Summary

• Background

• Introduction in algorithms and applications
 – Methodology to develop efficient parallel (distributed-memory) algorithms
 – Understand various forms of overhead (communication, load imbalance, search overhead, synchronization)
 – Understand various distributions (blockwise, cyclic)
 – Understand various load balancing strategies (static, dynamic master/worker model)
 – Understand correctness problems (e.g. message ordering)
Summary

- Parallel machines and architectures
 - Processor organizations, topologies (mesh, tree, hypercube), criteria
 - Types of parallel machines
 - arrays/vectors, shared-memory (bus-based, switch-based, NUMA), distributed memory
 - Routing
 - Flynn’s taxonomy

- What are cluster computers?
- What networks do real machines (like the Blue Gene) use?
- Which trends does the Top 500 show us?
- What is unique about DAS? How is it used? How are wide-area algorithms optimized?

- Speedup, efficiency (+ their implications), Amdahl’s law, weak and strong scaling
Summary

• Programming methods, languages, and environments
 – Different forms of message passing
 • naming, explicit/implicit receive, synchronous/asynchronous sending
 – Select statement
 – SR primitives (not syntax)

 – MPI: various message passing primitives, collective communication
 • Various communication modes; buffering

 – HPF: problems with automatic parallelization; division of work between programmer and HPF compiler; alignment/distribution primitives; performance implications
Summary

• Applications
 – Climate modelling
 • Community Earth System Model (CESM)
 • Different execution scenarios for CESM
 – N-body problems:
 • load balancing and communication (locality) optimizations, costzones, performance comparison of 4 different parallel algorithms
 – Search algorithm (TDS):
 • use asynchronous communication + clever (transposition-driven) scheduling
Summary

- Chapel:
 - Motivation and design principles
 - Partitioned Global Address Space (PGAS) model
 - Language core
 - Statements, expressions, procedures
 - Domains, tuples, records, classes
 - Data parallel features
 - Arrays, forall, basic operations
 - Task parallel features
 - Begin, cobegin, coforall, sync, etc
 - Distributed computing features
 - Locales, on-statement, domain maps
 - For all the above:
 - Concepts matter!
 - Precise syntax less so!
Parallel Programming Practical

• Kickoff meeting on 31 October:
 – 13:30 – 15:15, HG-12A00
 – Students who want to do PPP in Period 3 may also attend this meeting

• Practical is ``on your own’’
 – Using material on Canvas
 – Guidance from Rutger Hofman(MPI, Java) and Pieter Hijma (Chapel)