segment in the AC before it is Œnalized and shipped
to the next host.55 By retaining the ToCs of all hops an agent has visited as an (iterative)
part of the AC, an audit trail is established. Using this audit trail, all changes made to an
agent since its creation can be traced. Public key cryptography (signing) at all hops is
used to iteratively sign the stages of the audit trail.

Because of its design, it is straightforward to check for changes to the AC by com-
paring the ToCs in the audit trail, using a binary comparison algorithm that iterates over
all entries in the ToC from Œrst to last. Mansion's audit trail mechanism was Œrst
described in [79].

In Mansion, audit trails are veriŒed at each hop before an AC is accepted for receipt
and an ALS update committed. An AC that was tampered with can be refused and thus
containedon the MMW at which the illegitimate change was made. This prevents tam-
pered-with agents from migrating and spreading through the system.

To prevent detection of deletion of part of an audit trail (``rollback'') when cycles in
the agent's itinerary occurŠf or example, when an agent visits a (malicious) host twice, a
log of (ScIDs of) all hops that an agent has visited is stored by the ALS as an independent
audit trail that can be compared with the audit trail in an AC when it returns to its owner,
as a means to detect rollback.The ALS thus plays a crucial role in securing Mansion:
because both sending and receiving middleware must agree on updating an agent's con-
tact record, containment of tampered-with agents on the current host becomes possible.

The next sections describe the agent transfer protocol at a high level and presents
measurements of end-to-end performance of the agent transfer protocol, including audit
trail veriŒcation, over a sequence of hops with AC's of increasing size. The discussion
below omits a description of functional veriŒcation of agent propertiesŠi .e., agent code
support, global limits, and the likeŠas these were discussed before. This checking is an
intrinsic part of the agent transfer protocol, but does not add to understanding perfor-
mance of the ATP.

8.3.2. Overview of the Mansion agent transfer protocol

This section gives a detailed overview of the Mansionagent transfer protocol (ATP)
55 Because the ToC must be available before it can be signed, the signature cannot be included in the ToC/AC; therefore,

the signature is not ofŒcially part of the AC. Instead, the ToC signature is shipped separately (over an authenticated com-
munication channel) to the receiving middleware, who stores it in the AC together with the ToC as it came in, after verify-
ing the signature. The receiving middleware does not have to verify the integrity of the incoming AC as corresponding to
the ToC; this is done by AOS. So, ToC generation and integrity veriŒcation takes place at the AOS level, ToC signature
exchange and veriŒcation, as well as audit trail construction, take place at the middleware level.
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constructed on top of AOS. TheMansion ATP combines the audit trail veriŒcation mech-
anism and the transaction-based ALS update mechanism explained in the previous sec-
tion. Agentsare only migrated ofŒcially by means of an ALS updateŠt hus, an agent's
contact information in the ALS indicates the agent's ofŒcialwhereabouts at a particular
time Š if both the sending and receiving MMW agree on an agent's integrity. Integrity
veriŒcation includes a combination of (current) AOS-level AC integrity veriŒcation and
middleware-level audit trail veriŒcation.

The MMW waits at an ATP endpoint for incoming requests. The ATP endpoint is a
regular communication endpoint, to which other MMW processes can connect.The
MMW determines if it accepts an AC based on authentication of the peer process, and on
information embedded in an initial ATP request message.

The ATP protocol is outlined in Fig. 35. The AC transfer and audit trail veriŒcation
protocol is explained in detail below. Performance measurements are given in Sec. 8.4.
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Fig. 35. Implementation of the Mansion hand-off protocol using AOS.

The Mansion ATP, including ALS update protocol and audit trail veriŒcation proto-
col, consists of the following steps.

ƒ When a decision is made (typically, by an agent) to migrate an agent, MMW A sus-
pends the agent and all its communication queues, Œnalizes the agent's AC, and ini-
tiates the ALS update transaction. As part of this, the MMW registers the intended
target MMW's ScID in the ALS(1).

ƒ Next, a connection is made to the ATP endpoint of MMW B; MMW A provides
information (e.g., programming language, resource requirements) about the agent to
the target MMW through aninit message(2). Based on the init message, the target
MMW decides if it is willing to receive the agent.

ƒ If it is willing to receive the agent, it calls a method on the AOS kernel which creates
an endpoint in AOS to which the agent can be sent(3). A unique `̀transaction
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identiŒer'' ( XID) is also created by AOS, that is to be used by the sending MMW to
ship the AC; this XID prevents that anyone can send arbitrary ACs to an AOS, and
enforces that a middleware-level decision precedes shipment of an AC. TheXID,
along with the AOS ATP endpoint information, is sent to the client(4).

ƒ The sending MMW signs the ToC of the Œnalized AC using its own key. The ToC of
the Œnalized AC is obtained by reading segment 0 of the AC using an AOS method.
MMW A sends the signature over the ToC and its public key to MMW B for veriŒ-
cation(5), while simultaneously instructing its AOS kernel to ship the AC(6).

ƒ MMW B invokes await_accall on AOS. Thiscall returns an identiŒer for the AC
after the AC is received and veriŒed correctly(7). An error is returned if there is
any problem with the AC. After receiving a correct AC, its ToC can be read out by
MMW B by reading segment 0 of the agent's AC. MMW B can now verify that the
signature it has received from MMW A has been made over this AC's ToC.

ƒ If all of this checks out, the MMW searches the AC (using a naming convention) for
segments containing earlier ToCs. These segments are numbered sequentially, and
the MMW can compare the signed ToCs using the audit trail veriŒcation procedure
outlined before.

ƒ If audit trail veriŒcation does not fail, the MMW checks functional aspects of the
incoming agent to decide if it accept it; examples are programming language and
global resource limits. If the MMW accepts the agent, the receiving MMW signs the
ToC, and sends the signature back to the sending MMW as a receipt(8). MMW A
only commits the migration after it receives the receipt from MMW B; MMW B
will commit the migration after establishing the agent's communication endpoint.
Once both parties commit (or possibly abort, in case of problems) the ALS update
transaction(9) is the migration transaction complete.

ƒ Before the agent starts, MMW B stores the ToC, key, and signature over the ToC
created by MMW A as persistent segments in the AC. This establishes the next com-
ponent of the agent's audit trail. Once the agent migrates onwards will the MMW
sign its copy of the AC/ToC, including the previous hop's signed ToC segment.

The steps outlined above ensure that agent integrity is veriŒed at all migration steps, and
that each MMW that sends an agent to another MMW process signs the agent's AC using
its private key. In addition, AC integrity veriŒcation, ToC signature veriŒcation and stor-
age of this information in the AC are required parts of the ALS update protocol. The ALS
requires a commit by both sending and receiving parties. This enforces that both MMW
processes sign the AC's ToC, ensuring that a veriŒable receipt is sent and that a valid ToC
is stored in the agent's audit trail.
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8.4. Performance of the Mansion ATP

In Sec. 4.7, performance and scalability of concurrently shipping ACs was shown for the
two implementations of the AOS kernel, one in Java and one in C++. The measurements
presented in this section focus onend-to-endperformance of middleware-level agent
transport, with a breakdown of component cost such as multihop audit trail veriŒcation
and base AOS performance of the C++ AOS kernel used by Mansion for various AC
sizes.

All tests are conducted on a dedicated cluster containing 2.4 GHz dual-CPU / dual-
core AMD Opteron DP 280 compute nodes with 4 GB of memory, running a Linux
2.6.18 kernel on an XFS Œlesystem using an 1 Gbps Ethernet network, each with a WD
Caviar RE, 7200 RPM harddisk with 16 MB cache.

A test setup is created, consisting of 3 MMW processes, each running on a separate
node in the cluster. Agents are injected into the Mansion system, transferred to the Œrst
MMW, and subsequently transferred through two additional MMW processes before
being retrieved by its owner. Timing results are taken at each of these nodes. The ALS is
conŒgured to use AOS for communication, and run on a different machine than the
MMW processes.

All tests use a modiŒed AOS written in C++ that include microsecond timers. The
MMW is written in C, and a SunRPC dispatcher is used to invoke methods on AOS in
these tests. Internal to AOS, all connections are conŒgured to use 128 bits AES encryp-
tion with SHA-1 message authentication.

Tests of the ATP use ACs of 3 sizes: 500 KB, 1 MB, and 5 MB, respectively. Seg-
ments in the AC contain 5120 bytes of random data, with the 500 KB AC containing 100
segments, the 1 MB AC containing 200 segments, and the 5 MB AC containing 1000 seg-
ments. Thetests are run up to 7 times for each AC size. The measurements selected for
this paper are median measurements or close to average. Outliersare observed in the
ATP tests. Inspectionof the MMW log Œles shows that in these cases, concurrent activity
took place in the MMW, for example, a ToC signature is received and veriŒed in the
MMW, while AOS was busy unzipping an AC, corresponding to the concurrent steps 5
and 6 in the Mansion ATP protocol outlined in Sec. 8.3.2. As the MMW and AOS are
concurrently running processes which are multithreaded by design, some interference is
inevitable for measurements of the Mansion ATP protocol in a live system. However, as
such outliers do not represent pure AOS performance, median values are chosen to sup-
press the effect of those outliers.
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8.4.1. Finalizecosts

This section repeats the measurements of Sec. 4.7.2, on the machine used in Sec. 8.4.2, to
allow for comparison of the results.

500KB 1MB 5MB

create ToC 8.4 9.1 14.9
sign ToC 7.7 8.1 11.7

zip AC 34.2 66.4 321.9
sync AC 21.7 36.3 102.7

total 87.6 127.5 450.2

Fig. 36. Breakdown of Œnalize cost (in milliseconds) for ACs using the C++ kernel. Results for the
run with median total cost.

Fig. 36 shows a micro-benchmark of the Œnalize costs of agent containers of 500
KB, 1 MB and 5 MB containing random data. As with the results in chapter 4, ToC
checksumming and signing cause little overhead, even for large ACs. Creatinga zip Œle
and sync'ing it to disk again cause substantial overhead. Zippingoverhead is nearly lin-
ear to the total AC size.Syncis again rather expensive.

8.4.2. Overhead of the agent handoff (ATP) protocol

This section describes the performance of the Mansion ATP protocol outlined in Sec.
8.3.2. Thesetests measure the ATP overhead after an agent has migrated one hop; the
receiving MMW must verify a two-level audit trail.

Protocol step Time (msec)
500KB 1MB 5MB

S Finalize AC 87.6 127.5 450.2
S MMW sign ToC 7.7 8.1 9.0

R AOS extract AC + verify ToC 25.7 215.0 565.6
R MMW check toc signature 0.8 1.4 2.5
R Audit trail veri�cation 1.6 2.6 4.2

S AOS ship_ac completion 68.4 265.2 636.4
S MMW-level ATP completion 171.9 350.6 726.7

Fig. 37. Performance of an AOS-based agent transfer protocol (ATP) with agent containers of differ-
ent sizes. S and R indicate AC sending, resp. receiving side.
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Table 37 shows timings for the most important steps in the Mansion ATP. It depicts
the total time it takes to ship an AC of 500 KB, 1 MB or 5 MB consisting of segments of
5 KB containing random data, as well as some of this operation's component costs.

The overall time for the ATP to complete for a 500 KB agent container is 171.9
msec. For an 1 MB AC, the shipping time is 350.6 msec, and for a 5 MB AC this is 726.7
msec. Thistime does not include the Œnalize time (taken from table 36), but does
includes channel setup, shipment of the zip Œle, receipt, extraction, and veriŒcation of the
AC and the audit trail at the receiving side, veriŒcation of the returned ToC signature, and
committing the ALS update.

Signing and verifying ToC signatures requires public key cryptography. As can be
seen from table 37, the overhead of these operations, as well as for audit trail veriŒcation,
is negligible compared to the overall migration cost.The overall migration cost is domi-
nated by zip and unzip times.Unzip times are the major component of the AOS extract
AC and verify ToC measurement shown in table 37.

AOS-level AC extraction and ToC veriŒcation times are not completely linear with
respect to the AC size. The complete AOS ship_accall only returns if the receiving side
has received, extracted, and veriŒed the AC. Therefore, the AOS ship_accompletion
measurements are dominated by AC extraction cost. The overall MMW-level ATP com-
pletion time is somewhat longer than the AOSship_accompletion time which it includes.
This is caused by the additional interactions required at the middleware level, compared
to the AOS-internal interactions.

The AOS ToC design is optimised to make efŒcient (binary) comparison between
ToC entries of different ToCs in an audit trail possible.As can be observed from Table
37, audit trail veriŒcation is indeed efŒcient: it poses a negligible overhead compared to
the overall overhead. Between 1.6 and 4.2 msec is measured for a 2-level audit trail,
depending on AC size. Note that for ToC comparison, only access to ToC segments is
required, not to other segments. This is because correspondence of the segments in the
AC to the ToC entries of these segments has already been veriŒed by the AOS kernel as
part of AC integrity veriŒcation.

Table 37 shows that the Mansion ATP can be implemented with little overhead com-
pared to the basic cost for Œnalizing an AC and transferring it to another AOS kernel over
a secure AOS channel.The major cost component is zipping and unzipping the AC, and
sync'ing the AC to disk, as was already reported in chapter 4; as indicated there, these
cost components can be optimised away.

In conclusion, the ToC and audit trail veriŒcation mechanism is very efŒcient and
causes negligible overhead comparable to the cost of shipping ACs, even with a 5 MB AC
that consists of a very large number of segments. Further(end to end) measurements of
agents migrating in a complete Mansion system, including agent transfers and agent man-
agement, will be presented in chapter 10.
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8.5. Puttingthings together: the MMW implementation

This section summarizes how the MMW process is internally organised. Thecore of the
MMW is an internalagent tablewith one entry per agent, and a number of RPC services
that implement and provide access to middleware functionality.

The MMW consists of the following RPC services:

ƒ TheMMW_ATPservice that waits for incoming agents;

ƒ SimpleComm, the service invoked by remote MMW processes to queue incoming
messages on interagent connections;

ƒ TheMansionAPIservice that implements the MansionAPI calls described above;

ƒ An RPC forwarder service. An RPC service is created for each object binding,
which forwards the marshalled RPC/object invocation calls to the appropriate object
server for invocation. There is at least one RPC forwarding service endpoint per
agent, possibly also different RPC forwarding services for different object bindings
multiplexed on it. The RPC forwarder service is itself an RPC service.

The ATP service is started by the MMW's main thread, which also registers the ATP ser-
vices' endpoint in the Mansion location service. The ATP service uses an initialised AOS
kernel56. As soon as an ATP connection is made, the service can create an ATP endpoint
on AOS to wait for the AC. After receipt of the AC, a (temporary) entry is created in the
agent table. The agent table is similar to a process table in an operating system; it con-
tains all relevant information about the agent so that it can be looked up easily by the
MMW. The agent table contains metadata such as the agent's AgentID and Agen-
tOwnerID, a list of open connections, the (jailed) agent's local process ID, its jailing
directory, and once the agent runs its PID (process ID) and the PID of its jailer process,
its status (whether it is running or not), etc. This information is Œlled in when the agent's
AC is received, veriŒed, and started up. The target room in which the agent is to be
started up is speciŒed by the sending MMW, which sent this information as part of the
Mansion agent transfer protocol; this information will also Œnd its way into the agent ta-
ble.

Initially, when the agent table entry is created as an agent arrives, its table entry is
locked. The agent's status is set toMIGRATING, which ensures that incoming (re)con-
nection request for the agent are returned the corresponding status; the status may be kept
MIGRATINGin the local MMW, even if the ALS' status is already updated toRUNNING
due to completion of the handoff protocol. The MMW sets the status toRUNNING only

56 The MMW can Œnd the AOS kernel using information provided when started up; typically, AOS is started up just
prior to the MMW, except if a single AOS kernel is shared between multiple middleware processes.
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after the agent process has started and all bookkeeping is completed.
Besides verifying the audit trail as part of the initial handoff protocol, the MMW has

some work to do.It re-instantiates communication channels using information contained
in the AC (i.e., creating an entry for each open connection in the agent table, and creating
a ring buffer for incoming data for each of them and and Œlling it with any received,
unread data found in the agent's AC if applicable). Also, a private jailing directory is cre-
ated for the agent. Also, before accepting the agent, the MMW should check for reacha-
bility of the RMO that is speciŒed in the migration information.

If all preparations are completed, the MMW can start the agent in a jail. It prepares
a jailer startup argument string to pass to theexecveof the jailer program, after forking.
This startup argument contains the jailing directory name, and the contact address of the
RPC endpoint of the MMW's MansionAPI service.

Before startup, the MMW creates a credential in the agent's private jailing directory
(this directory cannot be read by other agents, since these are also jailed) using which it
authenticates to the MMW after startup.The MMW then checks the agent table to verify
that the credential matches the one from the started-up agent to avoid that arbitrary pro-
cesses connect to it in place of the intended agent57. After the agent is started, the MMW
notes the jailerPID in the agent table; the MMW can send signals to the jailer tokill, sus-
pend,or resumethe jailer including all agent processes in it.

After startup, the Œrst thing that an agent does is callbind_rmo. Although the RMO
to bind to is already known Š the handle of the RMO is speciŒed before migration and
cannot be in•uenced by the agentŠt he agent needs to callbind_rmoto create a forward-
ing endpoint for the RMO binding in the MMW; bind_rmoreturns the MCR of this end-
point, such that the agent can instantiate its RMO interface. The agent can then use the
room it has entered using the MansionAPI and RMO interfaces. Onlyafter bind_rmois
called successfully, is the agent's state in the agent table set toRUNNING.

8.5.1. Error handling and the Morgue

If an error occurs before setting the state toRUNNINGand after the handoff protocol, or
if an error occurs in general, the agent is shipped to the Morgue. The protocol for sending
the agent to the Morgue is similar to regular agent migration,except that the Morgue
unregisters the agent from the ALS and stores the AC for later retrieval by the agent's
owner. Similar to cloning, the sending MMW invokes a method calledmorgueifyon the
Morgue service (like the WED, implemented as an object) to make it wait for the AC.
After successful return of the morgue's morgueifymethod, the MMW removes the AC

57 Currently, the MMW generates a new key pair using which the agent can connect to the MMW, using the ScID-based
authentication protocol; this results in an encrypted SSL connection, which is unnecessarily inefŒcient. Theopenssllibrary
makes it possible to revert back to the underlying TCP connection after authentication, which we do. An alternative could
be to simply generate a random string and let the agent present it.
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from its AOS kernel. It is the morgue's responsibility to register the agent's status as
DEAD in the ALS, or to remove its AgentID from the ALS.

In the current implementation, after receiving an AC, the Morgue extracts it and ver-
iŒes the audit trail on behalf of the agent's owner; it places the audit trail veriŒcation log
into a directory that can be accessed by the agent's owner58. The resulting directory is
created in aMultiFileContainerobject that is accessible by an authenticated client pro-
gram of the agent's owner (theAgentOwnerIDis the ScID that is used to authenticate the
client program). The Morgue provides a (private) directory per user, where all morgue-
iŒed agents of this user are stored.All Œles/segments, including TOC entries and signa-
tures and keys of all hops of the agent's itinerary, are available in the morgue's agent
download directory. Thus, the user can verify the audit trail independently if needed.

8.5.2. TheMansionAPI, binding, and RPC forwarding

The MansionAPI is a service that implements several mechanisms. These can be sum-
marised brie•y based on the information provided above and in previous chapters.

One part of the API deals with interagent communication. As soon as an agent sends
or reads from a connection, the corresponding peer's status, peer agent's SimpleComm
endpoint, and/or read buffer status is checked in the connection list in the agent table. If
applicable, the peer endpoint is resolved using the ALS. The corresponding method is
completed either by calling the remote SimpleCall method, or by reading in data from the
local read buffer or blocking if not available.

Agent migration has been described extensively earlier in this thesis. The essence is
that a check is made if a suitable MMW corresponding to the hyperlink's (target RMO's)
object handle in the current RMO can be located. Next, the invoking agent is suspended
(by sending a signal to its jailer process), unwritten or modiŒed Œles from the agent's jail-
ing directory and unread communication buffers are placed in the AC, and the AC is
Œnalized using an AOS call. Next, the agent transfer protocol described in Sec. 8.3.2 is
invoked. This either results in a successful handoff, after which the target MMW becomes
responsible for managing the agent, or in an error, in which case the agent is restarted (its
AC, buffers, and jailed process were only locked, not deleted or killed yet, so restarting is
a simple matter of resuming the agent and unlocking its agent table entry after setting the
agent's status toRUNNINGagain).

58 AC extraction is a service to agent owners, which avoids that they need to be aware of the internal AC layout and
which makes it possible for them to directly retrieve the AC's segment (currently, using aMFC client program). Audit trail
veriŒcation is efŒcient and can takes place as an extra service at little extra cost. The (signed) ToC audit trail components
needed for audit trail veriŒcation are kept with the AC so the agent's owner can redo the veriŒcation if needed. The
Morgue provides a human-readable output log of the audit trail veriŒcation that the agent owner can check. If an error is
found in the audit log, the audit trail's ToC and signature components canŠi f needed Š bepresented to the world owner or
used in court as a means to take action against the MMW/zone member/zone where, according to the audit trail, something
went wrong.
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If migration succeeds, the agent's process is killed, the agent table and communica-
tion buffers are cleared, and its AC is deleted from the AOS kernel. Any bindings, c.q.
RPC forwarding services are cleared automatically (where relevant, error codes are prop-
agated and underlying connections are closed) when the agent process exits, as the under-
lying TCP connection between agent process and MMW is closed. This implementation
was chosen because this way a single approach sufŒces to also handle involuntary exits of
agent processes due to errors, and resulting automatic closure of connections and bind-
ings.

The Œnal part of the API deals with bindings to the RMO and objects in the room.
The MMW uses the RMO to obtain information about entities registered in the RMO,
i.e., the agents, hyperlinks and objects which are in the room. This ensures that opera-
tions on entities in the room (such as binding to objects, or room-local connects) take
place on entities which are indeed in the room.If a given entityID is not found in the
RMO, or if it has the wrong type, the respective operation will return an error to the
agent. As explained earlier, binding to an object is essentially the establishment of a for-
warding RPC service which is internally coupled to the endpoint of the object in an
object server where the object resides.

Except for overwriting the ScID Œeld of an object invocation with theAgen-
tOwnerIDof the agent, forwarding simply involves forwarding the marshalled invocation
to the RPC endpoint for object invocation of the appropriate object server. Obviously,
return values should be forwarded back to the appropriate agent which invoked the origi-
nal method on the object. Although the current implementation of the forwarding mecha-
nism is somewhat complicated, the logic required in the MMW is uniform and rather
straightforward. The forwarding mechanism is independent of the speciŒc object or
method type invoked as marshalled requests need not be modiŒed except for the the Œrst
20 bytes containing the ScID.

RMO bindings are established in exactly the same way as bindings to regular
objects, except that these can only be bound to when an agent enters a room. The current
room's RMO is registered in the agent table, and the MMW can check that bindings are
made to non-RMO objects only in a straightforwardly way, as RMO's are registered as
hyperlinks in the RMO only ‰ implying that migration is allowed, but not binding ‰ and
they hav ea speciŒc object typeRMOindicated in the object handle.

8.6. Summary

This chapter provides an overview of the most important aspects of the design of the
Mansion middleware (MMW), from a functional point of view.

The MMW manages all agents. It uses a jailing system to protect system resources
(both local and remote) against rogue agents. The jailer makes the system independent of
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language-speciŒc security mechanisms such as the Java virtual machine, although the
jailer itself is operating system and architecture speciŒc (system call numbers and argu-
ments differ for different architectures and sometimes even per kernel version, for exam-
ple in Linux, see chapter 6). An agent is a process conŒned in its own jail, along with
possible child processes. Each jail has a private jailing directory, and it can access an
endpoint of the MMW so that the agent can connect the Mansion API and the runtime
stub libraries of (bound) objects.The MMW can directly control an agent in a jail.The
MMW can suspend (and resume) agents, or kill agents. The jailer protects resources such
as local user Œles, including those of the user that started the MMW. An effective protec-
tion system like the jailer is, in our view, a requirement to ensure in a simple, uniform
(thus, language-independent) way that agents can be safely executed, which is one of the
long-standing problems in the adoption of non-Java agents [50].

Agents come with Œles stored in their AC, which can be accessed through the Man-
sion API. Agents are compiled or dynamically linked with a library which contains stubs
for the Mansion API and for the objects used in a world. An IDL and a simple data repre-
sentation is used to compile (stub) interfaces in different languages. Stubs do not imple-
ment middleware functionality. Instead they make remote invocations on the MMW
process. The MMW ensures that the agent can communicate with other agents and with
objects to get its work done, without requiring complex and possibly vulnerable imple-
mentation of middleware functionality inside the agent's address space.

The MMW implements the Mansion API calls and establishes the internal commu-
nication routing required for bindings to objects, and for interagent connections. Access
control lists consisting of ScIDs, corresponding to AgentOwnerIDs or some other (role or
payment based) scheme, are used to govern access to rooms and objects. Agent migration
is implemented by the MMW using a lookup of available MMW processes in a target
room's zone, after which the agent is migrated. If migration is successful, the agent on the
original host is killed; if not, it is resumed in its current room.



Chapter 9
The Mansion API

This chapter explains the Mansionapplication programming interface (API). The
Mansion API contains the methods thatagentsneed to interact with and use. This chap-
ter describes the details needed to understand the API and the mechanisms involved. The
API is implemented by the MMW process using the middleware components discussed in
previous chapters. The Mansion middleware process starts and manages mobile agents,
and provides them with a runtime interface which contains the Mansion API (Sec. 8.2.8).

9.1. Methodsof the Mansion API

This section describes the most important calls of the Mansion API. The Mansion API
consists of calls needed to migrate by following hyperlinks, to communicate with other
agents, to obtain status information from the MMW, to store information in its private
agent container and to retrieve information from it, and to bind to objects.

Fig. 38 shows a simpliŒed list of API calls, grouped by function. The following sec-
tions describe the calls of the Mansion API per category. A following section describes
the RMO interface. A discussion on the implementation of the API methods in the MMW
closes the treatment of the middleware design and implementation.The Œnal chapter of
this dissertation discusses applications of the framework.

201
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Method Description

Context:

get_current_room () get current room ID (object handle)

get_room_par m (par m) get value of some parameter set in RMO

Information about self:

get_gaid () retur ns the agent's own global AgentID

get_hopcount () agent's hopcount (# of physical migrations)

get_parent (depth) get gaid of parent 'depth' up the parental tree

get_clonedepth () how deep are we in the parental tree?

get_r usage () get infor mation on resource limits and use

Migration:

get_target_room (entityID) get handle/RoomID of (target) room

follow_hyper link (entityID) follow hyper link; migrate

jump (RoomID) jump to room directly if allowed (see text)

Communication:

connect_local (entityID) connect by entityid

connect (gaid) connect by global AgentID

accept () wait for connection; accept

send / recv (desc, bytes) read or write bytes onto connection (stream)

close (desc) close connection (descriptor)

select (desc_set[]) select (poll status) descriptor set

get_peer_info (desc) get peer's gaid (if allowed) and MMW scids

Ag ent Container:

create_seg () create a new AC agt_data segment

wr ite/read_seg (seg, offset, bytes) write / read data to segment

delete_seg (seg) if not persistent, remove

set_persistent (seg) persistent seg cannot be removed

keep_on_cloning (seg) keep this segment in child

Objects:

object_bind (objectID) get RPC endpoint to initialise stub (see text)

unbind () delete endpoint

Cloning:

clone () clone (if allowed) in current room

Fig. 38. Overview of the most important calls of the Mansion API seen by agents
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9.1.1. Context

Context-related calls provide agents with a way to obtain their current context, in particu-
lar about their current room. Using this information, an agent can detect whether it is in a
room that it entered before. Suppose a world is a graph. Then an agent could enter a room
from different directions without realising it was there before.Normally, an agent will
determine the target room's RoomID before migration, either from information in the AS
or by using theget_target_room call (see below), however the possibility cannot be
excluded that it obtained incorrect information.

An agent may store the object handle of each room it visits in a segment in its AC.
This is important when an agent has to search through a lot of rooms in a large and possi-
bly complex world.

Get_current_roomreturns the object handle of the room's current room. The object
handle is a world-wide unique and acts as a unique identiŒer for the room.

Get_room_parmreturns Œxed parameters deŒned for a room; a parameter is an
attribute=value string. An example isISCONFINED=1for a conŒned room.

9.1.2. Information about self

Information aboutself is useful when an agent wants to interact with other agents. An
agent should know its own global AgentID, so that it can give this AgentID to other
agents. For example, an agent can place its AgentID in its attribute set in its current room,
or possibly in a white or yellow pages service. An agent can Œnd its AgentID using the
get_gaidcall. If an agent does not explicitly announce its global AgentID in an AS, other
agents can still connect to it using theconnect_localcall that takes the room-relative
entity_idas an argument (see below); if necessary, agents can then exchange their Agen-
tID for later use.

Get_parentandget_clonedepthare important for applications where an agent clones
itself. For example, multiple child agents may search certain parts of a world in parallel to
Œnd a given piece of information. In this case, the child agent can Œnd outif it is a child
(if its clone depthequals 0 it is not), and if so who its parent is, up to its top-level ances-
tor. A conceivable scenario is where the initial agent takes the role of a master which
coordinates work, and where child agents can connect to it to obtain tasks. Another sce-
nario is where agents communicate only with their parents one level up.

The get_clonedepthcall returns the clone depth (depth = 0 indicates the top-level
parent). The return value of theget_parentcall is the global AgentID of the parent at
depth N. Get_hopcountreturns the number of times an agent migrated (usingfol-
low_hyperlinkor jump) since it was injected or cloned.
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The get_rusage call returns a document containing a list of resource limits (e.g.,
time to live) as well as resource usage statistics, formatted as a list of attribute-value
strings. Althougha number of resource parameters are Œxed, additional global parame-
ters by a world may be deŒned by the world designer. These should be documented in
programmer instructions.

9.1.3. Migration

Usingget_target_room,an agent can acquire the object handle of the target room. Based
on this, the agent can decide whether to move to the target room, e.g., by checking a list
of already-visited rooms (see ``room context'' above). The target room's handle is also
useful to derive which zone the target room is in (Sec. 3.3.4).

In some cases, an agent may want to avoid visiting certain zonesŠa n agent owner
may place information about untrusted zones in the agent's AC, which the agent can
check the against the ZoneID in the object handle of a target room. Another way to use
the ZoneID information in a target room handle is to construct a search pattern in which
all rooms in the current zone are visited Œrst, before following a hyperlink to a room in
another zone. In other words, by being able to obtain the RoomID of a target room
(which is available from the RMO), agents can optimise search.

If a world supports thejumpcall (see below and Sec. 3.8.1), an agent may also keep
a list of interesting `̀still-to-visit' ' r ooms, in addition to a ``visited-rooms'' l ist. This may
facilitate searching a world efŒciently.

Migration calls arefollow_hyperlinkand jump. Using thefollow_hyperlinkcall, an
agent follows a hyperlink to a room. If the target room is in another zone, the agent has to
be moved to a MMW process in that other zone, typically on another machine. Agents
have to ensure they store any relevant information in their Agent Container before they
call follow_hyperlink, which Œnalizes the AC. If following a hyperlink is successful,the
agent is killed and restarted in the context of the target room. Otherwise, it is restarted
where it left off, with a return value indicating failure of thefollow_hyperlinkcall.

Jumptakes a RoomID as an argument. If allowed, then, an agent migrates to the tar-
get room, just as if it followed a hyperlink. jumpwas not considered in the original Man-
sion design, and it is not always allowed. It can be disabled completely using a setting in
the world design document. There are also cases where hyperlink constraints (chapter 10)
will causejumpto fail, returning an error and restarting the agent similar as to what hap-
pens whenfollow_hyperlinkfails. This may happen if a hyperlink constraint deŒnes that
the agent's current zone may not link to the zone of the target room which was speciŒed
as an argument tojump. Hyperlink constraints apply to all types of agent migration.Note
that the underlying mechanism forjump is identical to that offollow_hyperlink, only the
argument differs (RoomIDinstead of the room-relativeEntityID).



Sec. 9.1 Methods of the Mansion API 205

A few notes on jumping are useful. By disallowing jumps, it is possible to enforce
structure on an agent's migration path, to force it to follow hyperlinks that form some
predeŒned path.This seems a useful constraint: there may be logical, commercial, or
security reasons for imposing structure on an agent's migration path. An argument in
favour of jumps is that an agent may need to search through alarge number of rooms,
and may need to back-track to ensure that it reached and searched all rooms.

Backtracking 10 rooms to get back to an earlier room (if it is even possible to Œnd
the way back given a particular world topology), implies following 10 hyperlinks and if
not 10 physical migrations, at least 10 agent process restarts, which is very inefŒcient.
Jump allows for skipping these steps and improving efŒciency by simply providing the
identiŒer of the room to jump to. The application of zone-based hyperlink constraints to
jumping makes it possible to still enforce structure on worlds, although creating Œne-
grained structurein the world, i.e., by having zone administrators place hyperlinks in spe-
ciŒc ways, is no longer clearly possible. Clearly, jumping has its pros and cons.For that
reason, it is up to the world designer to decide on whether jumping is allowed.

It is conceivable that Mansion could be extended such that the room from which a
jump is made can deŒne a policy that disallows jumping (possibly by setting a parameter
in the RMO), or a more speciŒc policy which (dis)allows jumping to a speciŒc zone.
Also, the zone to which a jump is made can make inboundchecks: it can verify that the
agent comes from a zone from which a hyperlink may be made to the particular room that
the agent wants to enter. In other words, it may deŒne azone entrance policybased on
the zone where an agent came from.

Note that every zone already has one or more zone entry rooms (ZERs).These are
rooms that are linkable to from other zones. Normally, the default ZER is the Œrst room
created in a zone (with RoomID ending in RMO_0_0); other ZERs can be added to as
part of the zone description in the zone list in the basement.Only a ZER may be linked
to from outside the zone.Other rooms are simply not reachable from another zone, either
by linking or by jumping. This avoids the problem of `̀ deep linking''; deep linking is a
known problem for some Web sites in the World Wide Web. For example, newspaper
Web sites may want to avoid that anyone can link to their articles without Œrst going
through the front-page, which may act as a `̀ pay wall,'' o r which may contain advertising
to similar effect. Zone entrance policies are a generalised form of the above policy, which
can be applied with and without jumping (in fact, the receiving MMW cannot see the dif-
ference).

From the above, it is clear that jumping can be subjected to relevant security and
topological constraints enforced at migration time. In all cases where migration is not
allowed by policy, jump (or possiblyfollow_hyperlink, when a hyperlink refers to an
erroneousRoomID) will return a speciŒc error code to the agent.
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9.1.4. Communication

Communication calls are provided through a socket-like interface. All agents have a
communication endpoint which is always enabled. Agents useacceptto accept incoming
calls on this endpoint.block speciŒes whether an agent wants to wait for an incoming
connection, or return immediately with an error code if no connection request was pend-
ing at that time.

There are two connectcalls. Both have an optional timeoutargument, One connect
call takes an agent's EntityID relative to the room as an argument. This call is intended to
allow an agent to make contact with any other agent in the same room. The other call
takes a global AgentID as an argument. Localconnections are closed automatically when
one of the agents migrates to another room. Non-local connections set up usingconnect
remain active during migration. Unread messages are stored in an agent's AC when it
migrates to another room; after migration, the receive buffers are reinstantiated by the
MMW. When an agent sends data and the peer agent has moved, the MMW will transpar-
ently resolve the peer agent's new contact address and reconnect. An agent is responsible
for keeping track of theConnectionIDs of its open connections by storing them their AC.
Connection identiŒers for non-local connections are persistent until the connections are
closed using theclosecall.

Sendand recv do what their counterparts in BSD sockets do: send and receive
sequences of bytes from their peer, reliably and in order. Errors are given as neg ative
return values.selectreturns the status of the set of connection identiŒers passed as an
argument, e.g., to check whether a descriptor contains data to read.

Get_peer_infodoes not have an equivalent in BSD sockets. This call returns a data
structure which contains the peer's AgentID (if allowed by the other agent. This is gov-
erned by a •ag on theconnectandacceptcall), and the peer MMW's PeerID and ZoneID
(Sec. 3.2.1).The optionsargument of theconnectandacceptcalls contains a •ag that
governs whether one's AgentID is visible to peers that are connected to. With con-
nect_local, AgentID is never provided to the peer. Agents have to explicitly pass their
AgentIDs if they want to establish a migration-transparent persistent connection.

9.1.5. Agentcontainer

This subsection of the API contains AC related calls. These calls concern data segments
only. Data segments are segments which are internally to AOS typed asAGT_DATA.
Other segment types, like those containing MMW data, are not visible to agents.

Create_segis used to create a new data segment. The agent can specify atypeand a
namestring; internally to AOS,typeis placed in an AOSsubtypeŒeld.nameis an unin-
terpreted character string.create_segreturns a segment identiŒer for subsequent calls.
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Write, read,anddelete_segdo what their name suggests: write and read data to and
from a given offsetof the segment, or delete a segment. Segments have semantics compa-
rable to Œles. There is however no internal (implicit) offset and no correspondingseek
call. Offsets must be speciŒed explicitly as arguments to thewrite andread calls. A pro-
grammer can construct an agent library which maintains Œle descriptors with offsets and
construct a library seek method, if needed. Creation of holes (by writing beyond end of
segment) is not allowed and will return an error.

Set_persistentis an important, Mansion-speciŒc call. Once called, the segment is
marked as persistent in the AC, and cannot be removed without triggering an error when
verifying the agent's audit trail (see Sec. 8.3.1). Audit trail veriŒcation takes place in the
MMW which receives an agent. Ifan error occurs, migration is aborted. This conŒnes an
agent to its current MMW, which either modiŒed or removed a persistent segment, made
an error constructing the audit trail, or hadn't veriŒed the AC when it came in.

Keep_on_cloningis important for theclone call; when cloning an agent, only its
code segments are retained, and any segments marked withkeep_on_cloning. The proce-
dure of cloning is explained below and example use is described in chapter 10.

The current Middleware implementation also copies an agent's data segments into a
special directory in the jailing directory before the agent is started up, and writes modi-
Œed Œles back to the AC. Accessingsegments as Œles is very convenient, as system calls
exist to conveniently and efŒciently access Œles directly, and most programming lan-
guages come with libraries that allow Œle manipulation. Also, jailed (binary) programs
can spawn other programs for Œle manipulation or Œltering tasks; some binary agents
(e.g., image analysis programs as outlined in chapter 10) consist of multiple programs,
each performing a ``stage'' on an input Œle. Some scripts, input (conŒguration) Œles, as
well as output Œles can be accessed directly on disk in the agent's private jailing directory.
This way, many (legacy) programs can function without modiŒcation to execute an
agent's task or part thereof.

New Œles written to the data directory are automatically added to the AC when an
agent migrates. ModiŒed Œles that correspond to a persistent segment are ignored: agents
need to keep track of (or mark) persistent segments explicitly, as well askeep_on_cloning
segments. Ifany of the direct AC manipulation calls are used directly, attempts to modify
persistent segments will result in an error.

Note that the jailing directory is private. Agents can access only their own jailing
directories. Theabove directory structure is only created for agent data segments which
are not explicitly subtyped. Thus, agents have a choice to work directly with the API calls
to access agent segments (if needed using atype), and in addition to use the directory
convention outlined above for nontyped segments.
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9.1.6. Objects

Theobject_bindcall takes theEntityID of an object as an argument; ifEntityID does not
correspond to an object registered in the room's RMO, an error is returned. Otherwise,
the MMW establishes a binding that results in an RPC endpoint being created by the
MMW. This endpoint is returned by theobject_bindcall as a Mansion contact record
(Sec. 5.1.3), to which a run-time stub for the object can be connected.

If an agent's runtime system and programming language allow, binding may result
in automatic instantiation of a new runtime object or interface, which is internally con-
nected to the RPC forwarding endpoint created by the MMW for this binding; in a C lan-
guage binding, the stub is a statically linked library which can be initialised using an
MCR, and which returns aBindID such that multiple object bindings can be invoked
using the same (C) library interface.

Unbind removes the binding and the RPC forwarding endpoint from the MMW.
Invocations on this endpoint will now return an error. (Note that multiple RPC endpoints
may be multiplexed onto a single TCP port/connection; each speciŒc binding is indicated
using theindexŒeld which is speciŒed in an RPCrequestheader, Sec. 5.1.3).

9.1.7. Cloning

Theclonecall, internally, follows the same procedure as regular agent injection. This pre-
vents code duplication and ensures that the world entrance daemon is involved in the cre-
ation of clones, which is important for resource protection and security (Sec. 8.2.1).
First, the cloning agent's AC is Œnalized. Next, the MMW contacts the WED, which pro-
vides aclone_get_atp_endpmethod. Thismethod prepares an ATP endpoint on its AOS
kernel, and returns this endpoint and a transaction ID (xid) to the invoking MMW. Next,
the MMW invokes the methodclone_get_resulton the WED interface using thexid as an
argument, which blocks until the clone operation is complete.

Internal to the WED, theclone_get_resultmethod invokes the wait_ac call on its
AOS kernel. Concurrently, the sending MMW uses the AOSship_accall to ship the AC
to the WED. Please note thatship_acdoes not remove the original AC; it only ships a
copy of the AC. This property is essential to cloning as described.

Handoff and removal of the original AC (not needed in case of cloning) is always
coordinated explicitly at the middleware (MMW) level. The middleware level protocol
used is speciŒc for cloning, but it makes use of the same AOS ATP calls and audit trails
veriŒcation mechanism as the regular agent transfer protocol.

After receiving the agent, the WED Œrst checks the AC's integrity using the audit
trail veriŒcation mechanism explained in Sec. 8.3.1. The WED also veriŒes that it has
constructed the original agent's agent passport: agents can only be cloned by the WED
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that injected the original agent. Note the importance: this is the only way a WED can do
resource accounting or limitation, and verify that it knows the agent's owner, substantiate
reversible pseudonym schemes, etc. The WED can keep track of countersŠf or example,
a maximum clone countŠf or its agents.

After all the above integrity veriŒcation steps check out, the WED creates a new
empty AC using its AOS kernel. Then the WED copies over all segments that the parent
agent's AC originally contained, that is, when it was Œrst injected; the WED can deter-
mine this by inspecting the ŒrstToC of the original agent. Any segments marked as
`̀ keep on cloning'' are also copied, and if relevant made persistent. Next, the WED cre-
ates a new AgentIDfor the agent by calling the ALS (Sec. 3.3), creates and signs a new
agent passport for the child agent. It also adds a persistent segment which contains the
child's clone_depthand the child's parentAgentID to the new AC. This information is
relevant for the agent's `̀ information about self'' c alls (see above). All this information is
signed by the WED, by signing the new agent's Œrst ToC. Next, the new agent's AC is
shipped to the MMW that created the clone, or to another MMW in the cloning MMW's
zone; after successful migration, the ALS is updated to contain the agent's new contact
address after migration. Note that this protocol is identical to the one used for injection,
which in turn is the same as the regular agent transfer protocol outlined in Sec. 8.3.2.
Following successful migration, the parent agent's AC is deleted from the WED's AOS
kernel.

During the clone call, the parent agent is suspended by the MMW. The
clone_get_resultcall returns only after the child agent is successfully migrated (or if an
error occurs).Subsequently, the invoking agent is unblocked and receives an error code
indicating success or failure of the clone call. If successful, the clone call returns the
AgentIDof the newly created agent to the parent.

Please note that the way in which theclone_get_resultcall is invoked by the
MMW Š as a synchronous method invocation that returns when the clone operation is
fully completedŠi s an artefact of the fact that the WED, like all Mansion services, is
currently implemented as a passive Mansion object; the object may not do anything, and
has no thread active, in between invocations. Thus, the invocations on the underlying
AOS kernel can only take place while theclone_get_resultcall is invoked.

The world entrance daemons are effectively theroot of trustwith regard to all agents
injected into a world. Theparent agent's WED is involved with cloning, which ensures
that a) the new agent's AC and audit trail is reset to a pristine state, matching the parent
agent's original state, removing all unnecessary data segments in the process, andb) the
WED is able to enforce resource accounting and limiting with regard to the number of
agents cloned by a given top-level ancestor, or of a giv en agent owner. Also notice that
because Mansion disallows cloning by any party except known and trusted WEDs, the
possibility that a world is •ooded by rogue, unknown agents from unknown origin or
with an unknown AgentOwnerID, is limited compared to the situation where agents could



210 The Mansion API Chap. 9

be cloned or injected by arbitrary MMW processes.
The clone mechanism is conceptually clear and straightforward to implement, but

inefŒcient. Anoptimised version is described as future work in appendix 6.

9.1.8. Theroom monitor object interface

This section describes the methods of the room monitor interface (RMO interface). The
RMO is accessible to agents in its room; it contains metadata regarding agents, objects,
and hyperlinks in the form of attribute sets (ASes), which are accessible to agents. It also
contains information which can only be accessed by the MMW, such as information that
the MMW needs to connect to agents (AgentIDs), or theRoomID which is internally
associated with a hyperlink. The information in the RMO is essential to the functioning
of the MMW.

Below is an overview of the most important methods of the RMO interface.

Method Description

Attribute set related methods:

get_entity_list (type) List all entities of a type (may be ANY)

get_entity_type (eid) Retur n the entity's type

as_get_matches (type, template) Return list of matching eids (0 if none)

wait_for_event (type, template) Block until one or more matching eids

get_as (eid) Get the attribute set of an entity

chg_as (eid, AS) Change the AS to speciŒed set

Middleware-internal methods (hidden from a gents):

get_entity_record () Get relevant entity infor mation, e.g., AgentID,

or the object handle of an object or hyper link

in the room

register_entity () Register infor mation, such as AgentIDs or

object handles in the RMO, and the entity's

initial AS

delete_entity () remove entity and AS

Fig. 39. Overview of methods of the RMO object

When an agent enters a room, it is automatically connected to the RMO; the agent
can invoke the attribute set related methods shown above. (Technically, to bind to the
RMO, an agent callsbind_object(0)on the MansionAPI or its equivalent bind_rmo; this
returns the RPC endpoint of the forwarding service to initialise its stub with).



Sec. 9.1 Methods of the Mansion API 211

Agents can invoke only attribute set related methods. These include methods to list
all entities of a given type (get_entity_list). typecan beAgent, Object, Hyperlinkor ANY.
The call returns a list ofEntityIDs. The calling agent can specify theentity_id to start
with, and acountof entities to return.EntityIDs are also returned byas_get_matchesand
wait_for_event, which take atemplate ASas input which is matched with all attribute sets
in the RMO; matching entityIDs are returned. The difference betweenas_get_matches
and wait_for_eventis that the latter blocks until one of the attribute sets match. In all
cases, the detailed attribute set has to be requested from the RMO explicitly using the call
get_as. This call returns the requested attribute set into a caller-provided buffer.

Currently, the AS is formatted as a set ofattribute=valuestrings separated by space
characters, terminated by a NULL character, contained in an array of maximum 1024
bytes. Themaximum size can be adapted by changing the RMO type deŒnition.Chg_as
is used to change an attribute set. The old attribute set is completely overwritten by the
new one speciŒed withchg_as. The RMO ensures that EntityID and EntityType
attributes, set at entity registration time (see below), cannot be overwritten.

The register_entitycall is made to register an entity, and its (initial) attribute set.
The method takes anentity typeas an argument, and a pointer to an AS (or NULL); the
AS may not contain an EntityType attribute or an EntityID attribute; these are deŒned and
set by the RMO. An agent's initial AS is empty except for theEntityTypeandEntityID
attributes. Onlythe agent (or its MMW) can modify or remove its AS.

The internal middleware methods revolve around entity records.The entity records
in an RMO allow any MMW in the zone (also zone member processes where the agent
doesnot run) to obtain information about the entities in the room.

For objects, theentity recordcontains the object's ObjectID; for agents, the global
AgentID(recall that agents may or may not announce theirAgentIDin an attribute set; if
not, the agent is only reachable using the agent's room-relative EntityID by means of the
connect_localcall. Internally, the MMW can look up theAgentIDin the RMO to service
the call). Finally, for hyperlinks, the entity record contains theRoomID, which is the
object handle of the target room's RMO.

The hidden calls of the RMO interface are protected using the RMO's role bitmap.
This ensures that only MMW processes in the RMO's own zone can call the methods for
registering and unregistering entities in the room and for obtaining the entity records.
The internal information about an agent is thus not visible to other agents, but available
only to MMW systems in the same zone.

9.2. Discussion

This chapter provides an overview of the Mansion API and the room monitor object inter-
face, and describes the functionality of the different methods of these interfaces. The
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MMW implementation brings the different components and pieces described in earlier
chapters together. This chapter describes the way in which the Mansion middleware
(MMW), to implement the Mansion API calls, uses other components of the world, par-
ticularly the world entrance daemon and the ALS (particularly, for agent injection,
cloning, and the morgue).

The MMW is a program that contains an agent table and provides services: the Man-
sionAPI and RPC forwarder service to agents, and the agent transfer protocol (ATP) and
SimpleComm services to other MMW processes in the outside world. Mansionuses the
jailer, by means of which agents are conŒned so that they can, by default, only access a
private jailing directory. This directory is also used as a means for agents to access data
segments from their agent container, allowing agents to reuse (legacy) Œle manipulation
libraries or programs without having to use the segment creation and manipulation rou-
tines provided by the Mansion API. The RMO has been discussed, which provides meth-
ods to search the content of a room effectively.

The importance of the RMO is that information about entities in a room can be
shared between all members (MMW processes) of a zone, so irrespective of where an
agent in the room is running. We also described cloning, the approach used to create new
agents with (a subset of) their parent's segments, and morgueifying in detail.

Summarising, this chapter provides an overview of the most important calls of the
MansionAPI, with details on implementation, where needed referring back to previous
chapters for details.In all, this chapter provides a broad overview of the overall function-
ality and implementation of the Mansion middleware system, the MMW in particular.

The description in this chapter is based on the Mansion middleware as currently
implemented, which includes the MOS and all objects and services described in this the-
sis, as well as the jailer, AOS, and the MMW process as described in this chapter.
Although implementation issues and some bugs remain, the system has been used to run
worlds that demonstrate that the paradigm and the MansionAPI as described so far actu-
ally work. The following chapter describes some of these applications and our experi-
ences in using prototype Mansion applications.



Chapter 10
Applications and Experiences

This chapter describes a prototype Mansion world with different agents, and our experi-
ences. Strength and limitations are explored and discussed. The chapter also provides
end-to-end performance measurements to indicate where most of the time goes when run-
ning mobile agents in the current Mansion prototype.The chapter ends with suggestions
for improvement and a discussion.

10.1. Amedical imaging world

This section discusses a world in which agents can search medical images.Agents can
search raw images, using an image analysis algorithm implemented in a legacy (C) image
processing program.The agent used in the prototype makes use of a standard program
and library often used for medical image analysis [85]. The speciŒc images stored in our
world are functional Magnetic Resonance Imaging (MRI) images.

The world provides two types of rooms: conŒned and unconŒned rooms. The core
rationale for using conŒned rooms, is that medical imaging data is personal information
from a legal perspective, and particularly privacy sensitive as it concerns health related
information. This means that (without explicit consent from the patient) the images may
not be shared with people outside the scope of direct medical treatment or, if applicable,
outside the scope of a particular scientiŒc experiment for which consent was given [73].
Without consent, the data may generally not be shared or stored in a data storage or pro-
cessing infrastructure outside the hospital's domain or control [80].

The goal of using the fMRI use case is to show how Mansion can be used to allow
data owners to share information such that it can be easily found and searched without the
data leaving the hospital perimeter if the data is privacy sensitive. This demonstrates the
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use of conŒnement and addresses some of the research questions posed in Sec. 1.5.The
prototype world is one in which binary data is stored in different administrative domains,
hospitals. Eachdomain is a zone containing rooms. Each room can be found using a
straightforward hyperlink topology.

10.1.1. TheMRI use-case: searching sensitive medical data

Magnetic resonance imaging (MRI)is an approach to medical imaging where, using a
set of superconducting magnets (helium-cooled, making the equipment huge and
extremely expensive), human tissue can be scanned 3-dimensionally at a very high reso-
lution in a noninvasive way. No surgery is required, and in contrast to CT-scans, the scan-
ner does not use ionising radiation.Using MRI scans, structural features or artifacts
insidehuman tissue can be detected by scanning through a computer-generated stack of
2-D images. The typical use of MRI is to scan the brain images for visually or algorith-
mically discernible artifacts.

Functional MRI studies are speciŒc neurological studies that make use of time-
seriesMRI scans of the brain. MRI scans are taken of the brain over time while the sub-
ject executes certain tasks, or is at rest. This allows researchers to discover which parts of
the brain are activated due to, for example, motor or cognitive stimulation [85].

Raw MRI data output by a scanner and stored in the hospital's data storage system
does not contain an image of only the brain. It also contains high-resolution information
about bone and skin tissue. From this information, a detailed 3D reconstruction of the
subject's face can be reconstructed. Therefore, MRI images are considered personal,
identiŒable information.

An example MRI scan from an fMRI time-series is used for our experiments, with
consent from the subject. The approach outlined in this section is applicable for any
(MRI) imaging data, not just functional MRI.

Hospitals typically have huge data archives with medical images, stored in a picture
archival system or PACS. The size of (f)MRI data is large Š with older scanners, about
500 MB to 1 GB per fMRI time series, and with newer MRI scanners with a higher reso-
lution, up to 1TB per scan. The fMRI scan used in our prototype application is of the
older variety. The size of the picture archive makes it infeasible to export scans to a client
machine on request, even if privacy issues would not exist.

There is a case to be made for sharing raw medical (MRI) data.For example, a
researcher may be interested in patients that have a particular type of tumour in the left
frontal lobe of the brain, for inclusion in a (retrospective) study or a trial. Finding a sufŒ-
ciently large number of patients to be able to do research and obtain statistically relevant
results is currently often very difŒcult Š andexpensive. Especially with rare diseases
which occur only for a small number of patients spread over a  large geographic area,
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possibly spanning multiple countries, it may be impossible to Œnd sufŒcient patient (data)
to do research on.Similar applies for enlisting patients for clinical trials.Approaches
that help Œnding suitable patients more easily can help. Simply sharing medical imaging
data over the network, however, is infeasible both from a technical (security) and a legal
(privacy) perspective.

Currently, Œnding patients for a trialŠp articularly internationallyŠi s labour inten-
sive and costly. The Œrst problem is to Œnd patients suitable for a particular study or trial,
the inventory phase. This phase typically involves sending a request to all potentially
interested hospitals, which contains a description of the research. In each hospital, the
request is Œrst passed to a medical-ethical committee, which has to agree with the goal
and general approach of the study. If this check is passed, a detailed inquiry may be sub-
mitted. This involves asking the hospital on whether they hav esuitable patients and, if so,
how many. The amount is important, particularly for pharmaceutical trials which are
expensive and impose quite some (administrative) overhead [88]. For this reason, there
often there exists a minimal number of patients that a particular hospital must provide to
participate in a trial.The third phase may imply contract establishment or agreement at
the researcher/hospital level, after which patients are asked to consent or participate.

Note that for a retrospective study, on the basis of patient records or data alone, the
situation may differ slightly as here, any matching patient (record) may be eligible given
that the record matches certain qualitative criteria and cost aspects may be less relevant.
Still, overall the phases are similar.

Many aspects of the selection process involve manual search and checks to take
place, often by doctors or researchers in a hospital, who may need to manually consult
(written) patient records to assess suitability of possible subjects.As this is labour inten-
sive, hospitals may consider it questionable whether the research is worth the effort. As a
result, Œnding a group of patients with a speciŒc disease in sufŒcient numbers to do valid
research with (in particular, valid statistics) is often infeasible.

This chapter describes a scheme that concentrates on the Œrst phase of trial selection,
which in practice is often very cumbersome:

How to Œnd patients with a rare disease, if these patients are distributed all over the
world, while the patients' data may not leave the hospital premises?

The solution is based on conŒnement: agents of researchers can search data locally, after
which the data holder can decide whether research collaboration is useful, based on the
results of the search.
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10.1.2. Exampleuse case and approach

Consider a researcher who wants to explore the occurrence of a particular type of tumour.
This tumour has speciŒc characteristics that can be discerned in MRI images; he has
developed an algorithm that can recognise a tumour in an MRI image with a high degree
of certainty. The algorithm is implemented in an (open-source) fMRI analysis program
calledfsl59. (f)MRI images are nearly always stored in a hospital's PACS system. Note
that for rare diseases, textual patient records often do not mention the tumour, or they
may contain a misdiagnosis or imprecise descriptions. Image search may be the only way
to Œnd patients with a given disease, if this disease is rare enough. A similar scenario may
hold for other data, such as CT scans or DNA sequences.

In the Œrst phase of research, the researcher wants toŒndpatients with the tumour in
which he is interestedŠi rrespective of where they are. Second, the researcher wants to
set up a collaboration with the hospitals that treated these patients, to do a retrospective
study, for example, to discover if patients have characteristics in common (e.g., environ-
mental aspects, other diseases, genetic predisposition, etc.). Third, a trial or follow-up
study may be set up. This may possibly involve other information about the patient, once
the patient is enlisted.Only after agreement is reached on the terms for collaboration
between the searching researcher and the data holder, will patients be asked to consent to
sharing their information with the researcher, or possibly to participate in a trial.

Using conŒnement, the Œrst problem can be solved: Œnding patients suitable for a
trial or retrospective study. Mobile agents can search through raw, un-annotated medical
imaging data to Œnd matching patients. Every hospital provides a a conŒned room in
which one or more objects reside that contain the raw imaging data (MRI scans) from the
PA CS system.

Mobile agents that are conŒned cannot export any data to the outside world, except
by writing it to anexport Œle(Sec. 8.2.15), which is sent to the conŒned room's guardian
agent or its owner after the agent exited. TheconŒned room's owner (or thedataowner,
physician) can evaluate the results and theresearch requestand decide on whether to
participate in the trial or retrospective research. To do this, the data owner can use the
information (search results) placed in the export Œle by the agent of the requesting
researcher. This Œle may for example contain the number of patients that matched the
search, and perhaps additional information. For example, for each matching patient, a
number may be given indicating the probability that the match is correct, or a thumbnail
image may be generated by the agent, showing the tumour, allowing for visual inspection
by the hospital as a check that the matches are correct.

Note the critical characteristic: the data owner obtains the results, not the requester.
In contrast to current practice, using conŒnement, a clinician will receive a request for
setting up research or a trial,together with concrete, speciŒc search resultsincluding the

59 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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(number of) patients that are found to match the request based on an algorithm imple-
mented by the researcher. Hospitals, physicians, and medical ethical committees can now
evaluate whether they wish to partake in a trial not just based on a general research
description, but on concrete results of the customised search that was conductedon-site
by a conŒned agent.

The mobile agent-based search is privacy-preserving: only when the requested hos-
pital agrees to participate in a trial or (retrospective) research, will information be
returned to the requesting researcher(s). Otherwise, not even the number of matching
patients is returned. This is important, since conŒnement is vulnerable to leakage of
information. Since the data owner does not control how searching takes place, returning
anyinformation, even a single bit ("your agent found interesting information, please con-
tact the conŒned room's owner") can be enough to leak sensitive information Š for exam-
ple, whether the prime minister who was admitted to the hospital recently had a brain
tumour (note that the latter may even be found out using ``anonymised'' i mage data, if an
observer can infer the time or ordering in which images are added to the archive).

The power of conŒnement lies in being able to search raw data, such as images and
DNA data, directlyŠa nd possibly in combining this information with textual patient
records containing diagnoses or medication information. The agent's search results are
only visible to the hospital, and Œltered by (manual) inspection of both the research
request and the search results. This way, a human check is included on the (origins of) the
request and the likelihood that the request is legitimate. This limits the chance that a mali-
cious agent implements a highly tuned search algorithm to Œnd out information about one
or a few speciŒc patients in the hospital.

Another way to address this issue would be to remove all identifying features from
images provided by agents (a process called de-identiŒcation), but such efforts are often
error-prone and not always feasible; for example, it may be harder to orient `brain-
extracted' MRI scans to a template than to orient (register) scans that contain facial fea-
tures. The prototype example world does contain "anonymised" MRI scans but only for
convenience of testing. For reasons outlined elsewhere [80,73, 76], real systems should
avoid data anonymisation as a means to `̀ secure'' data sharing as much as possible.

Besides a need for conŒnement for privacy reasons, there are other reasons for using
mobile agents to search data locally. EfŒciency is one: it may be easier to do high-perfor-
mance computation at the hospital side, where a (small) cluster may be available, than at
the client side, where a researcher may only have one PC available.

Adaptability is another reason for local search: agents may be able to search dis-
parate records and combine results. Autonomous agents are often proposed as a suitable
approach to implement adaptive search strategies, where components can be plugged into
the agent for tasks like translation of terminology. The assumption is that it is easier to
adapt or update agents •exibly, than it would be to index data or to modify a (remote) ser-
vice's implementation [28].In short, using customised agents to search data locally is
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itself of value: agents can implement ``adaptors'' f or interfacing with different systems,
and (local) translators can help Œnd speciŒc information in patient records encoded in
nonstandard ways.

The solution presented in this chapter, is to search through raw, un-annotated medi-
cal imaging data, at the place where the data resides. This helps for efŒciency, allows for
a speciŒc search highly customised for a given research question, when the raw data can-
not be effectively be de-identiŒed. ConŒned rooms can implement large-scale distributed
search while protecting against leakage of sensitive content. Thenext section describes a
world set up for this purpose.

10.1.3. Aworld for conŒned and unconŒned MRI data search

This section describes a prototype world designed for searching medical data in different
hospitals, shown in Fig. 40.

Each hospital provides one or more rooms, and the rooms of the hospitals are linked
to each other in a predeŒned way. Every hospital has its own zone, which is registered in
the world's zone list. Every zone has a zone entry room (ZER), that can be linked to. The
ZER has one object containing de-identiŒed MRI data, and a hyperlink to a second room
that contains raw, identiŒable MRI data. The latter room is conŒned. The unconŒned
images are `̀ brain extracted'' i mages that allow agents to `̀scout'' w hether a hospital may
contain interesting patients matching a query, before entering the real search at the possi-
ble expense of hospital (manual labour) time.

Each ZER also has a hyperlink to the next zone callednextzone(by means of an
attributename=nextzone), forming a linked list.It is straightforward to add new hospitals
(zones) to the list.Newly added zones (hospitals) are added at the beginning of the list:
the world entrance room can link to the zone entrance room of the new zone, which can
link to the room that was initially linked to from the world entrance room.

Navigation in this world is trivial: agents follow thename=nextroomlinks to visit all
zones (hospitals) in the world. The simplicity of the scheme illustrates the strength of
Mansion: for this application, having a linked list of rooms (hospitals) is the only thing
needed. Why make it harder? If the world would become really large-scale, different
(overlay) hyperlink structures may be conceived to help agents navigate. For example,
different orthogonal hyperlink structures may group hospitals of different geographical
regions (e.g., US, EU), or group hospital rooms with distinct content types (e.g., CT scans
or DNS data). Possibly, each grouping may internally have an similar linear linked hyper-
link structure similar to used in the prototype. Such sub hyperlink structures can be found
using hyperlink attribute sets.

The conŒned room containing raw, identiŒable MRI images and possibly other
information is calledscans-raw. The hyperlink to this conŒned room has aname=scans-
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raw attribute, and an attribute conŒned=yes(see Fig. 40). This indicates to agents that
the hyperlink is to a conŒned room.

Fig. 40 shows the world described thus far. Every room has an AS describing itself,
associated with theself-hyperlinkEntityID=0. Before entering a conŒned room, an agent
may make a transient note `̀ entering conŒned room'' in i ts AC. Usingthis attribute, an
agent which Œnds a note `̀ entering conŒned room'' in i ts AC, can determine if it is cur-
rently in the conŒned room or back in the original room using theget_room_parmcall. If
back, it can remove the mark. Note that an agent in a ZER can also have a clone enter the
conŒned room. The parent can then move on. The clone can self-destruct when done (see
Sec. 10.1.6).
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Fig. 40. Overview of the prototype MRI world. Hyperlinks with attribute ``name=nextzone'' l inks
refer to the next zone in a ring; a ``conŒned=yes'' attribute indicates that a hyperlink points to a con-
Œned room (in the same zone); hyperlinks with ``name=WER'' point back to the world entrance
room (WER). The WER can contain links to the zone entrance rooms of all zones (not shown). Con-
Œned rooms contain raw MRI scans, and possibly other objects interfacing with, for example, patient
records. Regular rooms may only contain de-identiŒed information such as brain-extracted MRI
scans.
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For navigating the world in Fig. 40, a few simple conventions sufŒce. These are
directly encoded in thename=attribute:name=scans-bet(for objects containing de-iden-
tiŒed scans) andname=scans-raw(for a conŒned room that contains an object with raw
non-de-identiŒed MRI scans) are names with a well-known meaning within this world.
This convention also holds for thename=nextzoneattribute.

In the prototype, agents recognise the different names in a world and act correspond-
ingly, for example, to implement a search algorithm. In complex worlds, it may be infea-
sible to encode all relevant information in a single name attribute, and attribute sets may
thus be much more extensive: attributes may for example indicate the type of image
stored in aMultiFileContainer (MFC)object (e.g., MRI scans or CT scans), or attributes
may describe speciŒc properties of the image types (e.g., resolution, pixel depth, etc.)
grouped in a speciŒc object. Hyperlink attribute sets may similarly indicate "groups" that
a room belongs to; region=EU/VS and scantype=MRI/CT rooms are examples.

In the prototype world, images are of one type only, and there are only two types of
Œle in each MFC, recognised by extension: one containing the raw image data of the MRI
scan, and another containing this 3D image's orientation (transformation matrix) (details
below). Every MRI scan has a different Œle name.

The conŒned=yesis a standard attribute for hyperlinks to conŒned rooms.Agents
can request the RoomID of a target room from their MMW, this allows image agents to
detect if they hav ealready visited a room before. Note thename=..attribute in the con-
Œned rooms.name=.. is a convention which means "back" in Mansion. In the world
shown in Fig. 40, the room structure of the world is simple and straightforward, allowing
for back links only from conŒned rooms. The few naming conventions provide sufŒcient
information for the prototype agent to navigate this world.

The following section describes the MRI data analysis application in detail.After
that, we describe the agent program used to search the above-outlined world. Subse-
quently, performance measurements are described for agents that search the (unconŒned)
rooms, as well as possible optimisations of the Mansion implementation.

10.1.4. MRIdata preparation and image analysis

Every hospital in this world provides two rooms: a conŒned rooms with raw, identiŒable
MRI scans, (this can be extended to contain more identiŒable patient data to allow for
more detailed matching, taking contextual information into account), and a regular
unconŒned (entry) room that contains de-identiŒed MRI scans that can be searched
directly. The latter data can be pseudonymised, such that the hospital (but not the agent
owner) can re-identify the patient, for example for follow-up questions.

An advantage of searching unconŒned data is that the room/data owner need not
check the result of a conŒned agent's search. An agent can take results home directly and
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only contact the hospital or data owner with follow-up questions if needed. Whether the
conŒned or unconŒned approach is chosen depends on the application, and on whether
conŒned search provides agents with signiŒcantly more information than a search over
de-identiŒed information doesŠa ssuming de-identiŒcation is possible.The choice need
not be binary. It is possible that a pre-preparation agent scouts the de-identiŒed informa-
tion Œrst, to Œnd out whether there is potential for a more detailed search in the conŒned
room. The conŒned room, like any room, has an ACL, and before an agent can enter, its
owner needs to be authorised; it may be that an agent is allowed into the conŒned room
only after registration, to prevent overloading the room's owner.

A (precompiled) program calledfsl is used for image analysis, along with support-
ing programs. Fsl has been speciŒcally developed for (functional) MRI and DTI (a
related form of imaging) brain image analysis.To de-identify MRI images, fsl provides a
program called BET, for brain extraction. A surface modelling approach is used to detect
the brain-skull boundary, to remove the skull and facial aspects from the MRI image and
keep only the brain.

Assuming that no features inside the brain are in themselves identiŒable and that no
information about the patient is included in the image header, in the Œle name or in its
attributes (e.g., creation time), it may be sufŒcient to assume the data anonymous and to
allow sharing of the data more or less freely. Entering the world may still require regis-
tration as a researcher. BET pre-processed MRI images are stored in a Œle container
object in the zone entrance rooms calledscans-bet(Fig. 40).

The image processing in our prototype makes use of a few programs that come with
fsl. Thedescription of these programs makes clear why the object in the world entrance
room contains an object calledmaster-templates.

Image processing in the prototype consists of the following steps:

ƒ An agent owner manually draws aRegion of Interest (RoI)in a templateimage.
This allows the image analysis to focus on, to select for example the left frontal
lobe. Different master-templateŒles for brain-extracted and non-brain-extracted
MRI scans are stored in an object in the world entrance room.

ƒ The template brain images must be ``registered'' w ith each MRI image in the world;
registration means that the 3D-orientation of an MRI image is modiŒed such that it
corresponds to the template brain image, so that a RoI can be mapped on it.Regis-
tration results in a transformation matrix which is stored in a Œle separate from the
MRI image. Registration is a CPU-intensive task. An advantage of using a world-
wide template image, is that hospitals can preprocess their MRI scans by registering
them to the template image and creating a transformation matrix before placing MRI
images in a room. Each MRI image therefore comes with a transformation matrix
that has Œle name extension.tr.mat. RoIs can be drawn in the standard template
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image available from the world entrance room. A different template is available for
brain-extracted scans.

ƒ Giv en that the transformation matrix is known, it is straightforward to map the
region of interest (drawn on the template) over a registered MRI scan, and to do cal-
culations over it. Statisticalcalculations over the RoI calculate the minimum, maxi-
mum, median, and average intensities of pixels in the RoI. A relatively high average
intensity compared to an image's minimum intensity may imply something useful to
a researcher, such as whether a potential tumour may be visible inside the RoI; a
more realistic agent could implement a more involved algorithm, for example to
detect particular contours or shapes (using segmentation), but this is outside the
scope of this research.

The image analysis pipeline implemented in our prototype agent consists of the two pro-
cessing steps described in the last bullet: the mapping of the RoI onto each MRI image
using the transformation matrix, to create an intermediate Œle with everything but the RoI
Œltered out. This is followed by processing of the intermediate Œle to calculate some sim-
ple statistics.

The two processing steps are executed by bash script, which calls the binaries with
appropriate startup arguments. Thescript is executed by an agent, with as arguments the
`̀ base name'' of a MRI data Œle and the transformation matrix. The agent, bash script and
fsl programs are executed within the agent's jail.

10.1.5. Aprototype image analysis agent

This section describes a prototype agent. This agent is used for performance measure-
ments described in a later section. The prototype agent simply searches through all rooms
for objects calledscans-bet, downloads their content, and runs the imaging pipeline over
one of the MRI scans. Then, it moves on to the next room (which is in the next zone).
Since for performance conŒnement is not relevant, the prototype searches BET-extracted
images from the unconŒned zone entrance rooms.

After entering the world entrance room, the agent follows all"name=nextroom"
links until it arrives back in the world entrance room. In every room it visits, the proto-
type agent retrieves all image and transformation matrix Œles from the object that con-
tains the (brain extracted) scans and runs the script implementing the image processing
pipeline. The script processes the data in the jailing directory, to which intermediate Œles
are written. After executing the script for a given MRI scan, the agent writes the Œle con-
taining the statistics results into a directory in the jailing directory which, by convention,
is written to the AC before migration. In a conŒned room, this Œle (export) would be
picked up by the guardian agent.
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The full prototype agent is shown below (only some comments and details removed):

#include <stdio.h>
...
/* C agent libraries */
#include "agtlib.h"
#include "mmw_c_stub_MansionAPI.h"
#include "mmw_c_stub_RMO.h"
#include "mmw_c_stub_MFC.h"

static int err;
static char buf[255];
static char *outbuf=NULL;

/*
* E xecute script (image analysis pipeline).
*/

int do_work(char* filebase, int hop) {
/* Output is written to a file in agent's data directory

is saved in AC automatically by middleware when following
a hyperlink.

*/
sprintf(buf, "code/linux_x86/scr.sh %s.nii.gz %s.tr.mat hop_%d_%s",

filebase, filebase, hop, filebase);
return system(buf);

}

/*
* Download all content that matches kword (e.g., "scan") from object
*/

int get_and_process_content(int entity_id, char* kword, int hop) {
..
mmw_obj_binding_p ob;
mmw_mcr_t ob_mcr;
mfc_dirent de[200];
mfc_stat s;

/* Mansion API call returns MCR of forwarding service */
err = MansionAPI_object_bind(entity_id, &ob_mcr);
ob = mmw_c_bind(&ob_mcr);
i = M FC_getdirents(ob, ".", 0, 200, de);
for (k=0; k<i; k++) {

if (strstr(de[k].name, &s) {
MFC_f_stat(ob, de[k].name, &s);
outbuf = realloc(outbuf, s.size);
MFC_read(ob, de[k].name, i, s.size, outbuf);
/* And write outbuf to file.

File looks something like scan3.nii.gz or scan3.tr.mat
*/

char *filebase = strchr(de[k].name, '.');
if (filebase != NULL) *filebase = '\0';
do_work (de[k].name, hop);

}
}
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mmw_c_unbind(ob);
return 1;

}

int main (int argc, char** argv) {
..
mmw_obj_binding_t *binding = bind_rmo();
int hop = MansionAPI_get_hopcount();
mmw_oh_t room;

/* Initializing libraries with specific arguments */
mmw_rpc_init(&argc, argv);
mmw_mos_comm_init(&argc, argv);
MansionAPI_library_init(mcr);

MansionAPI_get_current_room_handle(&room);
/* Check not visited yet, if been here before,

exit. Write room handle to AC segment [data/visited_rooms]
*/

/* Obtain list of all objects (by EntityID) from the RMO */
k = RMO_get_entity_list(binding, OBJECT, 0, 200, buf);

/* search through objects, do something useful */
for (i=0; i<k; i++) {

/* Obtain AS, search if object matches pattern */
RMO_get_as(binding, buf[i].entity_id, &as);
if (strstr(as.as, "scans-bet") == NULL)

continue;
get_and_process_files(buf[i].entity_id, kword, hop);

}
}

/*
Here's the part where the agent programmer should implement
a migration or cloning strategy. For the prototype, the
approach is simple: follow all name=nextzone links, that's it.

*/

/* Request up to 200 hyperlink EntityIDs from RMO */
k = RMO_get_entity_list (binding, HYPERLINK, 0, 200, buf);
for (i=0; i<k; i++) {

RMO_get_as(binding, buf[i].entity_id, &as);
/* Current AS implementation is a string of attributes

separated by space characters. Null-termin. is checked.
*/

if (strstr(as.as, "name=nextzone") != NULL) {
/* Check if target room hasn't been visited before, check OH

of hyperlink against [data/visited_rooms] list.
Also check the target room's zone (compare against
[data/zones_allowed] list). Details omitted.
If been there, skip. Else, follow hyperlink.

*/
MansionAPI_follow_hyperlink(buf[i].entity_id);
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}
}
/* If we fall through (no "nextzone"), exit and be morgueified */
exit(0);

}

Fig. 41. Code excerpt from the prototype image search and analysis agent

The agent in Fig. 41 is simple and straightforward. The code consists of a few parts:
mainsearches through the room for objects that match a keyword described in its AC; in
this case,name=scans-bet. For every matching object it Œnds, it calls the method
get_and_process_Œles. This method binds to the object, downloads its content, and runs
the image analysis pipeline over it, by calling the scriptscr.h with the appropriate Œle
name. This happens in methoddo_work. The code then searches through the hyperlinks
of the room, for a keyword name=nextzoneand follows that hyperlink.

The agent above assumes a homogeneous world layout, where all hospital rooms
can be found using ``nextzone'' l inks, and where brain-extracted images are always found
in an object in the zone entry room calledscans-bet, containing the image Œles with
extensions that adhere to the standard naming convention. Few if any attributes are
needed to describe entities in this world. The above agent ignores conŒned rooms, it goes
for nextzonerooms directly. An agent that searches for conŒned rooms looks for the
name=scans-rawor conŒned=yattributes and follows this hyperlink, or create a clone to
follow it. Worlds where different hospitals use different MRI formats can have attributes
describing image formats and parameters in the AS of rooms/objects storing them.

Being able to deŒne simple to use, speciŒc hyperlink layouts for speciŒc applica-
tions like the one illustrated above is one of the advantages of using application-speciŒc
worlds. Asa result, the agent's implementation can be kept straightforward, simply iter-
ating through a set of linearly linked rooms.

An example of what an agent can Œnd in a zone entry room is illustrated below,
together with a listing of the Œles found in ascans-betMFC object. The listing (ls) at the
top lists the content of the room as seen by the Mansion administrative shell, Mash.
Numbers to the left areEntityIDs. O means Object,H means Hyperlink. ``cd'' is a short-
hand, which means `̀ bind or enter''; cd to an object (scans-bet) puts the Mansion shell
into MFC mode. The ``f ' ' in t he MFC listing means ``Œle.'' T his particular object does
not contain directories, but others may, and these would be indicated using a ``d.'' I nfor-
mation about Œles in an MFC is obtained using theMFC_f_statcall, which was also used
in the agent code listed above.

Mash#: ls
0 H .
1 H scans-raw
2 O scans-bet
3 H nextzone
Mash#: cd scans-bet
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scans-bet O5NOYLPD2VTZZ3ZHTXVE3BQ5U74G3LRE_MFC_0_0
Mash#: ls
2008-10-20 18:36:56 f 10573884 scan3.nii.gz
2008-10-20 18:36:56 f 140 scan3.tr.mat
2008-10-20 18:36:56 f 10488424 scan4.nii.gz
2008-10-20 18:36:56 f 141 scan4.tr.mat
2008-10-20 18:36:56 f 9950629 scan5.nii.gz
2008-10-20 18:36:56 f 138 scan5.tr.mat

Fig. 42. Example of a room's content and object content viewed using theMashadministrative shell

Fig. 42 shows the MRI image Œles, with extension.nii.gz (with an image size of
about 10 MB; a single MRI scan from an fMRI time series), and the transformation
matrix Œles (.tr.mat) that results from registering the image against the template brain-
extracted MRI scan in the objectmaster-templatesin the world entrance room.

10.1.6. Searching and cloning

If there are a large number of zones (and rooms) in a world, visiting and searching all of
them sequentially is often not time-efŒcient, particularly when there are many rooms. A
strategy to speed up search is to create an agent to search each zone onward. Similar
applies to any world where a large number of rooms have to be searched, or when these
are not linearly structured and/or if a world supports jumping.If the WER contains links
to all zone entrance rooms, implementing parallel search is trivial: just have an agent cre-
ate a clone (child agent) for each hyperlink from the WER; the parent agent can let each
of its children follow a link. Theparent agent can remain in the world entrance zone to
coordinate work among its children, and/or to collect results.

This section describes a cloning agent and describes its use.
An agent that implements cloning is shown below. It creates clones whenever more

than one outgoing link exists that needs to be followed; in the code below, this is checked
by iterating over all attribute sets, searching for hyperlinks that are notname=. or
name=... The cloning agent is a variation on the linear search agent described in Fig. 41
and has been tested.

If more than one outgoing hyperlink exists, a clone agent is created for each extra
hyperlink. Next, the parent waits for a connection from the clone(s)(Mansion-
API_comm_accept). After the connection is accepted, the parent sends the child a mes-
sage containing theEntityID of the room to enter. Only the parent's code used for
cloning is shown. A child checks its clone depth to Œgure out that it is a clone and con-
tact its parent; other methods exist (i.e., placing information in the AC) exist but are not
used in the prototype. Note that like with UNIX fork, the parent and the child's code are
the same, except that in Mansion, a child starts frommain. Thus, the code for handling
parent and child functionality should be present in an agent's code (not shown).
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h = RMO_get_entity_list(binding, HYPERLINK, 0, 200, buf);

/* Go through all hyperlinks and, if not a self or back link,
* a nd if there is more than 1 outbound hyperlink, clone.
* T ext describes subtleties.
*/

for (i=0; i<h; i++) {
if (RMO_get_as(binding, buf[i].entity_id, &as)) {

/* filter out self and back links */
if ((strstr(as.as, "name=." != NULL) ||

(strstr(as.as, "name=..") != NULL))
continue;

r++;
if (r > 1) { /* Found >2 hyperlinks, clone now! */

/* Child agent's gaid is put in child.gaid */
MansionAPI_clone(PURGE_DATA_SEGS, &child);

/* Wait for child to connect.
* Child will connect if it finds its clonelevel over 1 */

connid = MansionAPI_comm_accept(1, BLOCK, &peer_gaid);

err = MansionAPI_comm_recv(connid, 1024, testbuf, BLOCK);

/* Send command to do to child, e.g., room to enter. */
n = s trncpy(testbuf, atoi(buf[i].entity_id), max);
err = MansionAPI_comm_send(connid, n, testbuf, 0);

MansionAPI_conn_close(connid);
}

}
}

Fig. 43. Example code for a cloning agent

The above code fragment is simple; it substitutes the Œnal part of the agent code in
Fig. 41. The cloning algorithm works in the world entrance room explained above, but
also in other cases where an agent Œnds itself in a room with multiple outbound hyper-
links. First, the agent searches the list of hyperlinks in the RMO.If there are more than
one outbound links (excludingself (name=.)or back (name=..)links60), the agent clones
itself so that a child can follow the extra link(s).

After startup, the child agent's code (not shown) will check its clone depth and con-
nect to its parent, which sends theEntityID of the hyperlink to follow to its child.

An agent can check its clone level using the callMansionAPI_get_clone_depth. If
its clone depth is nonzero, it contacts the top-level parent whose AgentID is found using
the Mansion API callget_parent(0). This sufŒces if the Œrst agent coordinates all the
work in a world, i.e., using amaster-workerscheme. If clones can also create clones,
things may become slightly more complicated; it may then be useful to place (transient)

60 The naming convention for self and back-links is chosen for familiarity, as a similar naming convention is used in
UNIX directories. Back-links are useful in worlds with a linear or a tree structure, allowing agents to go back to the previ-
ous room in worlds where jumping is not allowed (Sec. 2.3.12).
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information in an AC segment before callingclone, to contain information for the child
about who to call and what to do. The AC provides a straightforward and •exible com-
munication mechanism between parent and child that an agent programmer can use.

After connecting, the code of Fig. 43 activates by returning from theMansion-
API_comm_acceptcall. The child sends a question to its (grand)parent, which returns the
EntityID of the hyperlink to follow.

Some details about the code in Fig. 43. The •agPURGE_DATA_SEGSto theMan-
sionAPI_clonecall is used to control which agent data segments are copied to the child.
By default, the child agent inherits all segments of its parent including data segments,
such asa visited rooms list. However, a number of segments may not be needed by the
child, for example, results collected by the parent. By specifyingPURGE_DATA_SEGS,
no data segments are copied over when the WED creates the clone, except for segments
marked using theMansionAPI_ac_seg_keep_on_cloningcall (not shown).

Keeping data segments is useful when, for example, an agent creates a segment that
contains instructions for a child agent on what to do before cloning. Thus, a ``master
agent'' may place different instructions in this segment for different child agent (e.g., dif-
ferent keywords for objects or rooms to search for). This mechanism avoids the need to
communicate instructions explicitly to every child. Code segments are always kept on
cloning; this means that if certain tasks require very different agents, that is, with differ-
ent code segments, these should be injected as different agents.For more details on the
cloning procedure, please refer to Sec. 9.1.7.

From informal observations, it appears that cloning takes approximately twice regu-
lar migration times described in earlier chapters and in Sec. 10.2. This makes sense,
given that an AC is shipped to the world entrance daemon, copied there, and sent back.A
tradeoff exists: the time it takes to create a clone, compared to the time a task takes with-
out cloning, determines whether it is useful to clone.

A few notes on future optimisations.As described in appendix 6, the clone proce-
dure can be optimised to limit the load on the WED.Such an optimisation is useful: if
cloning takes multiple seconds per child, then one agent that creates many clones sequen-
tially could become a bottleneck.

Further, a •ag DONT_MORGUEIFYcould be considered for the clone call. This
•ag is not implemented, but may be useful to prevent that many `̀ one-off' ' agents that do
a small (sub)task are sent to the morgue, overloading this system and the agent's owner
with returning agents that carry no useful resultsŠp articularly if these agents communi-
cate results back to their parent or a master agent.There may be limitations. Sometimes,
ev ery sub-agent should return, for example, so the agent's owner can check each agent's
audit trail for securityŠe .g., when unsure how many hops a child may take. Having dif-
ferent subtasks return separately may also be more reliable than having a central master
(which may fail) collect and return results.
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Again, as so often in Mansion, a trade-off must be made on the basis of requirements,
scale, and purpose of an application, resulting in a particular organisation of the multia-
gent application.

10.2. End-to-endperformance of the prototype agent

The agent shown in Fig. 41 is used for basic measurements on how this agent performs.
These measurements include migration, copying Œles from the AC, agent startup, copying
Œles to the AC, Œnalizing the AC, migrating and starting again, retrieving Œles from an
MFC object, running the image analysis pipeline (script +fsl analysis programs) in a jail,
and migrating again. Thefsl script execution time is arbitrary; other applications may
take longer or shorter to execute. Theperformance of a given binary program depends on
whether a program is system call intensive (chapter 6), and also on whether it requires
large (or many) input Œles: it is impossible to select a program as representative of all
types of agents.

The performance measures are made on the DAS3 research cluster61 which was also
used for the tests in Sec. 8.4.In the setup used here, every zone runs on one node, with
MOS and MMW on the same machine. All Œles including the jailing directories of
agents, are mounted NFS directories. AOS is the only component that stores its internal
Œles (AC, zip Œle, segments) locally, on /tmp. Middleware processes were conŒgured to
communicate using TCP, without AOS. Thetests are end-to-end measurements; micro-
benchmarks were described in chapters 4 and 6.

The tests are run with an agent that initially, when injected, contains 32 Œles, with a
total size of 34 MB. (The total size of the agent's AC is thus a lot larger than the ones
described in Sec. 8.4). The agent, besides thefsl programs, also transports two MRI
scans of approximately 10 MB each along, as well as a template scan with a region of
interest (RoI) drawn in. AC size is arbitraryŠa n extreme case.

Another mild extreme is in the agent's computational demands: calculating statistics
over a single scan takes approximately 60 seconds. Such numbers are not uncommon in
(desktop) grids, and Mansion also addresses grid application scenarios (although then run
where the data resides).For this example, assume that all hospitalsŠa s most hospitals
nowadays doŠh av ea (small) cluster available which allows agents to do such computa-
tions, possibly multiple in parallel on different machines. Note that when local computa-
tional power does not sufŒce, hospitals can (dynamically) acquire extra computational
power, e.g., from cloud providers, as a `̀ private grid'' [ 73].

Note that the task at hand is trivially paralleliseable: each agent (imaging script)
takes a single MRI image and analyses it; when more images are available, these can be
handled sequentially by a single agent, or more agents can be deployed (e.g., by cloning)

61 http://www.cs.vu.nl/das3/



230 Applications and Experiences Chap. 10

to analyse different images in parallel, on different machines. Future work may consider
approaches to allow agents to spin off (jailed) subtasks on different machines in parallel,
without cloning.

In addition to the performance of the above-sketched task, the base performance
overhead of an agent excluding the computationally intensive tasks is measured.These
results, combined with results shown in chapter 4 and 6, provide an estimate of end-to-
end performance for different types and sizes of agents.

10.2.1. Experimentalprocedure

Various aspects of the agent's end-to-end time in the world are measured by inserting
microsecond timers in both the MMW and agent code. Timings are written to standard
output, captured, and analysed later. Agent transfer time is measured, withŒnalizeand
AC extraction times separate, as well as the overall time that it took from invoking fol-
low_hyperlinkto agent startup on the next host. The size of the agent's AC is almost
identical on each hop; a few small segments are added for the audit trail mechanism and
to keep standard-out and standard-error logs of the agent.

The overall execution time differs per host. Execution time is measured as the time
from startup tofollow_hyperlink. On hop2 and hop3, the agent retrieves two and three
MRI scans respectively. The time it takes to download the MRI scans to disk (i.e., to the
agent's NFS-mounted62 jailing directory) is measured, and the time to execute the imag-
ing pipeline on an MRI scan (once per hop). As the MFC object runs in an object server
located on the same machine as the agent, local RPC calls to the MOS are measured. The
MFC object reads the MRI Œles that are retrieved by an agent from an NFS-mounted Œle
system. TheMOS does runs MFC objects as separate processes (chapter 7).

The experiment consists of the following steps. First, 2 measurement series are
taken with jailing of agents enabled. Second, 3 measurement series are taken without
jailing, to see if jailing in•uences the various timings during agent execution. Each mea-
surement series consists of 3 hops; averages (and standard deviations) are calculated
using the measurements of all hops in the series, so based on measurements of 6 and 9
hops, respectively. Below, the migration times as measured in the experiment are
described. Results related to agent execution and jailing measurements are described later
in this chapter.

62 Using an NFS mount for jailing directories is suboptimal, but re•ects a common use case.Many people use NFS-
mounted home directories on shared UNIX systems, and using /tmp for Mansion as a default is not feasible since space on
/tmp is often limited. Clean measurements (without NFS) were described in chapters 4 and 6.
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10.2.2. Migration times

The results of the 5 measurements described above is listed below. An agent migrates
through the unconŒned rooms in the world shown in Fig. 40. The agent is shown in Fig.
41. Fromthe world entrance room (hop1), the agent goes to the Œrst hospital zone
(hop2), from which it migrates to the second hospital zone (hop3). In ev ery room, the
agent searches for an object names ``scans-bet,'' a nd if that exists binds to it, downloads
the MRI scans to its jailing directory, and executes the image pipeline script on one of the
downloaded MRI scans. If tasks are completed, or if noscans-betobject is available, the
agent searches for a hyperlink with an attributename=nextzoneand follows that.

In the Œrst room the agent does not Œnd a scans-bet object, so its task is done
quickly, and migrates onward. Onhop2, the scans-bet object contains two MRI scans of
10.7M and 11.7M respectively, and two small Œles containing the transformation matrix,
of 140 and 141 bytes, respectively. Hop3contains a scans-bet object with tree MRI scans
and corresponding transformation matrices, of comparable size (10.6M, 10.5M, 10.0M,
and 140, 141 and 138 bytes).Hop3does not contain aname=nextzonelink, so the agent
exits and is shipped to the morgue.

Fig. 44 describes agent transfer times, as an average over all measurements. Shown
are Œnalize, agent handoff, extraction of all code and data segments to the AC, and the
total time from migration to agent startup which includes the previous three times.All
steps measured are identical for each run series and on each hop, irrespective of whether
jailing is applied or not, so the average over all runs is taken. Standard deviation is also
shown.

Measured protocol step (seconds) Average Std. de v.

Migration total: follow_hyper link to startup 6.102 0.186

Œnalize 2.292 0.041

handoff 1.171 0.016

AC extract code/data segs to jaildir 2.359 0.090

Fig. 44. Timing of total AC migration and its main contributing factors: Œnalize, handoff, and
extraction of code and data segments before starting up the prototype agent. Average over 5 runs,
with constant AC size of 34 MB.

As can be observed from Fig. 44, measurements are quite consistent, with low stan-
dard deviations. The total agent migration time takes approximately 6 second, with most
of the time (over two thirds) spent in Œnalizing and extracting the AC. Consistentwith
chapter 4, Œnalizing and extraction of segments contribute signiŒcantly to migration cost.
The cost of Œnalizing an AC in AOS is in line with the measurements shown in Fig. 37.

The row handoffindicates the time it takes for the Mansion ATP to complete.This
is the time needed for shipping the Œnalized AC, using the procedure described in Sec.
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8.3.2. Aftersubtracting Œnalize, handoff, and AC extraction cost from the total migration
cost, only 0.28 second is left, which is the time needed to manage the agent: register an
agent table entry, create a jailing directory, creating an agent key and starting a (jailer
with an) agent.

AC extraction takes place after handoff, and consists of the MMW extracting all data
and code segments into the jailing directory, prior to starting up the agent. This differs
from the AC extraction step shown in Fig. 8.4.2, which measures extraction of segments
inside AOS. TheMMW automatically extracts code and data segments to the agent's
jailing directory, including the large MRI image Œles, the agent, image analysis programs
(code segments), and data before the agent is started up.63

AC extraction times include only extraction of an AC after follow_hyperlink. Extrac-
tion of the AC in hop1 right after injection (not shown) is approximately 1.4 seconds
aster: the average time it takes to extract the (practically identical) set of code and data
segments on the Œrst hop is only 0.953 seconds, with standard deviation 0.090.

10.2.3. Executiontimes

This section describes the measurements of agent execution times from the measurement
series described above, which include measurement of the image analysis tasks that are
part of the agents. Two measurement series were made with jailing enabled, and three
without (see Sec. 10.2.1).

The agent execution (image analysis) tasks differ per hop.Hop1 does not have a
scans-betobject available, so here the agent searches the RMO only before moving to the
next room (hop).Hop2contains an object with two MRI scans.Hop2contains three MRI
scans. Theagent downloads all of them, but runs the imaging pipeline over only one of
them (for the purpose of the measurements, the agent was modiŒed to analyse only one
image). Different measurement series are run to see if there is a difference in execution
times for agents which are jailed versus agents which are not jailed. These are shown in
different columns in Fig. 45.

In Fig. 45, every row indicates a stage in the execution of an agent. Every row indi-
cates a different stage or a different hop. On different hops, agents have different things to
do. Themost relevant results are discussed in order of the rows depicted in Fig. 45.

Row 1 contains the execution time of an agent onhop1. All an agent has to do on
hop1, is search the attributes set of the RMO for an object calledname=scan-bet. The
agent does not Œnd this object, so it then searches for a hyperlink with attribute
name=nextzone, and follows that hyperlink. Besidessearching the RMO, the agent reads
and writes a few Œles from its jailing directory. These are extracted from the agent's AC
by the MMW before it is started up (times not included, shown in Fig. 44). These Œles

63 Possible optimisations were discussed in Sec 4.7.2.
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are created by the agent's owner and contain the keywords (attributes) needed by the
agent to Œnd matching objects and hyperlinks. For hop1agent execution takes 153 msec
if jailed, and 129 msec if unjailed.

Hop / measured task Jailed Std.de v. Unjailed Std.de v.

1: Hop 1 overall (little to do) 0.153 0.025 0.129 0.010

2: Hop 2 overall agent execution time 60.678 0.216 60.492 0.264

3: Hop 3 overall agent execution time 60.744 0.169 60.215 0.201

4: Hop 2/3 "*.nii.gz" download average 0.497 0.043 0.474 0.056

5: Hop 2/3 "*.tr.mat" download average 816µs 40µs 675µs 22µs

6: Hop 2 image analysis / script 59.047 0.240 58.931 0.189

7: Hop 3 image analysis / script 58.541 0.249 58.177 0.056

8: Hop 2/3 tasks excluding 4‰7 0.254 0.002 0.213 0.006

Total (seconds): 239.926 - 238.632 -

Fig. 45. Agent execution breakdown per hop: average + standard deviation. Measurements in sec-
onds unless indicated otherwise. Total adds up all steps 1-8 for jailed and unjailed.

Rows 2 and row 3 show the time of the overall agent execution, including imaging
tasks, onhop1andhop3, respectively. On hop2, the agent Œrst downloads 2 MRI scans,
and onhop2it downloads 3 (different) MRI scans, of nearly identical size. On both hops,
it then executes the imaging script once before moving to the following room (or, in case
of hop3, the morgue). The differences in execution time for the jailed and the unjailed
cases ofhop2andhop3is explained in the discussion.

Row 4 and 5 contain the average time it takes the agent to download a large MRI
scan of approximately 10 MB and a small Œle of approximately 140 bytes, respectively.
The small Œle contains a transformation matrix with the same base Œle name as an MRI
scan, but with a different extension (tr.mat). It is used to align the 3D of the MRI scan
with the template MRI scan carried by the agent, which contains the Region of Interest
over which the agent's computations have to take place. Themeasurements of download-
ing different Œle sizes are relevant as these indicate the overhead of invoking objects in a
MOS (on the same machine). This way, bandwidth and latency (the overhead of the RPC
mechanism for invoking an object) can be obtained.

Rows 6 and 7 show the time the image analysis script (which spawns the several fsl
tasks needed to analyse an MRI image) takes to complete, in jailed and unjailed cases.
Note that direct comparison between agent execution times onhop2andhop3(row 2 and
3) is not possible.On hop3three MRI scans are downloaded while only two MRI scans
are downloaded onhop2. At the same time, the size of the analysed MRI scan onhop2is
larger than the one analysed onhop3. As can be observed from row 6/7, the times of the
MRI image analysis steps correspondingly differ.
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Row 8 shows the overall agent execution time excluding the time needed to down-
load MRI images and run the image analysis script. This time is a base time required by
agents to do bare-minimum tasks like reading a few Œles from the jailing directory and
searching an RMO before moving on to the next room. This takes 0.25 and 0.21 seconds,
with and without jailing respectively.64

10.3. Discussionof measurements

This section discusses the measurements reported in the previous sections. For clarity, we
describe migration and agent execution times separately, before discussing end-to-end
performance.

10.3.1. Migration times

Given the performance measures in Sec. 8.4, the high AC Œnalize and extraction costs
measured are not very surprising;zip andsynccosts were seen to dominate AC transfer
costs in AOS in earlier chapters.An optimised setup, where segments are notsync'ed to
disk and not zipped as part of Œnalization but shipped directly (Sec. 4.7.2), may remove
some of that overhead, although for larger AC's zipping may be beneŒcial as it reduces
some bandwidth-related overhead compared to sending raw uncompressed segments
directly. Possible efŒciency gains achievable with certain optimisations may be: a cost
closer to pure handoff times (which includes AC transfer) could perhaps be achievable
when compression provides little gain, or if compression times are close to the overhead
when shipping an uncompressed AC; that may save up to 2 seconds per transfer just on
Œnalizein an ideal case, for very large AC's of 35 MB.

The approximately 1.4 seconds difference in AC extraction time between the Œrst
and the second/third hops described above, can be explained as follows. After following
a hyperlink, the receiving MMW extracts AOS segments into the new jailing directory.
On the second and third hop, this happens while the sending MMW is busy cleaning up
the old jailing directory at the same time. Both jailing directories are stored on the same
NFS-mounted Œle system on the same LAN.65 Such concurrent activity does not happen
with the Œrst hop, since theinject program does not remove the input directory with the
agent's Œles after injection. As such, these measurements (0.95 and 2.36 sec) can be
taken to present an upper and a lower boundary on AC extraction time, depending on how
the MMW is deployed, a difference of 1.4 seconds.

64 The 0.28 seconds reported in the previous section was the average time (over all hops for all measurement series)
needed on a hop for the MMW to do bookkeeping to manage the agent and start it up; the times reported here are agent
execution times excluding this MMW-internal overhead.

65 In the prototype setup on DAS3, all jailing directories are mounted on a single NFS-mounted Œle system.
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In all, the measurements shown in Fig. 44 for AC migration and handoff represent a
`̀ worst case.'' S peculatively, in an optimal setup where AC's are Œnalized and extracted
using local disks with an optimisedŒnalizemechanism in AOS, the transfer of a 35 MB
AC could, perhaps, be reduced with between 1.4‰3.4 seconds for a 35 MB AC.

10.3.2. Agentexecution times

The results provide a rough idea of where the time goes during agent migration and exe-
cution. Themeasurements are quite consistent, also when comparing them to measure-
ments described earlier in this thesis. The relatively small set of measurements (particu-
larly when described separately per hop, as in Fig. 45) leads to relatively large standard
deviations66 in some cases.Nevertheless, the measurements provide a basis to assess
end-to-end performance of the prototype Mansion agent running in the prototype world.
The observations are discussed below.

Impact of jailing . From Fig. 45 it becomes clear that for most tasks that an agent
executes, the difference between jailed and unjailed execution is small, particularly con-
sidering other overhead such as the the large cost of Œnalizing/shipping ACs. For the
image analysis task shown on row 6/7, the impact of jailing is compared to the total run-
time of the agent (0.116 and 0.364 seconds difference forhop2andhop3Š0 .2 and 0.6%
respectively). Small overhead is to be expected for a largely CPU-bound image process-
ing task. In absolute terms, the jailing overhead for execution time is small compared to
other costs (0.04 seconds difference between jailed and non-jailed agents, rows 1 and 8).
Jailing overhead may be larger for I/O intensive tasks than for CPU-bound tasks, as
described in chapter 6.

Jailing overhead is noticeable for execution steps that are on the micro- or millisec-
ond timescale.A particular example is row 5, where a small Œle of approximately 140
bytes (the transformation matrix), is downloaded. Row 8 shows the remaining execution
time of the agent after subtracting MRI scan download and processing times for agents on
hop 2 and hop 3; this is the time spent on basic tasks comparable to hop 1, where the
agent searches the RMO for interesting objects, and reads/writes Œles to its jailing direc-
tory. In both cases, the difference between jailed and unjailed processingis signiŒcant

It makes sense that jailing is mostly noticeable for execution steps in the order of
milliseconds, since the impact of a jailer is typically in the microsecond range (Fig. 25).
The jailer overhead is dependent on the number of system calls made compared to the
time spent in user mode; with image analysis programs, most of the time is spent doing
computations in user mode, which explains why jailing has had hardly any impact on the
times shown in row 6/7. For less CPU-intensive tasks, the relative impact of jailing may

66 Standard deviations are relatively large because per hop there are only two measurement points for jailing, and three
for unjailed agents.Still, measurements are close as can be conŒrmed by comparing jailed and unjailed averages and stan-
dard deviations.



236 Applications and Experiences Chap. 10

be higher, but except for extremely system call intensive applications, other costs such as
the migration times reported in Fig. 44 are expected to contribute way more to end-to-end
performance of an agent than jailing will ever do.

In conclusion, in general it may be safe to claim that the overhead of jailing is low,
particularly compared to other costs observed in Mansion such as the cost of migration or
downloading Œles from an object, although overhead may be larger when an agent exe-
cutes I/O intensive tasks. Thisis in line with conclusions drawn in chapter 6.

Object invocation overhead. Rows 4 and 5 of Fig. 45, depicts performance of the
Mansion Object Server. Downloading a Œle of approximately 10M from an MFC object
takes approximately 497 millisec in the jailed case, and 474 millisec unjailed.For small
Œles, the difference between jailed and unjailed is noticeable: a download by a jailed
agent takes on average 816 microseconds, and unjailed approximately 675 microseconds.
Indeed, with such small timings, the performance impact of jailing is expected to be
noticeable due to the relative impact of per-system call overhead, at the microsecond
timescale (Fig. 25).

Note that in all, 675 µs to retrieve a 140-byte Œle from an object is not very surpris-
ing. In Sec. 4.7, it was observed that a ping RPC call to the AOS kernel takes approxi-
mately 127 µs; an object invocation consists of an RPC message from agent to MMW,
from MMW to MOS (same machine), from MOS to Object (OII) process, and back.
Downloading the same Œle from a jailed agent takes approximately 816 µsec., signiŒ-
cantly more than from a non-jailed agent.Retrieving a Œle from an MFC also includes
the time it takes for the object to read the Œle from disk, or rather, NFS.

The cost incurred by downloading image Œles from a Mansion object, about half a
second per 10 MB image, is non-negligible. This overhead is for a large part attributed to
RPC overhead. If image Œles were directly accessible from disk (e.g., from the jailing
directory or from a shared directory ``mounted'' by the jailer), this could make a signiŒ-
cant difference on end-to-end performance.If Mansion applications use objects mostly
for storing (large) Œles, a Œle system based approach to replace object access (feasible
with jailingŠs ee appendix 9) may be appropriate. If object state is replicated67, howev er,
the tradeoff may be different.

10.3.3. Endto end performance

End-to-end performance of the prototype agent is dominated by AC migration times,
MRI-scan download times, and the time it takes to analyse the MRI scans. Given that
MRI scans are approximately 10 MB large, and that image analysis is a computationally
intensive task, this result surprises little.For comparison, we estimate the end-to-end
overhead for a bare-minimum agent, based on measurements presented earlier.

67 MFC objects currently read Œles from NFS internally.
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Fig. 44 shows handoff costs of a little over 1 second for a 35 MB agent, and Œnalize
costs a little over 2 seconds. Fig.37 describes handoff times for small agents: 87 mil-
liseconds to Œnalize, and 171 milliseconds to migrate a 500 KB AC, and 450 milliseconds
and 726 milliseconds for Œnalizing and migrating a 5 MB AC, respectively. The mini-
mum agent execution cost for a jailed agent observed in Fig. 45 is 0.15‰0.25 seconds.

A rough estimate based on the measurements presented in this thesis thus suggests
that an agent that is small and does little in each room, may take a minimum of half a sec-
ond to visit a room and move on to the next one. This corresponds to experiences of the
author when running small agents in Mansion, such as the tests reported in chapter 8.4.2.

The obvious result of the measurements presented in this chapter is that using
mobile agents is mostly useful for tasks that require server-side computation, or in cases
where transferring data to a client computer would pose a large amount of overhead. This
tradeoff is visible by the minimum overhead for migrating an agent, which is about half a
second in the current implementation, using current-day computers using a fast local area
network. Agenttransfer can be optimized, for example, by removing zip Œle generation
from the AOS AC transfer protocol, but there is always a basic overhead involved in sign-
ing, transferring, checking and starting an agent. It was demonstrated that audit trail veri-
Œcation is very efŒcient, and that the overhead of the Mansion jailer is, in many cases
negligible. Using the evaluation presented in this and earlier chapters, application devel-
opers can evaluate whether using agents for a given application makes sense from a per-
formance perspective.

10.4. Discussionand usage experiences

This chapter described the design and implementation of a prototype Mansion world link-
ing hospital rooms so that agents can search MRI data from these hospitals. Each hospital
provides one room with ``anonymised'' brain images, and a conŒned room that contains
raw, identiŒable MRI images for search. The conŒned room may in real life applications
also contain additional information about patients.

The main property of the conŒnement application is that it ensures thatno informa-
tion leaves the room except through the room's owner. In contrast to, for example, e-com-
merce applications such as discussed in[100], where the result of a distance function that
compares images with a ``query'' i mage, and possibly thumbnails, are returned to agent
owners, the Mansion usage scenario has all results passed to the room owner instead.
This example facilitates customized search by agents, while permitting effective evalua-
tion of a researcher's requests to enlist patients for a trial or for a retrospective studies,
using concrete results computed by the researcher's agents at the hospital side. The
researcher (agent owner) sees no results except when a hospital decides to agree to col-
laborate after evaluating the request and the agent's search results.
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Although the conŒnement example described as an application is relatively ``heavy-
weight,'' i n a context such as medical research the potential gain (e.g., of being able to do
research on rare diseases) may be sufŒcient that conŒnement is worth the expense of the
manual checks and the authorisation steps that may be involved in dealing with custom-
ized, agent-supported patient selection requests.

For other applications (e.g., e-commerce worlds containing music or movie stores),
automated protocols for exporting selected information, for example in return for pay-
ment, may be feasible. Such applications may have less stringent export policies as leak-
age of a few bits of information is not critical here.The conŒnement example shows that
the concept of a conŒned room is generic enough to allow for various examples of using
agents to search sensitive information, including use cases that deal with extremely sensi-
tive medical data.

This chapter showed that programming agents is straightforward, if the world pro-
vides a suitable hyperlink layout. The code fragments shown in Fig. 41 and 43 are real
agents, only slightly simpliŒed for readability reasons and reasons of space. The proto-
type world appears usable as a ``blueprint'' f or worlds for medical research that make
information accessible for (conŒned) search by authorised agents (researchers); by using
appropriate attributes, different (linked) hyperlink structures may be created to link rooms
of hospitals with different content, if appropriate. It should be noted that for reliability
reasons, the "linked link" approach may have to be extended. It would be beneŒcial to
have a links from all rooms to the world entrance room (e.g., marked by an attribute
name=WER) and from the WER to every zone entrance room. If the world entrance room
provides a map, agents can work around zones that are not reachable by going back to the
world entrance room and following a link to the next room from there, skipping the fail-
ing room if needed. Such considerations are important when designing a world.

Setting up a world is facilitated by a set of administrative tools which allow interac-
tive creation of zones, rooms, objects, and hyperlinks, and inspection of room content as
shown in Fig. 42. This works quite effectively: creation of a world requires generation of
a world key pair (with a large passphrase), followed by setting up a world zone (again key
generation) and the world services; this can be done on a single machine. Generating a
regular zone is a similar process, resulting in sending the zone's ZoneID to the world
owner for inclusion in the zone list. When a zone is created, a MMW process and a MOS
containing the world entrance room are automatically created. Next, theMashadministra-
tive shell can be used to create further rooms, objects and hyperlinks including attribute
sets. Overall, Mansion is quite usable from an administrative perspective.

TheMashadministrative shell can also be used to create agents. It can even be used
to communicate with agents using simple typed commands, allowing users to manage
interactive agents that execute remotely (assuming no conŒnement is used). This actually
provides great power. The use of interactive agents is outside the scope of this chapter,
but a description of Mash is given in appendix 8.



Chapter 11
Discussion and Conclusion

This chapter evaluates the design of Mansion and the results presented in this thesis.This
evaluation starts from the main research question outlined in chapter 1:

"Can we design a secure distributed system that can be structured such that content can
be effectively and •exibly located by mobile agents, which balances security, scalability
and controllability concerns of world and content owners on the one hand against the
need for autonomy of content owners and agent owners on the other hand?"

This question contains a number of hypotheses:

1. A distributed system can be effectively and •exibly searched by mobile agents if it is
sufŒciently structured.

2. A world's owner and content owner(s) have security, scalability and controllability
concerns that can be met, while the system is distributed.

3. The world/content owner's security and controllability concerns can be balanced
against the security and controllability (and autonomy) concerns of content and
agent owners that use the system.

Chapter 1 also described high-level design requirements:

ƒ The system should provide conceptual clarityŠt his relates to the ability to structure
a world sufŒciently (related to 1Šs tructure);

ƒ The system should be secure in view of possibly hostile agents or hostile/erroneous
components of a world (related to 2Šs ecurity and controllability concerns);

239
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ƒ The system should scale, both in terms of system components and in terms of
administrative overhead (this relates to 2Šs calability and controllability concerns);

ƒ It should provide autonomy (freedom) for content owners to place content in a
world, and for agents to search this content in a way not pre-imposed by, for exam-
ple, the world designer (related to 3Ša utonomy concerns).

The introduction phrases the research question differently:

Can we facilitate construction of application-speciŒc distributed worlds, in which users
are free to add content, but where the system can be sufŒciently structured so that it
remains understandable by end-users and their agents, thus striking a balance between
controllability and security of the system on the one hand and •exibility and autonomy of
users to implement their algorithms to Œnd rooms and contentŠa nd to process content
found Š onthe other hand?

This phrasing is directed more speciŒcally at the need for aprogramming paradigmthat
allows for structuring application-speciŒc worlds Š and ensuring these remain under-
standable to agents, so they can effectively Œnd content (or other agents) these worlds.

The underlying assumption (or hypothesis) of this thesis' work is that structuring
application-speciŒc worlds is needed and useful; this includes an assumption thatclosed
worlds are useful. Furthermore, a hypothesis is that an application-speciŒc structure can
be provided in such a way that security and controllability requirements can be met in a
distributed settingand that effectively navigable worlds can be created. This chapter
evaluates whether the above hypotheses hold, and whether the system devised in this the-
sis, Mansion, indeed addresses the requirements outlined above. We do so by evaluating
the effectiveness of the conceptual model as a structuring mechanism, by evaluating the
agent migration model (i.e., themandatory weak migration for following a hyperlink),
and by evaluating the security and control mechanisms that Mansion provides.

11.1. Structuring worlds Š the conceptual model

The Mansion paradigm described in chapter 2 of this thesis provides application develop-
ers designers with a conceptual model. This model allows for constructing distributed
worlds that, in turn, provide agent (programmers) with a structure to help them Œnd and
search information in the world.

The Mansion paradigm centers around the notion ofapplication speciŒcworlds.
Worlds contain rooms that have hyperlinks between them.For agents, hyperlinks are the
primary structuring mechanism. Hyperlinks, as other content, are described using
attribute setsthat allow agents to select appropriate hyperlinks. An example of where this
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is useful is in cases where a world has various orthogonal hyperlink structuresŠf or
example a hospital world which has hyperlinks to rooms containing MRI scans of brains,
whereas another hyperlink structure is annotated with attributes indicating rooms that
contain CT scans of lungs.

In chapter 10, a prototype world is described which has a very simple hyperlink
structure: a linked list of rooms in different hospitals that contain MRI scans. The world
has clear structure: each zone (hospital) has an entry room containing anonymised brain
scans, and a conŒned room containing raw brain scans and possibly other identiŒable
patient information. An agent that needs to search all the MRI rooms in this world can be
trivially implemented to follow outgoing links, with relevant attributes, similar to the
2-page C code example shown in chapter 10. This example in itself provides a positive
result for the hypothesis that a sufŒciently structured distributed system can be effectively
searched by mobile agents. This conclusion is rather obvious: if a world has predictable
structure, it is easy to search algorithmically.

Are worlds easily designed with a straightforward hyperlink structure? That depends
on the application. It is easy to conceive that there is an incentive (medical research) to
link up hospital rooms of a certain type to have them be searched by mobile agents
because of privacy concerns, if there is a need to have the information searched.Mansion
helps to link up hospitals, and having a zone per hospital provides a natural basis for the
world's structure. Similarly, structuring a world with auction rooms or a banking world
may allow for creating a structure that matches naturally with the inherent structure of the
application or the (distributed) parties involved in the application domain.

A World Wide Web-like world where arbitrary content can be added as a Mansion
world is much harder to structure: there may be millions of rooms with widely diverging
content and, thus, attribute setsŠh ow to construct hyperlink overlays for that? How to
ensure each room can be found from an entry room? The search engine-approach taken in
the WWW may be inescapable and more natural for such an environment than structuring
such a world up-front. (Although one could imagine the search engine to become a kind-
of world entrance room, such a world would require links from the world entrance room
to be constructed dynamicallyŠa d ifferent approach).

When is it worthwhile to construct a Mansion system?It is useful to consider what
difŒculties may be observed to deploy and use a Mansion world:

ƒ A world designer needs to construct a world structure and to maintain the world's
infrastructure (basement) in practice. The application needs to be worth the effort.

ƒ Users must be willingŠa nd have an incentive Š t o program and use agents to
search and Œnd content or other agents in a world. This means dedication to write
code for a given task Š Web browsers, in contrast, simply display web pages to users
without caring about their content; comprehending content is left to users. Once
built, a web browser can be used for many applications.
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ƒ There may be efŒciency drawbacks: a rough estimate (Ch. 10) is that agent migra-
tion and startup imposes a minimal overhead of about 0.5 second per followed
hyperlink on a fast network. Thisexcludes the cost of running the agent program,
which depends on what it needs to do. Compared to visiting many rooms, visiting
web sites by retrieving them may be faster. On the other hand, a well-structured
world can ensure the right content can be found more quickly.

ƒ The server-side infrastructure needs to be deployed, and reliably deployed. Although
the Mansion middleware is provided as a software package, it must be conŒgured
and run: there must be hosts allocated to become a member of a zone and to run the
middleware components. The zone must be registered in the zone list, objects
(rooms) need to be set up, and sufŒcient computational power needs to be available
to host agents that visit the rooms. This may be more involved and more costly than
setting up a web siteŠa lthough some web sites may be quite involved also.

Before people start building a world, there should be an incentive. In the current world of
high-speed networks, ubiquitous mobile devices, Internet/Web access, server-side web
services andApps for almost any conceivable task, there must be a reason for going
through the trouble of setting up and using a world for mobile agents.

From the reasons for agent mobility outlined in chapter 1, the most important rea-
sons for using agents (and Mansion) are likely •exibility Št he ability of end-users to
customize agent code to an algorithm of their choosing, to allow effective or customized
search Š andthe ability for content owners tocontrol the export of information that is
sensitive Š f or example, intellectual property or privacy sensitive information.

Both aspects are addressed in Mansion: agents can be programmed using custom
algorithms, even in different programming languages, providing extremely •exible data
analysis possibilities to agent programmers.Further, agents are jailed and the conŒned
room construct allows for implementing various ``export policies'' w hose strictness can
be determined by a room owner. Finally, Mansion allows agents to meet in rooms to com-
municate with each other to do business.

Assuming that basic prerequisites for choosing a mobile agent based approach are
met, what beneŒts does Mansion provide over alternative mobile code or mobile agent
systems? Perhapsthe main selling line for Mansion would be that it helps`̀ rapidly
locate information that needs to be searched at the source.'' M ansion's constructs: appli-
cation-speciŒc worlds with rooms that can be located using attribute sets and tailor-made
hyperlink overlays, allow for annotating rooms such that agents can easily Œnd relevant
rooms.

If construction of tailor-made worlds is the selling point for Mansion, it is useful to
study how Mansion distinguishes itself from alternative approaches. The following sec-
tion does that.
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11.1.1. Alternative approaches to agent navigation and search

Various approaches may allow for rapidly locate information that can be searched locally
at the source. This section explores two example alternatives.

First, consider search engines. What if some data owner simply describes its data set
using a set of (high-level) descriptive keywords, much like an attribute set would, and
announces the data set on a web page that also provides a method for submitting agents to
it? This could indeed be a feasible approach.A disadvantage is that there is nomodera-
tion of the available data sets or data bases; anyone can announce a data set and advertise
it through a Web site and it will be indexed. If the website provides a (standardised)
method for submitting agents, remote search of content is possible. But will the content
indeed be as promised? Is it of a searchable type? Is there an incentive for content
providers to adhere to (application speciŒc) standards for encoding and presenting con-
tent so that agents can be easily programmed to search itŠs uch as in the prototype
world, where content owners ensure that a standard transformation matrix can be applied
to all MRI scans?

If not, agents will have to encode substantial intelligence to cope with the large
amount of bogus data or strange data formats that may be foundŠm uch like the current
Web contains a bewildering amount of content types of varying qualityŠw ith some
pages containing intentionally misleading content. From an agent (owner's) perspective,
it may be quite worthwhile to have application worlds that adhere to certain rules, so that
the effort to program agents for it is overseeable, and in which a world owner ensures that
content owners adhere to certain pre-set rules and semantics that are found in a world
design document and that rooms with misleading content can be removed.

A second disadvantage of using stand-alone Web page like rooms instead of rooms
adhering to a world's structuring rules, is that in a Web-like system there is no apparent
way to deal with itinerant autonomous agents, that is, agents that visit multiple rooms
sequentially. The Web assumes an end-user to reside on a client machine from which
web pages are viewed. How would an agent travel a world autonomously in search of
content, if it is unclear where it will end up when it follows some potentially unreliable
information returned by a search engine? How can it be prevented from getting lost? How
long will it end up eating resources on the Web, possibly turning rogue down the line?
How would authentication and authorisation of agents work in such a system? Is there an
infrastructure that allows agents to migrate from web page to web page and take content
with them in a controllable way, preferably where modiŒcations to an agent's state can be
reliably audited if not prevented?

Given the above Š unsolved Š questions,it is unlikely that a Web-like system will
permit agents to migrate further than one hop at all; it will likely derive to a system for
single-hop agents that return to their owner after visiting one page, essentially remote
evaluation. This limits the ability of agents to migrate to various systems to search for
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relevant information on behalf of their owner. Mansion instead provides primitives that
supportitinerant agents, providing structure, (global) resource control, security and agent
auditing mechanisms within a single framework.

Another relevant alternative is an agent-centric approach.For example, agent clus-
tering or matchmaking may be used to have agents guide the way toward information in
open or closed systems[84]. For open systems, issues such as intentional deceit and lack
of standardisation of content may provide similar problems as described above. In a
closed system, however, agents may inform each other of relevant content much like
attribute sets do in Mansion. This approach may thus form a usable alternative for Man-
sion. Themain difference lies in that Mansion provides standardized primitives for anno-
tating typed content and hyperlinks using attribute sets, whereas in an agent-centric sys-
tem, all information required to locate content would have to be provided as part of an
agent communication language that all agents understand.

Mansion provides an inherent structure based on hyperlinks that pre-impose struc-
ture on migrating agents. An agent-centric approach would require agents to talk to each
other to Œnd content. This implies more complexity in the agent.Further, methods for
migration would become disjoint from application semantics.In Mansion, hyperlinks are
tied to attribute sets. A system where knowledge is present in the agent layer, would
require more intelligence and knowledge to be embedded in agents.The disadvantage is
that the primitives provided for migration have no relation to the application's semantics;
it thus becomes hard toenforcestructure from the middleware perspective (see also Sec.
2.3.12). Further, hyperlinks are passive and, once generated, static, whereas in an agent-
centric solution, agents would have to remain alive for their knowledge to persist.

An important advantage of Mansion's hyperlink structure, is that the primitives pro-
vided are simple to understand and use. This means thatif the attribute sets for given
hyperlink topologies are clear, the degree of intelligence that has to be embedded in an
agent to Œnd information is limited.Agents that must communicate using an agent com-
munication language to Œnd interesting content need to embed intelligence to ask the
right questions and to evaluate the answer before being able to Œnd their way in a world.
Although Mansion does provide interagent communication primitives, agents can often
do without and simply use a world's hyperlink structure to Œnd information effectively, as
shown in the prototype agent.

11.1.2. Whento choose Mansion

An assumption is thatclosedworlds have beneŒts over open systems.The previous sec-
tion shows how control over aspects of a world such as world topology and content can
be beneŒcial for certain applications.However, it cannot be claimed that structuring
worlds for mobile agents is suitable for every application. There must be a use for mobile
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agents and for the structure provided by hyperlinked rooms, since the overhead to create
and deploy worlds for mobile agents will prevent other applications from using Mansion.

For an application where migrating programs to the data is useful, where the data is
distributed so that agents must migrate to multiple data sources, where world structure is
achievable to help agents to navigate the system effectively, and where allowing agents
substantial freedom to search data is useful, Mansion can be a suitable framework to use.

The hospital world described in this thesis substantiates this claim. Chapter 10 pre-
sented a simple world for medical research, where zones owned by hospitals are linked in
a list-like structure. Roomscontain de-identiŒed MRI data in objects in the zone
entrance rooms, as well as raw, identiŒable data in a conŒned room that is reachable from
the zone entrance room.The linked list approach for searching medical data in (linearly
linked) different hospitals illustrates that a uniform hyperlink structure helps search.

A production-oriented, large-scale hospital world would likely have multiple rooms
per hospital, each for a particular (well-described) type of ward or specialisation in the
hospital, and would presumably have links to the world entrance room and from there to
all hospitals to ensure reachability, yet it can still have a simple layout. The example lin-
early linked list (or ring) of hospital rooms is attractive due to its simplicity.

The key point of Mansion is that itallows for tailoring a world to a given applica-
tion's requirements, thus allowing agents to execute their task in as efŒciently and as sim-
ple a way as possible; a world's hyperlink structure provides the foundation for this.

A critical observation is that Mansion enables adivision of work between world
designers and agent programmers. By having world designers consider suitable world
(hyperlink) layouts and corresponding attribute sets, and enforcing these, the amount of
intelligence in an agent can decrease. Agents can focus on their task, which is typically to
search for suitable content that can be analysed on location using a custom algorithm.

11.2. Thedesign choice to mandate weak migration

A fundamental choice made in Mansion is to mandate weak migration of agents when
they follow a hyperlink. Mansionagents consist of static code contained in an agent con-
tainer. Migration isforcedwhenever a hyperlink is followed.

Weak migration is a given for Mansion's design. Inpart, this choice was made for
pragmatic reasons, since it is hard to support strong migration for legacy applications and
different programming languages, particularly in a heterogenous system where few
assumptions can be made on the underlying operating system.

Weak migration, however, also simpliŒes the programming model: every time an
agent leaves a room and enters a new one, it is started anew. The programming model is
straightforward. Oncestarted, a typical agent checks its AC (e.g., to see whether it is a
clone and if so what tasks it has), it checks the RMO for suitable content to search or
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agents to talk to, and after searching the room, it looks for relevant hyperlinks to follow
next, possibly creating a clone if needed to speed up the task. There is little need for
agents to remember past actions, other than being able to record results or lists of visited
rooms, and possibly information about agents that they hav econtacted. This information
is easy to store in an AC; there is no need for this information to permanently reside in
program memory.

Weak migration also makes for consistent semantics when an agent enters and
leaves a conŒned room. At that time, the agent should forget all it has done in the room,
which is automatically the case when using a weak migration model.

Finally, weak migration improves mobile agent security. Particularly, it avoids tam-
pering with agent code or data. Agents are always started from the same code and data
segment, from a static (signed) segment in the agent's AC. Middleware processes can
check the signature over the initial AC placed by the world entrance daemon, before start-
ing the agent. This ensures that agents are not tampered with on their itinerary, e.g., by
some host tampering with their code or data.The only data that can be used to in•uence
an agent's decisions is the data provided to them in rooms or otherwise, and which it may
store in its AC. But hosts cannot persistently change the behavior of an agent's program.
The static code assumption also allows for implementation of an agent in different lan-
guages. For example, as compiled C code for execution on Linux x64 machines, and as
Java bytecode for execution on any other machine.

In all, the (weak) migration model is practical and simple. The semantics it provides
are clear, and makes programming agents straightforward in general.

11.3. Suitability of the Mansion API

The Mansion API is the interface used by agents to get work done in a world. TheAPI
contains several functions: interagent communication, call for Œnding out about the cur-
rent context (room, parent agent, etc.), calls to interact with the agent container, and
cloning. The functions are not unlike functions provided by UNIX (POSIX) systems,
such as communication calls, Œle system related calls, and process management related
calls such asfork. In addition, agents are provided with abindingcall that allows agents
to connect to objects, including the RMO, and thefollow_hyperlinkcall.

The calls appear effective in achieving their goal. Interagent communication has
been used by agents to communicate with their parent agent. Location-independent inter-
agent communication channels allow agents to coordinate multiagent applicationŠf or
example, synchronising tasks to avoid double work. The RMO, follow_hyperlinkand
binding calls are used intensively to navigate and to search content.

Cloning allows agents to spawn child agents that go to different rooms, for example
each following a different hyperlink. Usingcloning, multiagent systems can deal with
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large worlds Š althoughthere are bounds on the number of children that an agent can cre-
ate due to (global) resource protection (chapter 8). As a practical example of using
cloning, a master-worker oriented multiagent application was described in chapter 10.

In some worlds, jumping may be allowed Š subject to the same migration con-
straints as hyperlinks. Jumping gives agents more freedom to move, but similar to a span-
ning hyperlink structure or the web, worlds may become less structured and thus less
straightforward to search. When jumping is allowed to compensate for a complex hyper-
link structure, searching a world may become less efŒcient and predictable as a conse-
quence. Jumping seems most useful in very large scale worlds, and is therefore optional,
at the world designer's discretion.

11.4. Scalabilityand controllability

One of the main requirements for the Mansion design is that it is secure and scalable, and
that it allows for sufŒcient control over a world to ensure it adheres to the world's rules.
Security and control mechanisms should not interfere too much with content owner and
agent owner autonomy or privacy.

Technically, scalability is mainly controlled using the concept of a zone.A world
owner controls the world's zone list, which is a list of self-certifying identiŒers of all
zones in a world. When a zone is not in the zone list, it is not in the world. Zone owners
are the `̀ certiŒcate authority'' f or their zone, and can sign zone member certiŒcates. This
allows for decentral extension of zones with processes, such as object server processes
hosting replicas of objects in the zone, or middleware processes on different hosts to
manage incoming agents. This way, zone owners can transparently cope with scale
increase or decrease. The location independent handles and underlying (distributed) loca-
tion service are designed to deal with `̀ elastic'' zone membership changes.

Within a zone, zone owners are free to create new rooms or place content, and
agents enter rooms in a zone without the world owner knowing about it. This ensures
autonomy of zone owners, content providers and agents in a world. If a breach of world
rules is detectedŠw hich can be checked by, for example, an agent injected by the world
owner Š zonescan be removed from a world. Decentrallymanaged zones in combina-
tion with the central zone list create the means to balance scalability, controllability and
(zone owner) autonomy concerns.

Careful consideration of hyperlink layout is important for overall world scalability.
To keep agent itineraries manageable, a world designer may create different hyperlink
structures, each annotated with speciŒc attributes. Theremay be several `̀ hyperlink over-
lays'' f or different rooms or topics (App. 2), each annotated with different attribute sets,
to cater for different types of agents and content.A world designer may prevent zones or
rooms, e.g., at the beginning of a hyperlink structure, to experience an unfair share of
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`̀ passer-by'' agents by having different world entrance rooms act as different ``entry
points'' to a hyperlink structure.This way, adaptation or (manual) intervention is possi-
ble when scalability issues arise.

Scalability can be hampered in practice by lack of a sustainable (Œnancial) model to
back the expenses required to manage scale increase. The system's distribution model
ensures that zones that attract a large number of agents take the load for that interest;
other zones of a world do not notice this increased load. The world's entrance zone(s)
may also experience an increase of load as a result of a general increase of use of a world
(i.e., more agents entering), and should Œnd ways to manage that.

Technically, managing more entering agents entails increasing capacity of the world
entrance zone: adding extra hosts, world entrance daemons, (replicated) room monitor
objects and middleware processes for hosting agents that enter the world entrance rooms,
and additional (replicated) agent location services for managing agents in the world.

In Sec. 3.11, economical aspects related to world deployment are discussed.Fair
Œnancial models should be able to support scalabilityŠt hat is, only the zones responsible
for scale increase (due to an increase in interest by content owners and agents) need to
scale up, and pay correspondingly. World entrance zones are key to enter a world and
must cope with the increase of interest and scale up also. (Note, additional world entrance
zones could be added also). This should be payed for, irrespective of what zone in the
world attracts the additional interest. Assuming that a world contains content that is sufŒ-
ciently interesting for users to pay for, business models to sustain a world, its central ser-
vices, and the world entrance zones as it scales up should be feasible.

11.4.1. Security

A number of techniques are presented for security:

ƒ Host protection is provided through jailing; the Mansion middleware starts up an
agent in a jail. The jailer also allows for limiting resource use, to protect against, for
example, denial of service attacks, as explained in appendix 3.Agents in a jail can-
not interfere with other agents or access Œles or network resources outside the jail.
The middleware can suspend or kill a jailer with an agent's processes in it at any
time.

ƒ The Mansion jailer, currently implemented for Linux, makes use of the standard
ptracesystem call, and allows for efŒcient conŒnement of binary applications, while
avoiding TOCTOU system call argument race conditions that rendered existing user-
land jailing systems insecure. Within a jailer, prisoners (agents) can make use of the
full UNIX system call interface within their own jailing environment, without being
able to damage the system outside the jail.
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ƒ Global resource protection is achieved by encoding relevant properties in an agent's
AC at world entrance time and delegating some control functionality to middleware
processes. At the same time, the world entrance system keeps track of the agent's
whereabouts, and of aspects such as the number of children of an agent. Following
world constraints, limits can be imposed on the time to live and the cumulative use
of world resources by an agent and its children.

ƒ Agents are protected against misuse through an AC integrity veriŒcation and audit
trail mechanism that, combined with trust in the world entrance system, provides
conŒdence that agents cannot be tampered with without detection. The only time
when an agent is most vulnerable is when executing at a hostŠh owev er, tampered-
with agents can be prevented from migrating onwards.

ƒ Self-certifying identiŒers are pervasively used as identiŒers for world components,
effectively by identifying zones. ZoneIDs are used as part of room handles (hyper-
links) and agent identiŒers, which allows for (end-to-end) authentication of pro-
cesses that host (replicas of) entities by means of the entity's handle. This has the
important implication that, from a security perspective, the location service need not
be relied upon to provide correct information. If a handleŠe .g., of a hyperlink that
is registered in a RMOŠ i s trusted, the connection to the entity can be authenti-
cated.

ƒ Every object, including room monitor objects, have an access control lists based on
self-certifying identiŒers (AgentOwnerIDs). This allows objects and rooms to deter-
mine whether agents may access the object, or room. AgentOwnerIDs may also
indicate a world-speciŒcrole or agent (payment) type; the system is •exible even
though it uses a simple, short identiŒer and an ACL mechanism for access control.

Since a Mansion world is closed, it also makes for a closed security modelŠt he security
architecture is published as a whole in [79]Št hat covers most if not all aspects of mobile
agent security: controlling world coherence; secure naming of distributed zones, addition
and removal of zone (members) by managing zone member certiŒcates; managing agent
identiŒcation and secure agent location updates; agent owner identity or role-based access
control for objects and rooms (together with a conŒnement system discussed in the fol-
lowing section); accounting for, as well as controlling global and local agent resource
usage; protection of hosts against malicious or resource-consuming agents and against
hostile object code in an object server; and protection of agents against tampering on their
itinerary by preventing illegitimate modiŒcations to an agent's code or other persistent
AC segments from spreading beyond their current host.

The security architecture cannot protect agents against hostile hosts directly,
although the handoff protocol allows for detection of malicious AC modiŒcations, and
some techniques (e.g., code obfuscation) exist that may help agent owners protect their
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agents in practice.A host controls all processes it manages, so it is hard if not impossible
to protect agents against their host; protection mechanisms should be devised at another
layer of abstraction, for example using reputation-based mechanisms. The Mansion secu-
rity model provides a basis for these and for ensuring misuse can have consequences, at
the very least in the form of being banned from a world.

11.5. ConŒnement

Mansion providesconŒnementas a tool for protecting sensitive information which per-
mits agents to search this informationon site.

Chapter 10 describes an application where a trial or retrospective medical study can
be prepared by agents that search highly privacy-sensitive information in conŒned rooms
of different hospitals. Here, agents search information while being unable to export any
information; all communication channels are suspended, the AC is blocked andŠa s
always Š the agent is restarted when exiting the room68. After Œnding relevant informa-
tion, agents can write the results to anexport Œlein their directory, which is picked up by
a Guardian Agent when the agent leaves. The results are passed to a doctor who can eval-
uate the results, the agent's credentials, and possibly an earlier a separately submitted
proposal to participate in a trial or study, to evaluate if the agent's owner should be con-
tacted to discuss the results or the proposal. Whether this happens is up to the visited hos-
pital; no information is sent to the agent (or its owner) directly.

The above application is extremely strict, as no information may leave the hospi-
tal Š not ev en a single bitŠw ithout checking. For medical information, this may be
essential as information leakage can have critical side-effects; for example, one bit may
be sufŒcient to indicate whether the prime minister admitted to the hospital's neurology
ward last week has a brain tumour. Because setting up trials or (retrospective) medical
research is costly, difŒcult and time-consuming, particularly for rare diseases, using con-
Œned agents may be worthwhile to alleviate these issues.

In contrast to existing approaches that are typically based on requesting hospitals to
Œnd patients manually, the approach described here allows for requesting participation
based on the results of a priortargeted(conŒned) search over raw patient information, of
which the results are only known to the hospital. The data controller (the hospital) stays
in control over whether any information about the search results will be disclosed, to
whom, and on what terms.The conŒnement approach improves the chance that (rare)
patients that have a particular disease can be found andŠi n collaboration with the hospi-
tal Š can be asked to join in, for example, a clinical trial.

68 Covert channels can be prevented as agent execution takes place completely within the trusted hospital environment;
agents should not be allowed to determine their own time of leaving. Either a Œxed return time should be determined up
front, or agents should be killed on exit without being returned. The latter agents should beclonesin the chapter 10 world.
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The conŒnement application for hospitals may be akiller app for mobile agents,
since it is hard to see any other fully privacy-preserving approach that allows for Œnding
patients in (hard to indexed or, often, wrongly annotated) raw data without risking infor-
mation leakage using end-user customiseable search.

There are useful conŒnement scenarios where the risk of leaking one or a few bits of
information is less critical than with medical information.For example, for commercial
information, occasional loss of data may be less of a problem than with legally/ethically
sensitive medical information. Here, use of automated mechanisms to facilitate export of
information from a conŒned room directly to an agent or the agent's owner Š for exam-
ple, in return for paymentŠm ay be feasible. As an example of such a scenario, an agent
may pass a list of identiŒers for content that an it found interesting to the Guardian
Agent. Theguardian agent may then prepare a web page from which this content can be
downloaded, and contact the agent after it left the room and pass the web page's URL to
it69. Next, the agent or its owner can visit the web page, pay, and download the content.

Several other applications exist for searching (less sensitive) data, for example in the
scientiŒc domainŠh aving agents of art historians search for particular types of dogs in
high-resolution scans of paintings, is just one example. Earlierresearch explored similar
examples for searching commercial intellectual property remotely [22,100].

Other examples of searching highly sensitive material in situations where content
owner control is critical, exist. For example: Œnding relevant case Œles in police depart-
ments may be hard to do securely (and legally) without conŒnement.In such cases, strict
conŒnement may be a solution.

11.6. Performance

This thesis described performance measurements for most critical components and proto-
cols of the framework, as well as end-to-end measurements.

The jailing system has been shown to support execution of arbitrary binary pro-
grams, shell scripts and interpreted java code in a JVM using a standard jailing policy.
Overhead of jailing is often negligible compared to other cost such as the overhead for
migration; only with I/O intensive agents may the overhead be signiŒcant compared to
running the agent without a jail. Jailing or sandboxing is imperative for host protection.
The jailer supports multiple agent programming languagesŠi ncluding agents containing
legacy compiled codeŠa nd it provides a way for resource protection. This makes the
jailer an effective and secure alternative to language-based sandboxing.

Migration, agent container related operations and the overhead of retrieving data
from objects are not inhibitive, but can be optimised. ACs are zipped, which causes

69 IdentiŒers are used for simplicity and to avoid steganography that hides information in data; the guardian agent can
Œnd the agent's AgentID in the export Œle it left in the conŒned room.
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overhead that can be removed by an implementation without zip Œles. For objects, con-
tent may be replicated so that agents can read data from a local object replica, decreasing
latency. In the prototype, agents download data from objects to their jailing directory to
interact with it there; other agents may interact directly with objects using method invoca-
tions. If (fast) Œle interactions are important for an application, a future version of Man-
sion may support transparent mounting of (object) Œles in the agent's jailing directory
(see appendix 9).

It is clear that world design has an impact on end-to-end performance: the overall
time it takes an agent to complete a task depends on an agent's size, the number of hyper-
links it follows Š gi ven at least 0.5 seconds overhead per migrationŠa nd the time an
agent spends inspecting data in different rooms. When agents spend a long time
analysing data in a roomŠa rguably, an important argument to use agents is that they can
autonomously inspect (large) data sets at the sourceŠw ithout being overly I/O bound,
the overhead of jailing and agent migration becomes negligible compared to the overall
costs, as seen in the prototype application. As with many other aspects of Mansion,
whether the overhead is acceptable from an end-user perspective depends on the applica-
tion.

11.7. Overall conclusion

Chapter 10 demonstrates how Mansion can be used to develop efŒciently searcheable
mobile agent applications. The main research question:

"Can we design a secure distributed system that can be structured such that content can
be effectively and •exibly located by mobile agents, which balances security, scalability
and controllability concerns of world and content owners on the one hand against the
need for autonomy of content owners and agent owners on the other hand?"can be
answered positively.

We hav eshown that it is possible to design a distributed system that can be effec-
tively searched by mobile agents; the world's structure, enforced through its hyperlink
layout, has shown to be effective in guiding agents through a world, with simple hyper-
link layouts decreasing the effort needed to program the agents. The 2-page prototype
agent shows the use of dividing the work between world and agent developers Š i.e., of
having world designers pre-structure the application for agent developers.

We hav eshown that Mansion addresses security problems, scalability issues, and the
difŒcult issue of integration of (binary) legacy applications that existing mobile agent sys-
tems do not handle. The problem of integrating legacy applications is solved by using a
jailing system. Using the jailer as a starting point, we also showed an application that
provides a strong case for using mobile agents. Searching hospital rooms with privacy
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sensitive information where not even a  single bit of information may leak out without the
data owner's explicit permission can likely only be done using the conŒnement approach
presented in this thesis.

As described in chapter 1, the tradeoff between controllability and autonomy was an
important and recurring theme while designing Mansion. Agents (and their owners) are
autonomous in that they can implement programs and algorithms of their own choosing,
using a programming language that best suits their needs. Except for being sent to the
Morgue when agents run out of their allocated resources or time to live or (otherwise)
harm the system by their current host, no entity in a world can force actions upon an
agent: they are autonomous.An agent owner can select a world entrance sys-
tem Š assuminga set of world entrance rooms is presentŠt hat contains the agent loca-
tion service and world entrance daemons it trusts; this zone contains the components for
tracking and managing agents and their resource use, and ensure that modiŒcations to an
agent's AC are properly audited while preventing attacks such as audit trail rollback.

To facilitate scalable world deployment, a hierarchical world administration frame-
work is developed. The world owner is in charge of which zones are admitted to a world,
on what terms. Zones are managed autonomously, allowing zone owners to extend their
zones with middleware processes to handle increasing load as needed. This provides the
basis for dealing with scalability issues from a technical as well as an administrative per-
spective. The world owner does not have to control over every detail of a world, which
would interfere with zone, content or agent (owner) autonomy or privacy. From a scala-
bility perspective, the Mansion architecture attempts to provide fairness in terms of load
distribution, avoiding that increased load on one zone does not adversely affect other, less
popular zones in a world. Thisbalances controllability and autonomy.

A security architecture is provided that covers most, if not all, aspects of mobile
agent system security. Hosts and agents are protected using jailing and the handoff proto-
col. Zone-wideor per-room policies for room entrance and per-object access control are
possible. Self-certifyingidentiŒers ensure that handles can point to (distributed) entities
that can be authenticated directly, end-to-end, without having to rely on a central trusted
component such as a trusted location service. If needed, certain componentsŠs uch as the
agent location serviceŠc an help enforce world rules (e.g., by checking whether migra-
tions between zones are allowed), but most checks are made decentrally by the middle-
ware processes that guard the interactions (API calls) of an agent with the outside world.

The aim of Mansion as a programming paradigm is to provide conceptual clarity to
agent programmers, administrators and other users of the system. Mansion ensures that
for a given world, core aspects remain predictableŠf or example, the world's layout,
object interfaces and attribute sets, which are deŒned in the world design document.In
contrast to other mobile agent systems and many other distributed systems, Mansion
works best when (distributed) applications lend themselves to structuring; it is speciŒ-
cally aimed at designing closed worlds for speciŒc applications. Using a suitable world
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design, room and content owners know precisely what to expect in a world, so that agents
can be straightforwardly programmed to search the world, interact with other agents, and
Œnd relevant information there. The prototype world shows the approach is feasible.

Using a framework like Mansion holds promise for constructing future distributed
mobile agent applications and systems. It can provide a closed, scalable, and manageable
infrastructure which provides sufŒcient structuring mechanisms to make worlds under-
standable to content providers and mobile agents, while at the same time providing sufŒ-
cient room for decentralized management, including the possibility to autonomously link
in rooms and content of different owners in separate independent zones in the sys-
tem Š potentiallyat very large scale.

The Mansion paradigm provides the mechanisms needed to control what content is
visible and reachable to agents in a world. It uses simple, clear concepts like rooms,
hyperlinks, objects and agents, identiŒed using location-independent handles. Hyperlinks
are managed decentrally by room owners, subject to central world design rules, thus
allowing for scalable, •exible, controllable distributed systems where content is reachable
and can be found in different, application-dependent ways.

Our experiences with the prototype world show that the Mansion paradigm not only
works Š it works well.



Appendix 1
The world design document

Below document gives a concrete example of a WDD, taken from the current Mansion
implementation.

worldinfo {
owner=YOUREMAILADDRESS,
scid=THISWORLDSCID,
name=THISWORLDALIAS // As in the Mansion Nameserver.

}

wddparms {
// Set this to 1 if you require an administrator email address to be
// specified when a zone is registered. 0 means that ''anonymous''
// zones are allowed (but note that the world administrator always
// requires your email address for verification, in general).
ZONE_ADMIN_CONTACT_MANDATORY=REQUIRE_CONTACT

ALLOW_JUMPING=0 // or 1 if jumping is allowed.
}

// Allowed agent types.
agent_binary_subtypes {

linux_x86
}

// This list limits the allowed object types in a world.
objectclassnames {

MansionObject,
RMO,
FileContainer,
MFC,
OwnedMFC // each agent has its own ''private'' directory in this object.

}

// Here, non-standard attributes in the attribute sets (ASes) of agents,
// objects, and hyperlinks are specified. Note that some fields, such
// as EntityID or EntityType are not specified here; these are mandatory
// by Mansion design/implementation and cannot be overruled or changed here.

template_agentAS {
<optional> name=
<optional> description=

}

template_objectAS {
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<mandatory> ObjectType=<MansionObject|RMO|FileContainer|MFC|OwnedMFC>
<mandatory> name=
<optional> ContentDescription=

}

// Note: unique applies to intra-room uniqueness of the attribute only.
// Global uniqueness can never be enforced.
// Having a local unique name for hyperlinks is useful to construct
// globally unique, human-readable ''pathnames'' starting at a given world

entry
// room.

template_hyperlinkAS {
<mandatory_unique> name=
<optional> description=

}

// Some security stuff. Defines the cryptographic strength of (SSL) connections
// over which all communication is routed in Mansion.
// Comparable to the OpenSSL library initialisation strings.

ciphersuites {
// Currently only RSA authenticated key exchange with AES 256 cipher block
// chaining crypto, and SHA (1) message authentication.
SSL_RSA_WITH_AES_256_CBC_SHA

}

zoneinfotemplate {
// In this particular zone description template, any information (free form)
// can be filled in - particularly a name - or even nothing.
// If the world owner acts more like a CA for the world's zone list, it is
// likely that more required (mandatory) fields are defined, and checked at
// registration time by the world owner.
<optional> name=
// zone administrator's mail address
<optional> contact=

}



Appendix 2
A hyperlink constraint language

This appendix describes a hyperlink constraint language (HCL).
The world design document can contain a HCL, to instruct content providers and

users of the system on the way in which rooms may place hyperlinks to each other. Ide-
ally, a HCL should be enforced by the middleware, to ensure that agents cannot migrate
through hyperlinks that are not allowed by the HCL. However, actual enforcement of
migration rules in a distributed system is difŒcult. Some practical notes and solutions are
proposed this section. At least, a HCL allows world designers to communicate hyperlink
constraints to developers and users of the system. This section describes a possible HCL
design. It has not been implemented.

The content of a hyperlink constraint document (HCD), based on an informal exam-
ple HCL, is given below. A key notion in this HCL isallow_from. Allow_fromspeciŒes
from which zone to what other zone links are allowed.

// It is possible to define a named set of zones. Zones can either be
// ZoneIDs or the zone names that are registered with the world in
// Zone Descriptions which can be found in the world's zone list
set A { zone1, zone2, zone3 }
set B { zone4, zone5 }
// One can also use zone names directly; WEZ is a commonly used
// name for the world entrance zone.
allow_from WEZ to A
// B may link to the WEZ
allow_from B to WEZ
// A can link to B (back is not allowed)
allow_from A to B
// we can create exceptions too: zone3 may not link to B.
deny_from zone3 to B
// but it may link to zone 4; another exception
allow_from zone3 to zone4
// ... And anything not explicitly specified above, is not allowed.

The above is a HCD which constrains how agents may ``move'' i n the world. Here,the
WEZ can link to any (room in any) zone in set A, the zones in set A (except for zone3)
can link to any of the set of zones in B, and B can link back to the WEZ. Like Fig. 40, a
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circular structure becomes visible. In general, the WEZ would be allowed to link to any
room; the WEZ will often be owned or managed by the world owner, and would be
trusted to manage links properly. Howev er, in cases where multiple world entrance zones
exist, these may cater speciŒc subsections of the world. Such sections can correspond to
the sets above, and corresponding constraints may be useful.

To describe the hyperlink layout of Œg. 40, a HCD could look something like this:

// assume this world consists of zones hosp1, hosp2, hosp3, ..., hospN
set A { hosp1, hosp2, hosp3, ... hospN }
allow_from A to WEZ // all zones may link back to WEZ
allow_from WEZ to hosp1
allow_from hosp1 to hosp2
allow_from hosp2 to hosp3
allow_from hosp3 to hosp4

...
allow_from hospN-1 to hospN

The above deŒnes the hyperlink layout in Fig. 40: all hospital zones may link to the world
entrance zone, and there are pairs of zones between which unidirectional hyperlinks may
exist to form a list or a ring.Note the HCD's restrictions: linking from WEZ to all hospi-
tal zones is not allowed. For that,allow_from WEZ to Ashould be deŒned.

Note that the language as deŒned above is static. When a new zone is added to the
world, we need to change the HCD (possibly, as part of the WDD) as a whole. In particu-
lar, the allow_from WEZ to hosp1should be changed such that the WEZ may have a
hyperlink that points to the new zone, and the new zone should link tohosp1. This is
inconvenient. A possible improvement may be that a world designer can deŒne names for
groupings externally, for example, in the world's zone list.

An alternative to a static per-world HCD may be to have the world owner specify
constraints slightly less formally, for example, on a Web page that describes the zone reg-
istration procedure and the general layout of the world in human-readable terms. This can
then result inlocal, per-zone access control policies that determine what zones agents
may be allowed to migrate from to a particular zone. Note that, as described in Sec.
2.3.12, it is irrelevant whether the incoming agent arrives via a hyperlink or via a jump
call; hyperlink constraints constrain migration.

As a concrete example of how to implement a decentralised approach, zone-based
hyperlink/migration constraints can be embedded in the zone description of each zone.
Thus, instead of having a global HCD, zone owners may deŒne from what zones they
accept incoming hyperlinks/agents. Notethat at the time that zone descriptions are
loaded into the zone list, the world owner may verify that theirinboundhyperlink con-
straints are not in con•ict with the world's general hyperlink constraints.

Zone descriptions provides additional •exibility . For example, zone owners may
describe what zone entrance rooms a given zone has, and then from what zones agents
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may migrate to what zone entrance rooms.A zone may have one ZER for agents coming
from zone A and zone B, and another for agents coming from zone C.If deployment-
time checks are possible maintaining decentral policies is a possibly more •exible way to
implement hyperlink constraints than to deŒne a formal, static, world-maintained HCD.

So far, Œne-grained policies on hyperlinks at room granularity have not been pro-
posed. Instead,the focus has been on constraining migration based on zone information.
This has three reasons:

1) Creatingglobal hyperlink constraints would be even more difŒcult with constraints
at the room level, since there may be many more rooms than zones.

2) A room should not know the previous room, visited before entering the room.This
can give away a lot of information about the agent (owner's) interests, which is
undesirable from a privacy perspective.

3) It would be hard to enforce policies at the room level, as it is not possible to authen-
ticate a room from which an agent arrives; only zones can be authenticated (using
the zone-based authentication protocol underlying agent handoff). Zones are the unit
of trust in Mansion: at best, the sending room can be known if the sending zone
includes this information in the handoff protocol, if the receiving zone trusts the
information that the sending zone provides. For both privacy reasons and for sim-
plicity, such a model was decided against.

Overall, the most scalable approach is considered to be to deŒne general hyperlink
constraints at the world, using a central HCD to guide rules in a general sense, and to
deŒne detailed (inbound) migration constraints in the zone description. An example zone
description policy: allow_from A to Room1 ; allow_from B to Room2. Such a constraint
would be enforceable, as each MMW authenticates the incoming agent's MMW using
zone-based authentication. This approach does not reveal what the agent's interests are,
as it is not visible to what room(s) an agent went in the previous zone.

As a Œnal example, consider the following approach. A world designer conceives a
global hyperlink topology containing three sets of zones called sections. One section con-
sists of zones offering travel packages, the second section consists of zones offering
houses as second homes, and a third sections offers cars for rent or for sale.Agents travel
from one section to another only through the section's entry rooms: an agent in a room
for cars may not directly jump or follow a hyperlink to a room for houses. Can we struc-
ture this world using zone-based hyperlink constraints, providing sufŒcient freedom to
the different sections to manage their own room topology internally while having sufŒ-
cient overall control over how agents can migrate in this world? Anexample topology of
this world is shown in Fig. 46.
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Zone Zone Zone Zone Zone Zone

Zone Zone Zone

WEZ

A B C

D E F    G H I

Fig. 46. An example of structuring a world using zone-based hyperlink constraints.

The above-shown world is translated to the following world constraints.To solve
some of the problems posed by not having global control at the room level, a set of inter-
mediate zones (zone A, B and C) are introduced in the world as entry points to the differ-
ent sections.

A hybrid zone-based policy is deŒned using a globalHCD combined withinbound
hyperlink constraints that are deŒned in zone descriptions.

set intermediate_zones { zone A, zone B, zone C }
set travel { zone D, zone E }
set second_homes { zone F, zone G }
set cars { zone H, zone I }

// the world entrance zone links to A, B and C
allow_from WEZ to intermediate_zones

// and A, B and C link to the different sections
allow_from A to travel
allow_from B to second_homes
allow_from C to cars

// Intermediate zones can link to each other and back.
// Note that a set is only a notational aid. A set does
// not imply that zones in it may link to each other.
// Below rules ensure intermediate_zones can.
allow_from A to B; allow_from B to A
allow_from B to C; allow_from C to B
allow_from C to A; allow_from A to C

The above zone-based hyperlink constraints ensure that hyperlinks between the different
sectionstravel, second_homesand cars are not possible. SpeciŒc zones (A, B, C)
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function as `̀hubs'' t o different subsections.Alternatively, a constraintallow_from WEZ
to all_zonescould be deŒned.However, then the work of keeping links to various rooms
in the world would be on the world entrance room administrator. Instead, in the above
policy, different zones (A, B, C) are responsible for keeping track of their subsection. The
HCL formalises that the different subsections cannot link to each otherŠt hey can only
be reached through the intermediate zones:travel, cars andsecond_homessections can-
not link to each other.

What the above HCD does not do, is deŒne Œne-grained constraints of exactly to
which rooms in a particular zone, another zone may link. In Fig. 46, the zones intravel,
second_homesand cars can each deŒne constraints (i.e., zone entrance rooms) in their
zone description. For example, zone D and zone I each have two zone entry rooms, while
zone E, F, G and H each have a single entry room. Instead of deŒning constraints in the
zone description, zone F can also simply tell the administrator of room B that it may only
link to this speciŒc room; in fact, a convention is that the Œrst-created room of a zone
(with a RoomID ending withRMO_0_0) is the default entry room, and this is the room
that would normally be linked to, so in many cases this need not be told explicitly70.

The HCD policy above partitions the world in subsections (travel, cars, sec-
ond_homes) which may not link to each other. This particular policy cannot be enforced
in a hard way by the world designer (since agents migrate from zone to zone without
involving the world administrator). Thus, the world owner must trust the zones in the
world to adhere to its HCD. As said before, if a zone violates the HCD, the zone adminis-
trator has the power to remove the zone from the world by removing the zone from the
zone list.

Note that another conceivable solution for hyperlink constraint enforcement, is to
have the ALS enforce the HCD. Since the ALS is involved with every update of an
agent's contact address, violation of the HCD can be detected there. Conceivably, this
check can take place probabilistically, to avoid the cost of checking the HCD each time a
contact address is updated. A Œnal approach is where the world owner simply uses agents
to search a world for breach of policy at regular intervals.

70 When zones trust each other and when jumping is not allowed, worlds may do without explicit enforcement of zone
entrance policies and simply pass the RoomID to register in a hyperlink to each other.
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Appendix 3
Jailer resource management

A requirement for a systems that runs arbitrary untrusted programs isresource manage-
ment, in the sense of preventing the system from becoming starved of processor time,
memory, or disk space by a malicious program that (directly or indirectly) uses too many
of these resources. Current ``off the shelf'' o perating systems like Linux are not particu-
larly good at preventing attacks on system resources, particularly not at preventing
against denial of service attacks, also calledresource exhaustionattacks [71]. In Man-
sion, there is thus a need to cope with malicious programs that may mount such an attack.
If possible, it is convenient to have the jailer This appendix describes some exploratory
work on resource management in the jailer.

A jailer can do basic resource exhaustion prevention by enforcing global limits on
system calls. Example limits are a maximum number of threads or processes that a pris-
oner may create, or that can run at the same time. The number of bytes that a prisoner
may write to disk, or the amount of physical memory it may use are other examples.
These limits are simple to enforce by keeping track of current use of a resource (e.g.,
memory) and checking system calls that modify the amount of resource usage against a
limit. The jailer command line can take options to govern the above limits.

A more elusive form of resource usage which is harder to manage, is (system) time
usage. Aresource exhaustion attack may claim so many resources (e.g., CPU or system
time) that other processes no longer get their share. Examples program behaviours that
can trigger resource denial of service attacks are: invoking many system calls toopen,
read andclosearbitrary Œles on disk (purging the disk cache continuously), creating large
amounts of memory pages (particularly if this triggers swapping), or creating a large
number of signal handler contexts by installing a signal handler and repeatedly (or recur-
sively) sending a signal to invoke it. These attacks cannot always easily be prevented
using limits on system calls or their arguments. For example, a maximum ofopencalls in
total may cause a programs that legitimately reads many Œles to fail, while a maximum of
open Œles per time unit is defeated by closing the Œle immediately afteropen/read, as
described above. It is difŒcult to set limits right, and system time usage is difŒcult to pre-
cisely account for using system call monitoring to begin with.
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Current UNIX systems such as Linux do not provide interfaces to allow users to
control the (relative) resource use (e.g., in terms of system time) of their programs in a
Œne-grained way. Schedulers on commodity operating systems attempt to schedule user
processes fairly [111]. Standardschedulers are not well-equipped to deal with malicious
user processes. Most schedulers are pre-emptive and primarily focus on dividing user
mode time fairly between user processes.Malicious programs can use (excessive
amounts of) system time or resources, for example by executing time-consuming or
memory or CPU-intensive system calls, to attack a system.

Schedulers deal with managing system time consumption less effectively than with
managing the user mode time consumed by processes.System calls execute in kernel
mode, consuming system time. Some system calls cannot be pre-empted or stopped half-
way; once executed, they must Œnish; others just take a lot of time to return, (e.g., disk
access) or compete for scarce resources (e.g., when triggering a page fault causing a new
memory page to be swapped in). Although many system calls can interleave, allowing
other system calls or user processes to use the system while waiting for a resource to Œn-
ish work, this is not always the case, and some system calls simply use more
resources Š take more system timeŠt han others. There is a large difference between a
readsystem call and agetpid system call.

System calls that result in creation of a thread of execution Š for example, when cre-
ating a context for a registered signal handlerŠc ompete with other execution contexts
(threads, processes).In general, system calls that require the kernel to do bookkeeping
(e.g., process or memory management related calls) may take a relatively large amount of
system time.Because of these intricacies, managing system time in the kernel properly
and accounting for it when scheduling processes is difŒcult Š furthermore,given the lim-
ited number of effective defenses, most operating systems seem not to expect that user
processes mount denial of service attacks from the inside.

From a practical perspective, there are various ways in which malicious program can
misuse system calls or kernel resources to deny other processes sufŒcient time to run.A
straightforward example is a process which repeatedly executes a recursive search
through the local Œle system, making use of time consuming system calls such asopenor
read to keep the disk busy. Particularly processes which also use disk may suffer from
this attack.Another example is a recursive signal handler. Here, the kernel is kept busy
creating signal handler contexts, which, when executed, create another one by sending a
signal, and so on. From experience, by running such an attack on a stock Fedora distribu-
tion with a Linux 2.6 kernel, it is apparent that the kernel gives handling signals priority
over scheduling regular threads or processesŠa single program executing a recursive
signal handler attack can make the system unresponsive. Similar is afork bomb71, which
creates a large number of child processes usingfork or, on Linux, clonesystem calls.

71 In contrast to recursive signal handlers, fork bombs can be prevented in a straightforward way, by limiting the maxi-
mum number of threads or processes that a given process can create. On Linux, this can be done by controlling theclone
call. A similar problem as outlined foropen/closeoccurs though: does one limit the total number of clones in a jail, or the
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A jailer that enforces resource control can help deal with above-mentioned attacks.
By having the jailer limit the number of processes by controlling theclonesystem call,
agents can be prevented from creating an excessively large number of child processes at a
single time. Further, we assume that the user mode time is divided fairly using the operat-
ing system's (pre-emptive) scheduler, giving sets of processes in different jails a roughly
equal share of the available user mode time. The jailer's primary task, then, is to manage
system time.A difŒculty for the jailer is its requirement that no changes may be made to
the operating system.

An approach to manage system time in the Mansion jailer is explored in[54]. The
approach consists of assigning an (estimated)weightin terms of system time to each sys-
tem call, and enforcing system time use per jail by counting the actual use of system time
per time slot. When a system call is invoked, the jailer predicts the total use of system
time in the current time slot after the system call is made using the weight of this system
call. If a user-deŒned amount of system time per time-slot for the jail has been exceeded,
the system call is postponed until the next time slot. The procedure implemented in the
prototype [54] is described in some detail below.

The jailer is instrumented so that it canproŒlejailed applications by measuring the
time that system calls take to complete. This way, the jailer can assign aweight to each
system call. System calls which are not executed by the jailed program during the proŒl-
ing run, are assigned a (large) default weight by the jailer. Below is an example of an
output Œle [54]:

SYS_write=8083
SYS_open=12121
SYS_fstat=200
SYS_mmap2=195
SYS_close=220
SYS_ioctl=126
SYS_read=148
SYS_munmap=237
SYS_lstat=8012
SYS_getxattr=20548
SYS_socket=218
SYS_fcntl=121
SYS_connect=412
SYS__llseek=233
SYS_readlink=9619
SYS_clock_gettime=26
SYS_getdents=447
SYS_mremap=47
SYS_brk=18
SYS_shmdt=56

A system call's weight is essentially the time a system call takes to complete under

number of simultaneously running children? The approach outlined in this section focuses on rate-limiting an attack, by
limiting the number ofclonecalls per time-unit. This can be combined with either one of the limit options.Combined with
the second option, a trick to create a large number of processes which exit instantly will not be usable to mount a very suc-
cessful denial of service attack.
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normal system load. It can be observed that there are some outliers in the list shown
above; for example, write and open took more time than read, and getxattr also takes a
signiŒcant amount of time. What is shown is the maximum time from a number of runs: a
proŒling run can take place several times, possibly with different programs; the maxi-
mum system time observed in any of the runs for a given system call is kept in the output
Œle. This approach was chosen to be on the safe side in estimating system time usage for
system calls.

For system calls which are known to be usable for denial of service attack, the
weight may be manually increased in the weight list, or using a second policy Œle or spe-
ciŒc command line options (future work).

The jailer can run prisoners inresource management mode, which starts by reading
in a weight list indicated on the command line. A command line argument is used to pass
the main resource management parameter to the jailer: themicroseconds of system time
that all the processes in a jail may use per time slot. A time slot is currently a second.

While running, the jailer keeps track of the total system time used by a prisoner. Just
as with proŒling, the jailer does so by measuring the time betweensyscall_preand a
syscall_postev ents for all system calls.Each time a prisoner invokes a system call, in the
syscall_prehandler, the jailer checks whether the maximum amount of used system time
for the current time slot has exceeded the limit. If this is the caseŠo r if the jailer esti-
mates (by checking the weight list) that the current system call will cause it to exceeds
the limit, if allowed Š the jailer blocks the system call until the next time slot.The jailer
does so by keeping theptrace call that instructs the kernel to continue the system call
pending until the next time slot. In all cases, the jailing policy is checked Œrst.

The result of testing the approach is shown below The jailer runs a program, `̀ ls ‰al
/usr/*'' in r esource management mode, with the above proŒling data read in from ~/tim-
ingdata. `̀ ls ‰al /usr/*'' r ecursively lists the /usr/ directory on a standard Linux distribu-
tion. Below are shown thesystem, userandreal time measured using thetimecommand.
In the Œrst run, the prisoner is allowed to use 0.5 seconds of system time per second:

[cmd1] $ time bin/jailer --rmgt $PWD/timingdata -d ~/mansion-jail/0 -p bin/jail-
policy --rmgt-systime-us-per-sec 500000 ls -al /usr/*

[... output omitted ...]
real 0m5.689s
user 0m0.883s
sys 0m1.293s

The resulting execution time (wall clock time) of the program is around 5.69 seconds. Of
this, 0.88 seconds are spent in user time, and 1.29 seconds is spent in system time, that is,
in the kernel. The remaining time (real without userandsys) is used by other programs
on the same machine.

Below the same program is run, now with a resource management allowing 0.25
seconds of system time per second:
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[cmd2] $ time bin/jailer --rmgt $PWD/timingdata -d ~/mansion-jail/0 -p bin/jail-
policy --rmgt-systime-us-per-sec 250000 ls -al /usr/*

[... output omitted ...]
real 0m9.334s
user 0m0.847s
sys 0m1.437s

As can be observed, the total amount of system time and user time used by the prisoner is
approximately the same as the previous run; this makes sense, as the number of system
calls and the CPU time needed in user mode are identical for both runs. However, the real
time, the wall clock time is 9.33 seconds, that is, the program's execution time is nearly
doubled compared to the earlier run.This corresponds to expectations as the second pro-
gram is allowed about half the system time per time slot of the Œrst one; it thus takes
longer to complete. In terms of resource usage, this means that the system call related
resources that a prisoner can use are limited effectively. Repeated measurements using
similar tests conŒrmed the above results (not shown). Notethat the number of millisec-
onds per second is relatively high: the 0.5 seconds is selected to be around the system
time needed for this program to execute without degradation, demonstrating that the total
execution time doubles when constraining the system time per second to 0.25 seconds.
Other programs may require signiŒcantly less system time per second, requiring a far
smaller limit on the command line to have impact on the program's total execution time.
Future work is needed to experiment with these setting for a number of benchmark pro-
grams, to establish a reasonable maximum to rate-limit denial of service attacks to a sufŒ-
cient degree in practice.

Note also that there is a slight increase in the system time used in the second run,
compared to the Œrst. This difference may be attributable to the use ofalarm system calls
used by the jailer to implement time slot management and the extra time that system calls
take while they are kept pending by the jailer.

In conclusion, the jailer can be used to impose a ceiling on prisoner's resource
usage Š say, 0.20 seconds per second maximum. Such a ceiling can prevent a single mali-
cious agent from bringing the system to a halt, while probably not in•uencing most pro-
grams whose actual system time usage may stay well below this limit.

In practice, many issues may need to be resolved before systems can use the
sketched approach reliably. For example, in Mansion, system time quotas per jail may
need to be adjusted dynamically, to adapt to the resources available to a given jail to the
number of other jails that are running at the same time. In other cases, some agents may
be allowed to consume more resources than others, depending on for example a resource
negotiation scheme [72].

The work described above provides a basis for future research. More in depth mea-
surements and test cases are needed to explore how resource management behaves, par-
ticularly when other concurrent (jailed) processes are concurrently invoking system calls
intensively Š and how this in•uences the proŒling results.A structured analysis of how
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speciŒc denial of service attacks make use of particular system calls, and of how these
may be alleviated and how the jailer functions under such attacks, would be very useful.

Finally note that tuning parameters (such as adjusting the weight of speciŒc system
calls depending on their potential for misuse) can turn out to be a challenge.For exam-
ple, when assigning a large weight to thekill system call because it may be used to imple-
ment a recursive signal handler attack, other programs that make intensive benign use of
this system call (such as a JVM) may suffer. Striking a balance may be difŒcult. Never-
theless, for defending systems against kernel resource exhaustion attacks, using a jailer
that is instrumented for resource management along the lines outlined above, seems a
promising and appealing approach. The Œrst tests, reported above, illustrate that the
approach can work.



Appendix 4
Object replication

The MOS and object model described in this thesis (chapter 7) deals with nonreplicated
objects, primarily focusing on security. It does not support replication directly. This ap-
pendix describes possible mechanisms and design options to include support for replica-
tion, which extend the Mansion object framework described in this thesis. It also
describe a simple manual content replication scheme that uses a replicated Œle system.
Because these approaches were not tested, we describe it as an appendix.

Moti vation

The ideas sketched in this section are loosely inspired by the Globe distributed object sys-
tem [18]. Globe is a distributed object system which is designed such that each object
can implement its own replication strategy. In Globe, the replication strategy is imple-
mented inside an object using an internal subobject called a replication subobject.In
addition to a replication subobject, security and communication subobjects have also
been designed[95, 16, 107],to deal with the various aspects related to object manage-
ment and replication in large-scale distributed systems in an object-speciŒc way. In con-
trast, Mansion takes a much simpler object model, where the MOS is tailored to Man-
sion's security model that uses ScID-based authentication, and which applies a standard
security mechanism to all objects. The question is whether replication support can be
embedded in the Mansion object system.

An example where replication is useful in Mansion, is for a popular room that is vis-
ited by many agents at the same time. Such a room can handle the load of many visiting
agents by having a number of MMW processes in the zone, each running on a different
machine. If the room contains an object with a large amount of data, for example,
images, that agents search often, having a copy of this data on or nearby an agent's
machine can prevent that the object that serves the content becomes a bottleneck.Provid-
ing each host or small set of hosts that serve agents with a MOS that contains a replica of
the object is a solution to this problem72.

72 Ensuring that a directory with the data exists on each machine, which can be linked into the agent's jailing directory is
a solution. However, this solution does not Œt in the Mansion model where agents may currently only access objects.
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Approach

An interesting starting point implementing replication in Mansion is that it provides a
way to authenticate group members.Zones can be the basis for authenticated group com-
munication, as zone members can authenticate each other as being member of the same
zone. In Mansion, limiting replication to zones makes sense, as regular objects are acces-
sible only in a zone.A more general object replication scheme could also make use of
the zone concept. Using zones, different (sub)groupscan be deŒned for object replica-
tion, similar to what was proposed in the context of Globe [60].

For example, a `̀ core group'' could use active replication to achieve consistency
within a small set of trusted, hopefully highly available replicas, while one or more other,
larger groups would obtain copies of (part of) the object's state using, for example,
master-slave replication [16] where a slave can connect to a master in the core group.A
node or client outside the core group or the master-slave group would have to connect to
a member of the slave group to invoke an object. Several policies, including differential
policies (in which different methods have different replication policies) are conceivable.

From a security perspective, it would be straightforward to express a replication pol-
icy such as the above using ZoneIDs to specify groups.

Group-based policies can be relevant for several reasons. Among other things, dif-
ferentiated replication policies could ensure availability (on a large scale) of nonsensitive
and infrequently changing data, for example by means of master-slave replication. More
sensitive data, on the other hand, could remain replicated and available only within a
smaller, more trusted `̀ core replica group.'' O rthogonal to the data distribution policy of
an object, an access control policy may also take zones into account, where invocations
may be made from one zone and not from another.

Note that internally in a (Globe) distributed object, certain invocations that act upon
sensitive data can automatically be propagated to the core replica set, whereas invocations
working on nonsensitive data could be handled directly by a member of the master-slave
replica set which has a copy of the nonsensitive state.

To discuss a concrete replication mechanism for the MOS, consider a simple, uni-
form replication scheme. If an invocation of a method causes changes to state (i.e., a
write invocation), active replication can be used to distribute (replicate) this method invo-
cation on all members of the group of object replicas. For now, assume that a reliable
group communication mechanism can be established between all MOS processes within a
zone. Reliable group communication mechanisms are implemented in, for example, the
Isis toolkit [26]. More recently, sev eral other reliable, ordered group communication
mechanisms have been implemented, more or less resilient to failure (e.g., Paxos is an
example of a group communication mechanism designed to be highly reliable even in
view of arbitrary failure of participating nodes [57]).

Future modiŒcations to Mansion to support such a solution are discussed in Sec. 9).
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Let us assume availability of a simple (but less reliable) sequencer service in each
zone, to which all MOS processes can connect. The sequencer's function is to issue
sequence numbers, using which the ordering of the ordering of messages can be recon-
structed at the receiving side. Replicated invocations can be invoked in exactly the same
order on all replicas of the object, ensuring consistency. Before sending a message to the
group, a sequence number has to be requested.Next, the sender can multicast the mes-
sage with this number included to all participants of the group, that is, to the set of
MOSes containing replicas of the object.

For replicated objects, the set of of MOS processes which host a replica of a given
object can be found by inspecting the location service.For the purpose of this section,
the problem of leaving and joining groups as well as location service consistency are dis-
regarded. Replicationis not trivial, especially not in a large-scale system where nodes
may fail arbitrarily. There is a reason it has not been implemented.

Assuming that there exists a reliable, ordered group communication infrastructure
between MOS instances where every zone member can be connected to every other
process in the zone using an authenticated ZAC channel, it becomes quite straightforward
to design an active replication scheme for objects. Fig. 47 shows the idea.
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Fig. 47. An object replication scheme where the MOS manages active replication of method invoca-
tions for objects

In Fig. 47, a set of three MOS processes is shown. Each MOS contains a replica of
the same object (the middle one). The Œgure does not distinguish the OM and OII layers
explicitly; instead it focuses on the communication layer that underlies the RPC system;
above that, the Œgure shows an Invocation layer which invokes the object; to simplify the
Œgure we act as if OM and OII layers are integrated in a single layer, the invocation
layer. In reality, inv ocation takes place through the OM and OII layers.
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In Fig. 47, the MOS invocation forwarder service is extended with arepli-
cated_invokecall, which accepts invocations from other processes in the same zone,
which come in over the communication layer. Replicated invocations carry a sequence
number issued by the sequencer, and these can be executed in order by the invocation
layer. Regular invocations take a different path. First, the MOS checks whether the
method has to be replicated (see below). If so, a sequence number is requested from the
sequencer, and the call is replicated (by placing the marshalled request in arepli-
cated_invokecall) to all other MOS'es that host the object, within the same zone. Note
that presumably, in a setup like this, MOS processes will have persistent connections
open between them, over which replicated invocations on different objects can be sent.

In Fig. 47, an incoming invocation is shown to the right; the invocation layer notices
that the incoming request needs to be replicated (how is described below). Next, the invo-
cation layer passes the marshalled invocation to all other MOS processes which have a
replica of the object by invoking a replicated_invokecall on these MOS'es. It does so
through a group communication interface implemented on top of the ZAC layer. This
group communication interface simply establishes point-to-point connections to other
MOS'es which receive inv ocations through an RPC service. The invocation layer dis-
cards the original request, and waits for thereplicated_invokecall to arrive through its
communication interface. All the above is relatively straightforward, albeit clearly sim-
pliŒed from a proper reliable active replication system (i.e., it does not handle failures).

Replication bitmaps

An interesting question is how to indicate to the MOS what methods to replicate. The
answer is simple: extend MansionObjectwith a method that allows an object owner to
register areplication bitmapwith the object. Similar to a role bitmap, the replication bit-
map contains a bit per method, indicating whether it should be replicated or not. This
allows an object designer to mark methods which do not have to be replicated as different
from those which do. In general, only methods which cause a modiŒcation of an object's
state need to be replicated.What methods modify state can typically be Œgured out
straightforwardly from the object's IDL, knowing the object's semantics; in particular,
write methods modify state,read methods do not. If necessary, an object's methods can
be modiŒed such that the semantics of every method is clear.
To support replication bitmaps, we can add the following methods toMansionObject:

set_replication_bitmap(bitmap)
must_replicate(method_id)

In the current MOS implementation, themust_replicatecould be checked by the
skeleton code in the OII after it checks the object's ACL. If the method is allowed and if
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it must be replicated, the OII can bounce the original marshalled invocation back to the
OM layer using a runtime system method.(Note that the ScID (a 20-byte opaque Œeld)
and themethod_id(an int32 following the ScID) can be checked before fully unmar-
shalling the original invocation). Next, the OM layer can invoke the replicated_invoke
call on the relevant peer MOS processes transparently using the group communication
interface. Thesequence number can be included in thereplicated_invokemethod. The
OM and OII layer (including skeleton) must distinguish replicated from regular invoca-
tions to avoid replicating invocations recursively.

Manual replication

As a `̀ quick Œx,'' o bjects can also be manually replicated. This is straightforward to
implement. Identicalcontent can be uploaded to manually created replicas of the object,
each in a different MOS, which are registered under the same name. As an alternative, a
shared distributed Œle system may be used underneath.

Mansion objects currently use the local Œle system to store (persistent) information
for its objects. The current MOS implementation allows its owner to specify a directory
(e.g., on NFS) which is used by the MOS and which contains directories accessible to
objects. This shared directory can be shared by all objects in a zone. By allowing differ-
ent object servers to access the same Œle system, it becomes possible to have each
`̀ replica'' object access and serve the same state.

For a solution that operates at a larger scale (e.g., for wide-area replicated objects),
similar solutions can be based on large-scale peer to peer data storage system like PAST
(based on Pastry [101]). In general it is possible to reuse existing technology for building
highly available Œle systems [102,112, 125]. Alternatively, object replicas can interface
with a (distributed) data base internally, or even with a dedicated Œle storage system such
as, for example, designed for Grid systems [80].Different instantiations of an object,
each in a different MOS, can communicate with such an infrastructure internally while
providing a distributed (replicated) object interface to the outside world. For a proper
solution Š similar to the proposal for object replication earlier in this sectionŠt he Œle
system used should be aware of zones, or at least be able to authenticate and authorize all
object replicas that attempt to access data.

If an object's state does not change (often), manual replication can work Œne.For as
long as Mansion does not provide explicit support for object (state) or method replication,
manual replication may provide an alternative.
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Appendix 5
Location service resolver

This appendix describes how common entities are resolved on the Mansion location ser-
vice using self-certifying names. The resolver embeds knowledge on naming conventions
to locate entities in the location service.

In Mansion, ScIDs (usually, ZoneIDs) are used in all location-independent identi-
Œers, such as object handles, agent identiŒers, and the names of middleware processes
and services which are part of the middleware. Somehandles Š like those of the services
implementing the location service, MMW processes and object servers Š are only used
internally and not visible at the application level. At the application level, the most promi-
nent handles are RoomIDs (for hyperlinks) and AgentIDs (for agents). These are visible
to agents. ObjectIDs are registered in the RMO and visible to the MMW from there.
Given some call of the agent, the MMW must Œgure out where, e.g., a MMW process is
that belongs to a given zone that an agent follows a hyperlink to.

Starting from handles used at the application level internal handles can be con-
structed by means of a few simple naming conventions. For example given a ZoneID
extracted from a RoomID, the self-certifying name of a middleware process in that zone
can be constructed.

Naming conventions and resolving handles

All entities (agents, objects, and internal services) in Mansion have location-independent
identiŒers, called handles.The handle of an object is called anobject handle. All han-
dles have a standard layout:

<ScID>_<Type>_<Roomnumber>_<Objectnumber>

ScID is the base32-encoded self-certifying identiŒer of the process in which the object or
service is located.Typically this is azone identiŒer (ZoneID),although it could be a
PeerID if the process is not a member of a zone (Fig. 16).

Type is the name of the object's interface, or possibly of a service's interface. A
type indicates a speciŒc interface of a service or object as deŒned in the Mansion IDL
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(Sec. 7.3); Other examples are MMW or ATP types, which indicate the RPC interfaces
that the MMW provides for setting up connections to agents and for agent transport,
respectively. Types are simple strings of up to 64 bytes.

Roomnumberis the number of the room relative to the zone. This number is relevant
for hyperlinks, as a zone may have many rooms. For a service, the room number is set to
0, as services are not speciŒc to a room.

Objectnumberis the number of the object relative to the room. If the identiŒer refers
to a service and does not refer to a regular object,Objectnumberis set to 0. Roomnumber
as well as objectnumber are encoded as a decimal number of up to 10 characters.

Any process in Mansion (including services and the MMW) with a remotely callable
interface, may be named with a handle.

For illustration, example handles of services and objects in an actual Mansion world are:

6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_ALS_0_0
6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_Morgue_0_0
6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_RMO_0_0
6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_RMO_1_0
6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_ATP_0_0
6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_ZLS_0_0
2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG_RMO_0_0
2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG_MFC_0_0
2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG_MFC_0_1
2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG_ATP_0_0
2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG_ZLS_0_0
BR7WYHD7337FR7PZGTFZIIMFAU72N55H_Bootstrapper_0_0
BR7WYHD7337FR7PZGTFZIIMFAU72N55H_WLS_0_0

The names of the types of the handles above correspond to the Mansion services and
components shown in from Fig. 6 and come from a location service cache of an existing
world.

The list of handles illustrates important service and object types in Mansion:

ƒ ALSthe type of the agent location service;

ƒ ZLSandWLSare types of location service components;

ƒ ATP is the type for the externally reachable interface of the MMW process that can
be used to ship agents to it using the Mansion agent transfer protocol;

ƒ Bootstrapper, WED, and morgueare the types of services in the world entrance zone
that play a role in bootstrapping a world, and in injecting and collecting agents;



App. 5 APPENDIX 277

ƒ MFC (MultiFileContainer) is the type of a standard Mansion object used to store
Œles.

For illustration, look at the list above. The structure of a world can be observed by just
looking at the handles.Zone 6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB must be a
world entrance zone, as an ALS and a Morgue have this ZoneID in their handle.Room
handles that end with RMO_0_0 are the Œrst rooms created in a zone, and by conven-
tion,zone entrance rooms.6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_RMO_0_0
must be a world entrance room. There is also a second world entrance room, room 1.
There may be multiple world entrance zones per world for scalability reasons.

The second zone in this world 2KXSFBINSIBAWHOCFKVR2QAHZF6DO4IG
contains a room with two MFC objects and no ALS, it is a regular zone.

The most important ScID is BR7WYHD7337FR7PZGTFZIIMFAU72N55H; this is
the zone that contains the world's basement. It is recognisable because it contains the
bootstrapper service. The ZoneID of the basement is used to authenticate world services
such as the world location service and the bootstrapper service. Recall that handles are
self-certifying, meaning that knowledge ofŠi n this caseŠt he WorldID is enough to
authenticate the world services; trust extends from there (e.g., through the zone list which
can be authenticated using the WorldID, and which can be used to Œnd properties and
ZoneIDs of zones in the world). Usersauthenticate the world location service and the
bootstrapper services when they Œrst initialise and conŒgure a world. Oncea middleware
system is initialized with the WorldID (using the MLS and the WLS, Fig. 6), any compo-
nent of the world can be found.

Examples

Using a process of incremental lookups, typically starting with looking up the ZLS of a
zone, any object or service's handle can be resolved. Asan example, assume a middle-
ware process resolving the following object handle:

6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_MFC_1_0

Assuming a contact record of the WLS is known, the middleware locates the ZLS of the
MFC object's zone, by constructing the handle 6T36FOGJAV2ZEDWDIFESUI7TQW-
YA6LB_ZLS_0_0 and resolving this handle in the WLS. Next, the ZLS is contacted to
Œnd the contact address (MCR) of the MFC object. An MCR is returned that contains the
contact address of a MOS in which (one of the replica's of) the object resides; the index
Œeld in the MCR indicates the object within the MOS. If there are multiple MCRs, these
are returned in round-robin order, unless the client resolver requests to obtain the MCRs
of all replicas at once, e.g., to be able to select a (close-by) instance.
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As indicated before, the location server is not trusted for security. It should be
trusted to provide valid contact records to clients in general (if not, the world would stop
to function as no content would be reachable from within the system), but a client can
authenticate its peer end-to-end using the ScID from the peer's handle. However, the
location service does basic checking: the location service that receives an update or a
request to add or remove an MCR for a replica, Œrst veriŒes that the registering process is
in the zone corresponding to the handle and the MCR.

A Œnal example, illustrating the process of Œnding a migration endpoint. A hyperlink
looks like this:

6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_RMO_0_0

A hyperlink is a RoomID. The left-hand side of the RoomID is the room's 32-byte
base32-encoded ZoneID. Using the RoomID, the middleware can straightforwardly con-
struct a handle for an agent transfer protocol (ATP) endpoint in this room's zone by
replacing the RMO_0_0 part of the object handle for ATP_0_0. TheATP endpoint is
where a MMW processes waits for incoming agents.

6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_ATP_0_0

Using this name, the contact record for the ATP endpoints can be obtained from the zone
location service of zone 6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB. which can be
located by resolving the handle 6T36FOGJAV2ZEDWDIFESUI7TNQWYA6LB_
ZLS_0_0 in the world location service (WLS). There may also be multiple MMW pro-
cesses in a zone ready to receive agents. These are registered under the same ATP handle.
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Optimising the clone protocol

The current protocol for cloning agents, described in Sec. 9.1.7, is inefŒcient, since it
requires copying the parent's AC three times: for sending to the WED, when copying itin
the WED, and for shipping it to the MMW that Œrst starts the agent.

This appendix describes an optimisation. This optimisation also prevents overload-
ing the WED with the task of physical cloning (copying) AC's, etc. Because the optimi-
sation has not been implemented, we describe it in the appendix.

A MMW can clone the physical AC locally, without shipping it to the WED;
instead, it can send the agent passport and ToC segments of the parent to the WED. (Only
the MMW where an agent runs according to the ALS may do this).Next, the WED can
(re)create and sign a new the agent passport and other initial segments for the new agent,
including the initial ToC. For this, it uses the ToC checksums from the parent agent's
ToC, to create a new ToC data structure which contains the ToC entries for the child's
code and initial data segments, identical to the parent's code and (initial) data segments.
To do this, the WED needs to know the ToC and initial segments of the original (parent)
agent; it might have kept these from parent injection time, or the cloning MMW may
send them to the WED including the signature by the WED over the parent's initial ToC.
This signatures can be veriŒed by the WED.Knowing this, the WED may register a new
AgentID on the ALS and create the new initial segments including the TOC (which is
identical to the parent's ToC except for the entry of updated segments, e.g., with the new
AgentID) for the cloned agent, and send these to the cloning MMW process. The cloning
MMW should ensure the new AC has the same segments as when the WED would have
created it using the procedure outlined before.

The optimised cloning procedure is as secure as the non-optimised version, because
the integrity of this new AC can and will be veriŒed in the regular way, during the hand-
off protocol that takes place on the Œrst physical migration of the new agent. Apotential
security risk exists: a cloning MMW can simulate the cloning procedure to obtain a new
AgentID. Howev er, the WED can check with the ALS that the cloning MMW indeed has
the parent running on it. If so, the result of simulating the cloning procedure is no differ-
ent than in the case where the cloning MMW would force a clone operation upon the par-
ent agent against its will, and thus the risk is not exacerbated compared to the original



280 Optimising the clone protocol App 6

clone protocol. (Mansion provides no protection of an agents against a malicious host
that forces operations on it, or which substitutes an agent for a completely different piece
of code at runtime; Mansion does not provide a means to protect agents against the host
at runtime except for the audit trail veriŒcation procedure when the agent returns).

With this restriction noted, optimising the clone procedure is possible and it has
identical security properties to the non-optimised version. Doingthis however requires
careful programming, of both the MMW and the WED, where, among other things, a new
ToC has to be created for the clone which matches the parent's ToC closely, but not pre-
cisely (i.e., the agent passport segment in the child's AC is different, leading to a different
checksum than in the parent's ToC); also, the cloned AC's segment identiŒers must match
the ones in the ToC.



Appendix 7
Overhead of MMW to AOS RPC

In the AOS chapter, Sec. 4.7, throughput measurements and scalability of AOS were mea-
sured. This showed good scalability in that the total throughput remains constant indepen-
dent of the number of concurrent sends or AC shipments over a single AOS-to-AOS base
channel. InSec. 8.3.2, ATP transfer cost were measured on a different set of machines.

Even though scalability is important for a kernel that is to be used by multiple pro-
cesses concurrently, baseline performance in terms of latency and throughput are proba-
bly at least as important for most system designers. An important constraint with regard
to AOS performance, is the fact that IPC (RPC) calls are made to invoke AOS operations.
For heavyweight operations, such as an AC transfer, the added overhead is small com-
pared to the overall cost of the (remote) operation and can be mostly neglected, but for
tasks such as communication over an AOS channel, the additional RPC overhead may
increase latency and decrease throughput.

To gain insight in this aspect, we measured the average round-trip time of a single
invocation of a `̀ping'' method on AOS kernel. The measurements include the time it
takes the (multithreaded) SunRPC dispatcher over a TCP/IP substrate to handle the
request, verify the cookie, and invoke the native `̀ping'' method, which returns a 32 bit
integer.

The average round-trip time of this RPC call is 129 µsec.For comparison, a simple
getpid system call on the same machine takes 7 µsec on average. Roughly speaking,
about 122 µsec is added when using an AOS primitive, compared to using an OS primi-
tive (e.g., sockets) directly.

The RPC related overhead shows that AOS communication is not an optimal solu-
tion when low-latency, high-bandwidth communication is required; presumably, commu-
nication over AOS should be considered primarily in cases where there are limits on the
number of usable TCP ports, for example, when a machine resides behind a Œrewall.

This measurement is placed in an appendix because it was made on the machine
described in chapter 9, not on the same machine that the original AOS measurements in
chapter 4 were made. The latter were no longer available at the time of making these
measurements. The RPC measurements here are thus only intended to give a rough idea
of RPC overhead using the AOS kernel.
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Appendix 8
Using MashŠt he Mansion shell

This appendix describes how a world is created and used from a user's and an administra-
tor's perspective. It intends to illustrate how Mansion is used. The following sections
present an administrator's shell and an interactive agent calledMash.

The Mansion shell

To facilitate administration of Mansion worlds, a program called theMansion shell
(Mash)has been developed. Mash is part of a set of utility programs that allow adminis-
trators to create new worlds and new zones. Command line tools exist to create and
access RMOs and objects such as MFCs, to upload or download data to these objects.
Mash makes use of these utility programs to create a uniŒed environment, orshell, using
which an administrator can conveniently use the relevant programs by means of familiar
(UNIX-like) commands.

The Mansion shell always starts in the zone entrance room.In this room, an admin-
istrator can view the content of the room or a bound-to object, using a simple command
like ls which, depending on context, invokes an RMO client or an MFC client program73.
Mash is a stand-alone program; the programs that it spawns, like rmocli, connect to the
MOS and authenticate using the zone member key that it (or, the room administrator) has
access to. In a room, Mash can create a new room. A hyperlink is created to the new
room, and by default a a back-link is created. The back-link, by convention, has the
attributename=..The name of the new room, speciŒed as an argument of thenewroom
command, is placed in thename=attribute of the hyperlink to the room.

To help a zone administrator navigate through its zone, Mash provides a simple
shell-like interface. It has commands like ls (to view a room or an object's content), and
cd (to enter another room, or to bind to an object in a room and enter it, as if it were a
directory). All Mash commands use and act uponname attributes, but suppress the
name= preŒx. Attributes other thanname are also suppressed. To view full (raw)

73 Underlying commands, such asrmocli or mfccli, take a range of arguments, including Œle names of keys and certiŒ-
cates, and various options. Most of these arguments are hidden by Mash, which provides simple shorthand commands such
asls to list the content of a room, or the content of a multiŒle container.
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attributes, a •ag must be passed with a Mash command.
By default, the Mansion environment appears as a directory structure with simple

Œle names for rooms (hyperlinks) and objects. Mash provides an environment familiar to
UNIX users. Mash is a tool for administrators. It is also turned into a mobile agent:
Mash has become themobile agent shell.

The mobile agent shell: Mash

By making some modiŒcations to the Mansion shell, it becomes a mobile agent that
allows for using Mansion interactively. To do so, modiŒcations are needed:

1) The way in which the original Mash and its subprograms connect to RMOs and
objects is modiŒed. Instead of using a direct connection to the MOS (which admin-
istrative programs that have access to the zone key are allowed to do), a mobile
agent must connect to and through the MMW using communication calls provided
by the Mansion API. The required modiŒcation is straightforward, as the internal
RPC calls to the RMO and other objects are identical; the only difference is in that
connections and bindings by Mash must be made to the MMW RPC (forwarding)
endpoint, through Mansion's binding mechanism, instead of to the MOS directly by
means of a custom resolver and binding system.

2) Insteadof using administrative programs to directly read object handles from RMOs
and objects and resolving them, passing contact addresses on the client program's
command line, the MMW now does this. Like any agent, Mash now uses calls rela-
tive to the Mansion context, using Mansion API methods. This is convenient.

3) Utility programs used by Mash, such as thermocli program used to connect to the
RMO, must similarly be modiŒed. This mainly involves linking the programs with
the Mansion API library and passing the MMW's communication endpoint (avail-
able to the Mansion shell as result of binding, see Sec. 2.3.10) to these subprograms
instead of the endpoint normally passed on the client program's command line. The
client program does it job, for example listing the content of an RMO or an object;
the standard output of the client program is picked up by Mash (which spawns the
client program and can capture standard in, out and error), which returns it over an
interagent communication channel back to the agent's owner.

4) Insteadof reading commands from standard input and writing results to standard
output, mobile agent Mash listens for connections on an agent communication end-
point, receives commands from there, and returns them over the same channel to the
user. A complication is that an agent owner's user interface is not an agent that runs
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in the world, so according to the Mansion model, the agent may not communicate
with its owner. The solution is that the MMW where the agent resides accepts con-
nections from a user interface program which has access to the private key that cor-
responds to the AgentOwnerID (the hash of the agent owner's public key) of the
agent. A better solution may be to create a `̀ proxy agent'' in t he WEZ for the
agent's owner, using which the agent owner can set up connections to the (child)
agents it has in the world.

5) In contrast to the command line shell, the mobile agent shell is able to migrate
(using follow_hyperlink)to another room. This requires modiŒcation of the Mash
`̀ cd'' command to not simply bind to another object, but actually migrate. Migration
is straightforward: since Mansion uses weak migration, Mash is shipped, killed at
the source, and started from scratch at the destination.Then, Mash invokes the
acceptcall to listen for a (re)connect from its owner, and waits to receive com-
mands. The client program can retrieve the agent's current address from the ALS,
and connect to the agent's new communication endpoint registered there after Mash
migrated.

The above modiŒcations allow Mash to run as an agent and execute commands for
inspecting RMOs or objects, to download object content to the agent's jailing directory
(resulting in it being stored in the agent's AC), etc. A commandexit makes Mash exit,
resulting in its AC being shipped back to the Morgue where it can be retrieved by the
owner. From experience, Mash is a convenient way for agent owners to browse and
explore a world. Fig.48 shows a screenshot of runningMashas a mobile agent shell.

Fig. 48 gives a screenshot of a user injecting and steering Mash. This happens using
a wrapper script (Mansion's `̀ main menu''). From this menu, the mobile agent shell is
injected, after which a client program (agentmonitor) is started that connects to the agent.
Agentmonitor connects to the agent, sends commands typed on the commandline verba-
tim to it, and waits for results, which are printed to standard out. If the connection to
Mash closes (e.g., after sending a command causing the agent to migrate), agentmonitor
receives a communication error. The user types a command to reconnect later.

The screenshot in Fig. 48 begins at the moment of injectingMashby typing `̀inject
mash.'' T he inject command invokes a program calledmansion_injectorwith the path-
name of the agent (Mash) as an argument. Somethings can be observed from the inject
commandline. First, the WED handle is known and Œlled in on the commandline by the
main menu script.When the main menu script is started, an environment variable con-
tains the WorldID or a default is read from a standard location in the user's home direc-
tion, ensuring that the script is set up in the context of a directory which contains all the
information needed to do work in this world.74 From this world's local conŒguration
directory, the menu script obtains all the information needed to make user programs
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function, such as the keys required to authenticate to programs such as the world entrance
daemon. Theagent owner key is also found in the world's conŒguration directory. It is
generated when Mansion is Œrst used.

As can be observed from Fig. 48, the keys and certiŒcates that need to be loaded by
the injector program, and are passed automatically to it:agtk.pem, in addition to contact
information about the AOS kernel used to submit the agent to the world entrance daemon
(WED)75. This information is Œlled in by the main script.Inject returns the global Agen-
tID (GAID). After injection ofMash, control returns to the main menu.

The user starts up the programagentmonitor with the GAID as its argument. The
agentmonitor is a modiŒed MMW program that connects to the agent. Any command
typed into the monitor (except for theconnectcommand) is directly sent to the agent,
after which the monitor simply waits for the response. Shown is execution of thels com-
mand, which results in the Mash returning a listing of its current room's content. (Note
that the monitor simply sends bytes as they are typed, as ASCII strings, to the agent; the
monitor program is agnostic as to whether the agent is Mash or another agent).

Mash is started up in the world of Fig. 40, and it is asked to list the content of the
room. TheŒrst room contains an object calledmaster-templates, and a hyperlink to the
next zone. When an agent is instructed to migrate through hyperlink 2 (cd 2), the agent
disconnects, which is reported to the user. After a while,connectallows the user to recon-
nect to the agent, and the user can again typels to have the agent report on the content of
its current room usingls. The command!ls would report the content of the agent's cur-
rent jailing directory (see below).

Mash is not an autonomous agent: it is controlled by a user. Using Mash, in contrast
to the Web, a user can migrate through a (possibly world-wide) web of rooms, and access
data hereŠf or example, objects in the rooms, or data made accessible to the agent in the
agent's jailing directory. The user has the full range of commands at the remote machine
to his or her disposal, such as commands in /bin and /usr/bin. The remote system is pro-
tected by the jailer, which can control what information can be accessed by the agent,
protects resources, and prevents the agent from connecting to arbitrary IP addresses.
(This prevents, for example, a denial of service attack or other malicious attacks on sys-
tems reachable from the agent's current machine).

Using Mash, the full power of Mansion becomes noticeable to a user. Arbitrary
code can be executed on arbitrary machines which are hooked into the network of rooms,
so users can send agents to where the data is, and can have access to the raw system inter-
face there (within the constraints of the jailer, Mash allows direct execution of UNIX
commands available on the remote machine).

74 Most information about a world is obtained whenbootstrappingthe world (see Sec. 3.3 and 3.3.4); this results in cre-
ation of a local directory containing the world's main conŒguration details.

75 As described earlier in this thesis, the mechanism to inject agents in the world is external to Mansion, as diverse
mechanisms can be devised by the world entrance zone developer. For convenience, the prototype uses AOS for injection.
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Fig. 48. Screenshot of using Mansion and themobile agent shell. Shown are the general Mansion
wrapper script, agent injection, and the agent monitor program. The ``ls'' command is used to list
the contents of an agent's room. Upon following a hyperlink (`̀ cd 2''), the connection with the agent
is broken and the user has to reconnect using the `̀ connect'' call.

Agents have access to the full power of the remote machine. This differs from the
Web, where a user can only retrieve Web pages from a remote location and display them
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locally. In a sense,Mashis a modern form of the UNIX guest account (which is removed
on almost all machines today for security reasons, but was quite common until some 15
years ago).

Mash runs in a jailer, and provides access to UNIX commands as well as to rooms
and content in them. Hyperlinks are presented by Mash as directories, and users cancd
to one of them to make Mash follow the hyperlink. Similarly, Mash can ``cd'' i nto an
MFC object, placing the user in the context of an object client program that provides a
familiar ftp-like interface to view and download Œles from the object. ``Cd-ing'' out of the
object puts the user back in RMO client mode to view the room and execute UNIX com-
mands.

Experiences using Mash

The original stand-alone Mansion shell andMash can be used to access rooms and
objects, and also as a regular UNIX shell. It executes UNIX commands that are preŒxed
by a `̀!' '. For example,!ls does not invoke the Mash `̀ls'' command for listing the con-
tent of a room, but it returns the content of the current working directory of the agent,
typically the agent's jailing directory.76 It emulates familiar commands so that navigation
through rooms becomes effortless, using commands like cd. In a sense, the agent now
physically traverses a distributed `̀ directory structure.''

To the author of this thesis, the experience when using Mash is one of power and
•exibility; having Mash execute commands on a remote machine directly, within a jail,
while being able to •exibly migrate to other machines when needed (visiting other rooms
and content there), feels impressive indeed.

Possible improvements

For the prototype, the user's monitor program connects to Mash. For this, it contacts the
ALS to Œnd the agent's current contact address. This works, but is somewhat suboptimal.
Allowing any client program to query the ALS, irrespective of whether this client pro-
gram is part of one of the world's zones, is not preferable from a security perspective.
The fact that user programsŠe ven though these are authenticated as agent owner pro-
grams Š removes some of the implicit trust-based security that comes with accepting con-
nections from zones of a world only.

The solution is also suboptimal from the perspective of the agent's owner. Having
the user connect to the agent is suboptimal, since some time may be lost between when
an agent is started, and when the user connects.When an agent owner instructs Mash to
follow a hyperlink (cd nextzone or cd 2), Mash invokes the follow_hyperlink call,

76 We hav enot implemented terminal emulation over the user-Mash communication channel, but this certainly would be
feasible: in that case, arbitrary remote programs could be executed, resembling what can be done with ansshterminal.
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migrates, and after migration waits for a new command. The user has to guess when
migration has completed (usually, the user just waits a few seconds), and then issues a
`̀ connect'' command on the monitoring program. (Note that the monitoring program is
initialised with theAgentIDof the agent, so the user does not have to specify the AgentID
again with the connect command). Monitoring multiple agents is possible by switching
between connections.

The way in which an agent owner's programs connect to their agents also breaks
with the Mansion model, as formally only agents within a world may connect to an agent.
Furthermore, the way in which the MMW authenticates user programs using the agent's
AgentOwnerIDbefore allowing them to connect, does not work when the AgentOwner-
IDs carried by agents indicate roles or payment schemes instead of agent owners, as
described in Sec. 3.10. Also, the current implementation makes it impossible for users to
remain anonymous with regards to the MMW systems (and thus the zones) that host their
agents: if the agent owner connects, the MMW knows the agent owner's key and the IP
address from which the agent owner makes contact; if this information is not sufŒcient to
directly identify the user, it certainly allows linking different agents to a single user / IP
address.

A solution could be to have the world entrance zone, upon accepting an agent, create
a proxy agent for the agent's owner, to which the user's agent(s) can connect. This proxy
agent would be registered in the ALS like any other agent, and its AgentID would be reg-
istered in the AC of the newly created agent such that the agent can ``phone home'' to i ts
owner. (The Mansion API could be extended with an extra method for obtaining the
owner proxy agent's AgentID). The owner can connect to the proxy, using its agent
owner key to authenticate. Theproxy can relay any command or reply messages from the
user to the agent and vice versa. Ifagents connect back to the proxy agent right after
migration, and if the proxy agent buffers commands from the user, this avoids the need
for the user to reconnect to its agent and can provide migration transparency.



290 Using MashŠt he Mansion shell App 8

.



Appendix 9
Lightweight Mansion

This appendix describes a possible alternative to Mansion, where objects are replaced
with directories mounted in the jailer, called lightweight Mansion (LWM). Mash illus-
trates the potential of a future, simpliŒed version of Mansion.

Lightweight Mansion (LWM) is simpliŒed in the interface provided to agents:
instead of binding to objects, agents access a directory structure available (mounted) in
their jailing directory. Agents can then traverse a world by making system calls that take
standard (UNIX) directory names as arguments, making use of existing UNIX tools (such
as a standard shell). Extensions to the jailer are required to this purpose.The jailer can
check whether directories or Œles that are being opened map to Mansion constructs
(hyperlinks, objects) so that the jailer can translate these operations to Mansion opera-
tions transparently. Clearly, the standard semantics of directories in UNIX is changed in
some cases.

An agent's jailing directory, can contain special (sub)directories, e.g., /hyperlinks/ to
contain hyperlinks, and /shared/ or /objects/ to contain (object) data. There may also be
an /agent/ directory which contains links to other agents (conceivably, named pipescould
be used to communicate with other agents).Given knowledge of the Mansion paradigm,
it is possible to see how such a directory structures can be mapped on (Mansion) seman-
tics. Changingdirectory to a Œle in the /hyperlinks/ directory causes the agent to migrate
to another room; this restarts the agent, possibly on a different machine, with another
directory structure mounted into its jailing directory. Now the agent runs in the context of
the target room, which is translated to a set of directories and Œles linked into the agent's
jailing directory.

As described for Mash, achdir to an object directory makes the object's data acces-
sible using regular UNIX system calls. These can map onMFC calls internally (by hav-
ing the jailer make Mansion API calls to bind to the object and invoke its methods), or if
convenient from an implementation perspective, it is even possible to replace the Mansion
object system such that an underlying (NFS) directory structure is accessed directly. This
is transparent to the agent: in LWM, agents interact with the system using POSIX system
calls, which are translated to relevant Mansion calls by the jailer, if required.
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Attribute sets could be made available using a naming convention. For example,
objects, hyperlinks and agents connection endpoints are directories or special Œles; by
having regular Œles starting with the entity's Œle name with an extension, like <entityŒle-
name>.as, agents can be provided with Œles that contain the attribute set of the corre-
sponding entity in simple ASCII attribute=value representation.

Mapping Œle system operations in a jail on remote objects in the jailer is an interest-
ing thought. The jailer can be extended using a module to implement a user-level Œle sys-
tem, internally using objects such as theMFC as a kind of distributed Œle system.Map-
ping Mansion completely on a distributed Œle system (assuming appropriate access and
distribution control using zones are available) is also possible. LWM may use special
directories for per-room bookkeeping Š protectedfrom agents, similar to how the RMO
is usedŠw hile agents see only room-speciŒc directories in their jailing directory. An
agent sees directories and Œles in its private jailing directory, which, internally, map on
Mansion constructs. Agents can use standard operating system calls and libraries to
interact with Mansion, without having to be linked with the Mansion API or object inter-
faces. InLWM, all Mansion concepts are mapped to a Œle or directory in the agent's jail-
ing directory. This provides agents with a consistent way to interact with their environ-
ment, and it provides full support for using legacy (UNIX) programsŠl ike grep or
perlŠi n Mansion without modiŒcation.

LWM can be constructed using a ``fat jailer,'' w hich modiŒes system calls to imple-
ment Mansion behaviour. The jailer can be instrumented to •exibly ``mount'' directories
into the agent's jailing directory by constructing a jailing policy based on information in
the RMO. Content may be provided by having opencalls map on Œles in aMFC object,
or they may be provided directly in an underlying (local) Œle system; the RMO could be
extended with a way to store policies or local directory Œle names such that these can
become available in an agent's jailing directory as read-only directories.The jailer trans-
parently translates Œle system calls made by the agent into operations like binding or
retrieving data from an object. Note that if data is accessible as Œles, so there is no need
to download Œles to the jailing directory Œrst.

The jailer is the core of LWM. This is not strange, as the jailer is also the core of
Mash. Without the jailer, Mash would have far less potential. One of its strengths is that
Mash provides a real remote (UNIX) shell powers to user, so that native applications and
scripts can be executed securely in the context of a room, on a remote system. In LWM,
agents could be implemented as scripts also, making existing scripting languages and
their interpreters (or shells) available as tools to program mobile agents.

The above is just a thought experiment, and it raises many questions. For example,
would global interagent communication still be possible, and if not, would it be missed?
Would world structure and world boundaries still be intuitive? Mansion provides a clear
model, whereas in LWM, all Mansion concepts are mapped on Œles and directories, pos-
sibly making the system's structure less obvious.
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The LWM thought experiment illustrates how Mansion concepts can be applied in
different ways. It is conceivable that an LWM implementation can be based on a simple
(distributed) Œle system abstraction instead of a distributed object system (modulo zone-
based distribution support), which may be convenient from a programmer's perspective.
Having the jailer transparently map Œle access to objects is a useful thought for a future
version of Mansion where integration and reuse of legacy tools and libraries is straight-
forward.

Lightweight Mansion exploits a transparent mapping of Mansion concepts, such as
hyperlink and local access to data, on Œle system operations by the jailer. Agents use a
`̀ private directory structure'' as the interface to interact with the system, instead of fol-
lowing hyperlinks or binding to objects. This can allow unmodiŒed legacy applica-
tions Š for example, shell programsŠt o be used as mobile agents, while still providing
all properties of Mansion and at the same time protecting the systems that host agents.
So, Lightweight Mansion is Mansion without the intricacies needed to interface with dis-
tributed objects.
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