advanced logic
2018 03 08
lecture 10
model checking using dynamic logic: KeY

specification in Java modeling language
is transformed into formula in dynamic logic
and compared with semantics in dynamic logic

more generally: dynamic logic is useful for sequential programming

see wiki for KeY

see home page of KeY
overview

- propositional dynamic logic: semantics
recap: starting point PDL

for every program α we have a modality $\langle \alpha \rangle$

$\langle \alpha \rangle \phi$ intuitively means
it is possible to execute α starting in the current state,
and halt successfully in a state satisfying ϕ

$[\alpha] \phi$ intuitively means
if α halts successfully, then it halts in a state satisfying ϕ
program correctness

we restrict attention to input-output behaviour

specification consists of
input condition ϕ and output condition ψ

partial correctness:
if the program starts satisfying ϕ,
and if it halts,
then when it halts ψ is satisfied

total correctness:
it is partially correct,
and it terminates whenever started satisfying ϕ
two approaches: exogenous logic and endogenous logic

exogeneous: programs are explicit in the language

propositional dynamic logic (PDL) and Hoare Logic are exogenous

temporal logic and method by Floyd are endogenous

in addition: compositionality for PDL, not for temporal logic

MLOM chapter 14.2
programs and formulas of PDL

we have programs built from atomic programs, and possibly dependent on propositions
we have formulas built from atomic formulas, and possibly dependent on programs

truth of ϕ depends on
truth of strictly smaller formulas and relation of strictly smaller programs

consider for example $\phi = \langle a \rangle p$

relation of α depends on
relation of strictly smaller programs and truth of strictly smaller formulas
consider for example $\alpha = p?; a$
non-determinism

we have non-determinism due to choice \cup

we have non-determinism due to iteration α^*
semantics of PDL

\(A\): set of atomic program

\(\text{Prog}\): set of regular programs over \(A\)

a PDL-model is a \(\text{Prog}\)-frame which is a PDL-frame with in addition

\[R_\phi = \{(w, w) \mid M, w \models \phi\}\]

we can find a PDL-model as extension of an \(A\)-model with in addition

\[R_\phi = \{(w, w) \mid M, w \models \phi\}\]
exercise from yesterday

\[W = \{s, t, u, v\} \]
\[R_a = \{(t, v), (v, t), (s, u), (u, s)\} \]
\[R_b = \{(u, v), (v, u), (s, t), (t, s)\} \]
\[V(p) = \{u, v\} \]
\[V(q) = \{t, v\} \]

we have \(p \leftrightarrow [(ab^*a)^*]p \)
we have \(q \leftrightarrow [(ba^*b)^*]q \)
example

\[W = \{ u, v, w \} \]

\[R_a = \{(u, v), (u, w), (v, w), (w, v)\} \]

\[V(p) = \{ u, v \} \]

we have \(u \models \langle a \rangle \neg p \land \langle a \rangle p \)

we have \(v \models [a] \neg p \)

we have \(w \models [a] p \)

in every world (state) we have \(\langle a^* \rangle [(aa^*)p \land \langle a^* \rangle [(aa^*)] \neg p \)
which of the two directions is valid in PDL?

\[[(a \cup b)^*]p \leftrightarrow [a^*]p \land [b^*]p \]
if then else

if p then a else b encoded as $(?p; a) \cup (?\neg p; b)$
while

while p do a encoded as $(p?; a)^*; \neg p$?

formula $\langle \text{while } p \text{ do } a \rangle q$ is valid in model \mathcal{M} in state x iff there exist $n \geq 0$ and there exist x_0, \ldots, x_n such that $x = x_0$, and

$\mathcal{M}, x \models p$ and $x = x_0$ and $R_a x_0 x_1$

$\mathcal{M}, x_0 \models p$ and $R_a x_0 x_1$

\vdots

$\mathcal{M}, x_{n-1} \models p$ and $R_a x_{n-1} x_n$

$\mathcal{M}, x_n \not\models p$ and $\mathcal{M}, x_n \models q$
back to the approach due to Hoare

we encode while-programs as regular programs
we encode $\{\phi\}P\{\psi\}$ as $\phi \rightarrow [Q]\psi$ with Q the translation of P
we show that all rules from Hoare Logic are derivable
so we can encode Hoare logic in propositional dynamic logic