Introduction to Parallel Programming

• Goal:
 – Method for developing efficient parallel algorithms that have little communication overhead, load imbalance and search overhead

• Learning goal:
 – You should be able to apply this method to simple cases
Introduction

- Language notation: message passing
- Distributed-memory machine
 - All machines are equally fast
 - E.g., identical workstations on a network

- 5 parallel algorithms of increasing complexity:
 - Matrix multiplication
 - Successive overrelaxation
 - All-pairs shortest paths
 - Linear equations
 - Traveling Salesman problem
Message Passing

• SEND (destination, message)
 – blocking: wait until message has arrived (like a fax)
 – non blocking: continue immediately (like a mailbox)

• RECEIVE (source, message)

• RECEIVE-FROM-ANY (message)
 – blocking: wait until message is available
 – non blocking: test if message is available
Syntax

- Use pseudo-code with C-like syntax
- Use indentation instead of \{ ..\} to indicate block structure
- Arrays can have user-defined index ranges
- Default: start at 1
 - int A[10:100] runs from 10 to 100
 - int A[N] runs from 1 to N
- Use array slices (sub-arrays)
 - A[i..j] = elements A[i, 1] to A[j, N] i.e. row i of matrix A
 - A[i, *] = elements A[i, 1] to A[i, N] i.e. row i of matrix A
 - A[*, k] = elements A[1, k] to A[N, k] i.e. column k of A
Parallel Matrix Multiplication

- Given two $N \times N$ matrices A and B
- Compute $C = A \times B$
- $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \ldots + A_{iN}B_{Nj}$
Sequential Matrix Multiplication

for (i = 1; i <= N; i++)
 for (j = 1; j <= N; j++)
 C[i,j] = 0;
 for (k = 1; k <= N; k++)
 C[i,j] += A[i,k] * B[k,j];

The order of the operations is over specified
Everything can be computed in parallel
Parallel Algorithm 1

Each processor computes 1 element of C
Requires N^2 processors
Each processor needs 1 row of A and 1 column of B

\[
\begin{bmatrix}
X & X & X & X \\
X & X & X & X \\
X & X & X & X \\
X & X & X & X
\end{bmatrix}
\times
\begin{bmatrix}
X \\
X \\
X \\
X
\end{bmatrix}
= \begin{bmatrix}
X \\
X \\
X \\
X
\end{bmatrix}
\]
Master distributes work and receives results
Slaves (1 .. P) get work and execute it
How to start up master/slave processes depends on Operating System
Master (processor 0):

\[
\text{int proc} = 1; \\
\text{for (i} = 1; \text{i} \leq \text{N; i}++ \} \\
\quad \text{for (j} = 1; \text{j} \leq \text{N; j}++ \} \\
\qquad \text{SEND(proc, A[i, N]; B[j, i], i, j); proc}++; \\
\text{for (x} = 1; \text{x} \leq \text{N*N; x}++ \} \\
\quad \text{RECEIVE_FROM_ANY(\&result, \&i, \&j);} \\
\text{C[i,j] = result;}
\]

Slaves (processors 1 .. P):

\[
\text{int Aix[N], Bxj[N], Cij;} \\
\text{RECEIVE(0, \&Aix, \&Bxj, \&i, \&j);} \\
\text{Cij \text{=} 0;} \\
\text{for (k} = 1; \text{k} \leq \text{N; k}++ \} \text{Cij \text{=} Cij + Aix[k] \times Bxj[k];} \\
\text{SEND(0, Cij , i, j);} \\
\]
Efficiency (complexity analysis)

• Each processor needs $O(N)$ communication to do $O(N)$ computations
 – Communication: $2N+1$ integers = $O(N)$
 – Computation per processor: N multiplications/additions = $O(N)$

• Exact communication/computation costs depend on network and CPU

• Still: this algorithm is inefficient for any existing machine

• Need to improve communication/computation ratio
Parallel Algorithm 2

Each processor computes 1 row (N elements) of C
Requires N processors
Need entire B matrix and 1 row of A as input
Can re-use each row of A many (N) times
Structure

Master

Slave 1

Slave N
Parallel Algorithm 2

Master (processor 0):

for (i = 1; i <= N; i++)
 SEND (i, A[i,*], B[*,*], i);
for (x = 1; x <= N; x++)
 RECEIVE_FROM_ANY (&result, &i);
 C[i,*] = result[*];

Slaves:

 int Aix[N], B[N,N], C[N];
 RECEIVE(0, &Aix, &B, &i);
 for (j = 1; j <= N; j++)
 C[j] = 0;
 for (k = 1; k <= N; k++) C[j] += Aix[k] * B[j,k];
 SEND(0, C[*] , i);
Problem: need larger granularity

Each processor now needs $O(N^2)$ communication and $O(N^2)$ computation -> Still inefficient

Assumption: $N >> P$ (i.e. we solve a large problem)

Assign many rows to each processor
Parallel Algorithm 3

Each processor computes N/P rows of C
Need entire B matrix and N/P rows of A as input
Each processor now needs $O(N^2)$ communication and $O(N^3 / P)$ computation
Parallel Algorithm 3 (master)

Master (processor 0):

```c
int result [N, N / P];
int inc = N / P; /* number of rows per cpu */
int lb = 1; /* lb = lower bound */
for (i = 1; i <= P; i++)
    SEND (i, A[lb .. lb+inc-1, *], B[*,*], lb, lb+inc-1);
    lb += inc;
for (x = 1; x <= P; x++)
    RECEIVE_FROM_ANY (&result, &lb);
    for (i = 1; i <= N / P; i++)
        C[lb+i-1, *] = result[i, *];
```
Parallel Algorithm 3 (slave)

Slaves:

```c
int A[N / P, N], B[N,N], C[N / P, N];
RECEIVE(0, &A, &B, &lb, &ub);
for (i = lb; i <= ub; i++)
    for (j = 1; j <= N; j++)
        C[i,j] = 0;
    for (k = 1; k <= N; k++)
        C[i,j] += A[i,k] * B[k,j];
SEND(0, C[*,*] , lb);
```
Comparison

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Parallelism (#jobs)</th>
<th>Communication per job</th>
<th>Computation per job</th>
<th>Ratio comp/comm</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N^2</td>
<td>$N + N + 1$</td>
<td>N</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td>$N + N^2 + N$</td>
<td>N^2</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>$N^2/P + N^2 + N^2/P$</td>
<td>N^3/P</td>
<td>$O(N/P)$</td>
</tr>
</tbody>
</table>

- If $N >> P$, algorithm 3 will have low communication overhead
- Its grain size is high
Example speedup graph

- # processors
- Speedup
- N=64
- N=512
- N=2048
Discussion

• Matrix multiplication is trivial to parallelize

• Getting good performance is a problem

• Need right grain size

• Need large input problem
Successive Over relaxation (SOR)

Iterative method for solving Laplace equations
Repeatedly updates elements of a grid
Successive Over relaxation (SOR)

float G[1:N, 1:M], Gnew[1:N, 1:M];
for (step = 0; step < NSTEPS; step++)
 for (i = 2; i < N; i++) /* update grid */
 for (j = 2; j < M; j++)
 Gnew[i,j] = f(G[i,j], G[i-1,j], G[i+1,j], G[i,j-1], G[i,j+1]);
 G = Gnew;
SOR example
Parallelizing SOR

• Domain decomposition on the grid

• Each processor owns N/P rows

• Need communication between neighbors to exchange elements at processor boundaries
SOR example partitioning

```
x  x  x  x  x  x  x  x  x
x  .  .  .  .  .  .  x  x
x  .  .  .  .  .  .  x  x

---

x  x  x  x  x  x  x  x  x
x  .  .  .  .  .  .  x  x
x  .  .  .  .  .  .  x  x
x  .  .  .  .  .  .  x  x

---

x  x  x  x  x  x  x  x  x
x  .  .  .  .  .  .  x  x
x  .  .  .  .  .  .  x  x
x  .  .  .  .  .  .  x  x
x  x  x  x  x  x  x  x  x
```
SOR example partitioning

\[\begin{array}{cccccccccc}
 x & x & x & x & x & x & x & x & x & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
 x & . & . & . & . & . & . & x \\
\end{array}\]
Communication scheme

Each CPU communicates with left & right neighbor (if existing)
These elements are called **halo cells**
Parallel SOR

float G[lb-1:ub+1, 1:M], Gnew[lb-1:ub+1, 1:M];
for (step = 0; step < NSTEPS; step++)
 SEND(cpuid-1, G[lb]); /* send 1st row left */
 SEND(cpuid+1, G[ub]); /* send last row right */
 RECEIVE(cpuid-1, G[lb-1]); /* receive from left */
 RECEIVE(cpuid+1, G[ub+1]); /* receive from right */
 for (i = lb; i <= ub; i++) /* update my rows */
 for (j = 2; j < M; j++)
 Gnew[i,j] = f(G[i,j], G[i-1,j], G[i+1,j], G[i,j-1], G[i,j+1]);
 G = Gnew;
Performance of SOR

Communication and computation during each iteration:
• Each CPU sends/receives 2 messages with M reals
• Each CPU computes N/P * M updates

The algorithm will have good performance if:
• Problem size is large: N >> P
• Message exchanges can be done in parallel

Question:
• Can we improve the performance of parallel SOR by using a different distribution of data?
Example: block-wise partitioning

- Each CPU needs sub-rows/columns from 4 neighbors
- Row-wise: only 2 messages, but with \(N \) elements
- Block-wise: 4 messages, with \(\frac{N}{\sqrt{P}} \) elements
- Best partitioning depends on machine/network!
- More on this at HPF lecture

<table>
<thead>
<tr>
<th>CPU 1</th>
<th>CPU 2</th>
<th>CPU 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>CPU 16</td>
</tr>
</tbody>
</table>

Each CPU gets a \(\frac{N}{\sqrt{P}} \) by \(\frac{N}{\sqrt{P}} \) block of data (assuming \(N=M \))
All-pairs Shortest Paths (ASP)

- Given a graph G with a distance table C:
 \[C[i, j] = \text{length of direct path from node } i \text{ to node } j \]

- Compute length of shortest path between any two nodes in G
Floyd's Sequential Algorithm

- Basic step:

```
for (k = 1; k <= N; k++)
  for (i = 1; i <= N; i++)
    for (j = 1; j <= N; j++)
      C[i, j] = MIN(C[i, j], C[i, k] + C[k, j]);
```

During iteration k, you can visit only intermediate nodes in the set \{1 .. k\}.

- \(k=0\) => initial problem, no intermediate nodes
- \(k=N\) => final solution
Parallelizing ASP

• Distribute rows of C among the P processors

• During iteration k, each processor executes
 \[C[i,j] = \text{MIN} (C[i,j], C[i,k] + C[k,j]) \]
on its own rows i, so it needs these rows and row k

• Before iteration k, the processor owning row k sends it to all the others
Parallel ASP Algorithm

int lb, ub; /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N]; /* pivot row ; matrix */

for (k = 1; k <= N; k++)
 if (k >= lb && k <= ub) /* do I have it? */
 rowK = C[k,*];
 for (proc = 1; proc <= P; proc++)
 /* broadcast row */
 if (proc != myprocid) SEND(proc, rowK);
 else
 RECEIVE_FROM_ANY(&rowK); /* receive row */

for (i = lb; i <= ub; i++) /* update my rows */
 for (j = 1; j <= N; j++)
 C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
Performance Analysis ASP

Per iteration:
• 1 CPU sends P - 1 messages with N integers
• Each CPU does N/P x N comparisons

Communication/computation ratio is small if \(N >> P \)
... but, is the Algorithm Correct?
Parallel ASP Algorithm

```c
int lb, ub;    /* lower/upper bound for this CPU */
int rowK[N], C[lb:ub, N]; /* pivot row ; matrix */

for (k = 1; k <= N; k++)
    if (k >= lb && k <= ub) /* do I have it? */
        rowK = C[k,*];
    for (proc = 1; proc <= P; proc++) /* broadcast row */
        if (proc != myprocid) SEND(proc, rowK);
else
    RECEIVE_FROM_ANY(&rowK); /* receive row */
for (i = lb; i <= ub; i++) /* update my rows */
    for (j = 1; j <= N; j++)
        C[i,j] = MIN(C[i,j], C[i,k] + rowK[j]);
```
Non-FIFO Message Ordering

Row 2 may be received before row 1
FIFO Ordering

Row 5 may be received before row 4
Correctness

Problems:
• Asynchronous non-FIFO SEND
• Messages from different senders may overtake each other

Solution is to use a combination of:
• Synchronous SEND (less efficient)
• Barrier at the end of outer loop (extra communication)
• Order incoming messages (requires buffering)
• RECEIVE (cpu, msg) (more complicated)
Introduction

• Language notation: message passing
• Distributed-memory machine
 – (e.g., workstations on a network)

• 5 parallel algorithms of increasing complexity:
 – Matrix multiplication
 – Successive overrelaxation
 – All-pairs shortest paths
 – Linear equations
 – Traveling Salesman problem
Linear equations

- Linear equations:
 \[a_{1,1}x_1 + a_{1,2}x_2 + \ldots a_{1,n}x_n = b_1\]

 ...

 \[a_{n,1}x_1 + a_{n,2}x_2 + \ldots a_{n,n}x_n = b_n\]

- Matrix notation: \(Ax = b\)
- Problem: compute \(x\), given \(A\) and \(b\)
- Linear equations have many important applications
 Practical applications need huge sets of equations
Solving a linear equation

- Two phases:
 - Upper-triangularization $\Rightarrow U \, x = y$
 - Back-substitution $\Rightarrow x$
- Most computation time is in upper-triangularization
- Upper-triangular matrix:
 $U \ [i, \ i] = 1$
 $U \ [i, \ j] = 0 \ \text{if} \ \ i > j$

\[
\begin{bmatrix}
1 & . & . & . & . & . & . & . \\
0 & 1 & . & . & . & . & . & . \\
0 & 0 & 1 & . & . & . & . & . \\
0 & 0 & 0 & 1 & . & . & . & . \\
0 & 0 & 0 & 0 & 1 & . & . & . \\
0 & 0 & 0 & 0 & 0 & 1 & . & . \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & . \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]
Sequential Gaussian elimination

for (k = 1; k <= N; k++)
 for (j = k+1; j <= N; j++)
 y[k] = b[k] / A[k,k]
 A[k,k] = 1
 for (i = k+1; i <= N; i++)
 for (j = k+1; j <= N; j++)
 b[i] = b[i] - A[i,k] * y[k]
 A[i,k] = 0

• Converts $Ax = b$ into $Ux = y$
• Sequential algorithm uses $2/3 N^3$ operations
Parallelizing Gaussian elimination

- Block-wise partitioning scheme
 - Each cpu gets a number of consecutive rows
 - Execute one (outer-loop) iteration at a time
- Communication requirement:
 - During iteration k, cpus containing rows $k+1 .. N$ need part of row k
 - -> need partial broadcast (multicast)
Communication

multicast
Performance problems

- Communication overhead (multicast)
- Load imbalance
 - CPUs with rows $<k$ are idle during iteration k
 - Bad load balance means bad speedups, as some CPUs have too much work
- Block-wise distribution thus has high load-imbalance
- Alternative:
 - Cyclic distribution of rows
 - Has less load-imbalance
Block-wise distribution

- CPU 0 gets first \(N/2 \) rows
- CPU 1 gets last \(N/2 \) rows
- CPU 0 has much less work to do
- CPU 1 becomes the bottleneck
Cyclic distribution

- CPU 0 gets odd rows
- CPU 1 gets even rows
- CPU 0 and 1 have more or less the same amount of work
Cyclic distributions

• Useful for algorithms with predictable load imbalance
 – Form of static load balancing

• Not suitable for all communication patterns
 – SOR (nearest-neighbor communication) would suffer
 – Every neighboring row would be on a remote machine
 – Trade off: minimize communication + load imbalance overhead
Traveling Salesman Problem (TSP)

• Find shortest route for salesman among given set of cities (NP-hard problem)
• Each city must be visited once, no return to initial city
Sequential branch-and-bound

• Structure the entire search space as a tree, sorted using nearest-city first heuristic
Pruning the search tree

- Keep track of best solution found so far (the “bound”)
- Cut-off partial routes \geq bound

Length=6

Can be pruned
Parallelizing TSP

- Distribute the search tree over the CPUs
- Results in reasonably large-grain jobs
Distribution of the tree

Static distribution: each CPU gets fixed part of tree
- Load imbalance: subtrees take different amounts of time
- Impossible to predict load imbalance statically (as for Gaussian)
Dynamic load balancing: Replicated Workers Model

- Master process generates large number of jobs (subtrees) and repeatedly hands them out
- Worker processes repeatedly get work and execute it
- Runtime overhead for fetching jobs dynamically
- Efficient for TSP because the jobs are large
Real search spaces are huge

- NP-complete problem -> exponential search space
- Master searches MAXHOPS levels, then creates jobs
 - Eg for 20 cities & MAXHOPS=4 -> 20*19*18*17 (>100,000) jobs, each searching 16 remaining cities
- Few jobs: load imbalance; many jobs: communication
Parallel TSP Algorithm (1/3)

process master (CPU 0):

generate-jobs([]); /* generate all jobs, start with empty path */
for (proc=1; proc <= P; proc++) /* inform workers we're done */
 RECEIVE(proc, &worker-id); /* get work request */
 SEND(proc, []); /* return empty path */

generate-jobs (List path) {
 if (size(path) == MAXHOPS) /* if path has MAXHOPS cities ... */
 RECEIVE-FROM-ANY (&worker-id); /* wait for work request */
 SEND (worker-id, path); /* send partial route to worker */
 else
 for (city = 1; city <= NRCITIES; city++) /* (should be ordered) */
 if (city not on path) generate-jobs(path||city) /* append city */
}
Parallel TSP Algorithm (2/3)

process worker (CPUs 1..P):

 int Minimum = maxint; /* Length of current best path (bound) */
 List path;
 for (;;)
 SEND (0, myprocid) /* send work request to master */
 RECEIVE (0, path); /* get next job from master */
 if (path == []) exit(); /* we're done */
 tsp(path, length(path)); /* compute all subsequent paths */
Parallel TSP Algorithm (3/3)

tsp(List path, int length) {
 if (NONBLOCKING_RECEIVE_FROM_ANY (&m))
 /* is there an update message? */
 if (m < Minimum) Minimum = m; /* update global minimum */
 if (length >= Minimum) return /* not a shorter route */
 if (size(path) == NRCITIES) /* complete route? */
 Minimum = length; /* update global minimum */
 for (proc = 1; proc <= P; proc++)
 if (proc != myprocid) SEND(proc, length) /* broadcast it */
 else
 last = last(path) /* last city on the path */
 for (city = 1; city <= NRCITIES; city++) /* should be ordered */
 if (city not on path) tsp(path||city, length+distance[last,city])
}
Search overhead

- Path $n \rightarrow m \rightarrow s$ is started (in parallel) before the outcome (6) of $n \rightarrow c \rightarrow s \rightarrow m$ is known, so it cannot be pruned.
- The parallel algorithm therefore does more work than the sequential algorithm.
- This is called search overhead.
- It can occur in algorithms that do speculative work, like parallel search algorithms.
- Can also have negative search overhead, resulting in superlinear speedups!
Performance of TSP

- Communication overhead (small)
 - Distribution of jobs + updating the global bound
 - Small number of messages

- Load imbalances
 - Small: does automatic (dynamic) load balancing

- Search overhead
 - Main performance problem
Discussion

Several kinds of performance overhead

- **Communication overhead:**
 - communication/computation ratio must be low

- **Load imbalance:**
 - all processors must do same amount of work

- **Search overhead:**
 - avoid useless (speculative) computations

Making algorithms correct is nontrivial

- **Message ordering**
Designing Parallel Algorithms

Source: Designing and building parallel programs (Ian Foster, 1995)
(available on-line at http://www.mcs.anl.gov/dbpp)

• Partitioning
• Communication
• Agglomeration
• Mapping
Partitioning

- Domain decomposition
 Partition the data
 Partition computations on data:
 owner-computes rule

- Functional decomposition
 Divide computations into subtasks (e.g. search algorithms)
 Multi-model computations (climate simulations that model atmosphere, land, ice, ocean)

Also called *data-parallelism* versus *task-parallelism*

- Data-parallel: same computations on different data
- Task-parallel: different functions per machine
Communication

- Analyze data-dependencies between partitions
- Use communication to transfer data
- Many forms of communication, e.g.
 - Local communication with neighbors (SOR)
 - Global communication with all processors (ASP)
 - Synchronous (blocking) communication
 - Asynchronous (non blocking) communication
Agglomeration

- Reduce communication overhead by
 - increasing granularity
 - improving locality
Mapping

• On which processor to execute each subtask?

• Put concurrent tasks on different CPUs

• Put frequently communicating tasks on same CPU?

• Avoid load imbalances
Summary

Hardware and software models

Example applications

• Matrix multiplication - Trivial parallelism (independent tasks)
• Successive over relaxation - Neighbor communication
• All-pairs shortest paths - Broadcast communication
• Linear equations - Load balancing problem
• Traveling Salesman problem - Search overhead

Designing parallel algorithms