overview

- about program correctness
- propositional dynamic logic
overview

- about program correctness
- propositional dynamic logic
program correctness

correctness specification:
formal description about how a program is supposed to behave

program is correct:
its executions satisfy the specification
partial and total correctness

partial correctness:
if the program starts satisfying ϕ, and if it halts, then when it halts ψ is satisfied

total correctness:
it is partially correct, and it terminates whenever started satisfying ϕ
approach to program correctness

we restrict attention to input-output behaviour

specification consists of

input condition \(\phi \) and output condition \(\psi \)
while \(y \neq 0 \) do

begin

\(z := x \mod y; \)
\(x := y; \)
\(y := z; \)

end

return \(x \)
correctness for gcd

if the input variables \(x \) and \(y \) are \(c \) and \(d \)
the output value of \(x \) is the gcd of \(c \) and \(d \)
and the program halts
while programs

atomic instruction: assignment
\(x := t \) with \(x \) a variable and \(t \) a term

sequential composition
\(\alpha; \beta \)

conditional
if \(\phi \) then \(\alpha \) else \(\beta \)

iteration: while
while \(\phi \) do \(\alpha \)
rules for Hoare logic

one rule for every program construct, for example for while:

\[
\frac{\{\phi \land \sigma\}\alpha\{\phi\}}{\{\phi\}\text{while }\sigma\text{ do }\alpha\{\phi \land \neg \sigma\}}
\]

and a weakening rule:

\[
\frac{\phi \rightarrow \phi'}{\{\phi\}\alpha\{\psi\}} \quad \frac{\{\phi'\}\alpha\{\psi'\}}{\psi' \rightarrow \psi} \quad \frac{}{\{\phi\}\alpha\{\psi\}}
\]
the gcd program is while \(\sigma \) do \(\alpha \) with \(\sigma \) is \(y \neq 0 \)

precondition \(\phi \) is \(\neg(x = 0 \land y = 0) \land x = c \land y = d \)

postcondition \(\psi \) is \(x = gcd(c, d) \)

invariant \(I \) is \(\neg(x = 0 \land y = 0) \land gcd(x, y) = gcd(c, d) \)

we have \(\phi \rightarrow I \)

we have \(I \land \neg\sigma \rightarrow \psi \)
overview

- about program correctness
- propositional dynamic logic
about propositional dynamic logic (PDL)

PDL is a formal system for reasoning about programs:

proving that a program meets its specification, comparing expressive power,
...

PDL is modal so dynamic, so suitable to model computation

PDL interprets programs as input-output relation
(abstracts away from program execution details)

more or less: programs are supposed to halt

program constructors such as composition are interpreted as operations on
input-output relations
for every program α we have a modality $\langle \alpha \rangle$

$\langle \alpha \rangle \phi$ intuitively means

it is possible to execute α starting in the current state,

and halt (successfully) in a state satisfying ϕ

$[\alpha] \phi$ intuitively means

for all executions of α:
if α halts (successfully), then it halts in a state satisfying ϕ
ingredients of PDL

multi-modal logic

regular programs

mixed ingredients $[\alpha]\phi$, $\langle\alpha\rangle\phi$, $?\phi$
set Prog of PDL or regular programs: definition

atomic program

\(a\) from a set \(A\) of atomic programs

sequential composition

\(\alpha; \beta\)

non-deterministic choice

\(\alpha \cup \beta\)

iteration

\(\alpha^*\)

test

\(\phi?\) with \(\phi\) a formula, so depends on the grammar for formulas
PDL programs: intuitive meaning

atomic, indecomposable, step

\[\phi \]

if \(\phi \) then skip else abort, that is,

if \(\phi \) holds then continue without changing state,

if \(\phi \) does not hold then block without halting

\[\alpha; \beta \]

do \(\alpha \), then do \(\beta \)

\[\alpha \cup \beta \]

nondeterministically choose \(\alpha \) or \(\beta \) and execute it

\[\alpha^* \]

nondeterministically choose \(n \geq 0 \) and execute \(\alpha \) \(n \) times
non-determinism

we have non-determinism due to choice \(\cup \)

we have non-determinism due to iteration \(\alpha^* \)

a trace may not be uniquely determined by its start state

nondeterminism is useful to model situations where we may know the range of possibilities

often a deterministic choice is forced for example for if-then-else
PDL formulas: definition

atomic formula

p from a set Var of atomic propositions

true and false

\top and \bot

negation

$\neg \phi$

conjunction

$\phi \land \psi$

diamond

$\langle \alpha \rangle \phi$, with α a program, so depends on the grammar for programs
PDL formulas: examples

\[[\alpha \cup \beta] \phi \]
always if we execute \(\alpha \) or \(\beta \) we arrive at a state where \(\phi \) holds

\[\langle (\alpha \beta)^* \rangle \phi \]
there is a sequence of alternating executions of \(\alpha \) and \(\beta \) bringing us to a state where \(\phi \) holds

\[\langle \alpha^* \rangle \phi \leftrightarrow \phi \lor \langle \alpha ; \alpha^* \rangle \phi \]
\(\phi \) holds after a finite number \((n \geq 0) \) of \(\alpha \) steps
if and only if

either \(\phi \) holds here \((n = 0) \), or \((n > 0) \) we can do an \(\alpha \) step and then more \(\alpha \) steps to reach a state where \(\phi \) holds
PDL formulas: more examples

\[[\alpha](\phi \land \psi) \leftrightarrow [\alpha]\phi \land [\alpha]\psi \]
(seems a tautology)

\[[\alpha; \beta]\phi \leftrightarrow [\alpha][\beta]\phi \]
(seems a tautology)

\[[\alpha]\rho \leftrightarrow [\beta]\rho \]
(gives an equivalence between \(\alpha \) and \(\beta \))
mutual dependency: examples

\([p?]p\)
if \(p\)? halts then in a state satisfying \(p\) with \(p\) an atomic proposition

\(\langle p?\rangle p\)
it is possible to execute \(p?\) and halt in a state where \(p\) holds

\([\alpha]\bot\)
\(\alpha\) never terminates

\([\alpha]\top\)
is always true

\(\top?\)
is skip

\(\bot?\)
is fail (\(\bot\) unsuccessful halt)
towards a semantics for PDL formulas

we obtain the semantics as an instance of multi-modal logic

in particular:

\[M, s \models \langle \alpha \rangle \phi \text{ iff there is } s' \text{ such that } (s, s') \in R_\alpha \text{ and } M, s' \models \phi \]

however:

an arbitrary model does not respect the intended meaning of the programs

due to imposing conditions on the relations \(R_\alpha \).
example

\[W = \{ u, v, w \} \]

\[R_a = \{(u, v), (u, w), (v, w), (w, v)\} \]

\[V(p) = \{ u, v \} \]

we have \(u \models \langle a \rangle \neg p \land \langle a \rangle p \)

we have \(v \models [a] \neg p \)

we have \(w \models [a] p \)

in every world (state) we have \(\langle a^* \rangle [(aa)^*] p \land \langle a^* \rangle [(aa)^*] \neg p \)
\[W = \{s, t, u, v\} \]

\[R_a = \{(t, v), (v, t), (s, u), (u, s)\} \]

\[R_b = \{(u, v), (v, u), (s, t), (t, s)\} \]

\[V(p) = \{u, v\} \]

\[V(q) = \{t, v\} \]

we have \(p \leftrightarrow [(ab^* a)^*]p \)

we have \(q \leftrightarrow [(ba^* b)^*]q \)
intuitive requirements for a PDL model

consider $a; b$ and $R_{a;b}$

consider $a \cup b$ and $R_{a \cup b}$

consider a^* and R_{a^*}

this suggests to start from all the R_a with $a \in A$ an atomic program

but what to do with R_ϕ?
a Prog-frame $\mathcal{F} = (W, \{ R_\alpha \mid \alpha \in \text{Prog} \})$ is a PDL-frame if

$R_{\alpha \beta} = R_\alpha ; R_\beta$, and

$R_{\alpha \cup \beta} = R_\alpha \cup R_\beta$, and

$R_\alpha^* = (R_\alpha)^*$

so if we know all R_a then we know enough!

what are the definitions on the relations?
definitions on relations

the composition of R and S: $R; S = \{(x, z) \mid \exists y : Rxy \land Syz\}$

the union of R and S: $R \cup S = \{(x, y) \mid Rxy \lor Sxy\}$

the identity relation: $\text{Id} = \{(x, x)\}$

the n-fold composition of R: $R^0 = \text{Id}$ and $R^{n+1} = R^n \circ R$

the reflexive-transitive closure of R: $R^* = \bigcup_{n \geq 0} R^n$

note: if $x R^* y$, then there exists $n \geq 0$ and there exist x_1, \ldots, x_{n-1} such that $x = x_0 R x_1 R \ldots R x_n = y$

note: R^* is the smallest reflexive and transitive relation containing R
a model $\mathcal{M} = (W, \{R_\alpha \mid \alpha \in \text{Prog}\}, V)$ is a PDL-model if

$(W, \{R_\alpha \mid \alpha \in \text{Prog}\}$ is a PDL-frame, and

$R_\phi = \{(w, w) \mid \mathcal{M}, w \models \phi\}$
PDL extension: definition

we can get a PDL model as the extension of a model over labels A

Let $\mathcal{M} = (W, \{R_a \mid a \in A\}, V)$ be an A-model

Its PDL-extension is defined as $\hat{\mathcal{M}} = (W, \{\hat{R}_\alpha \mid \alpha \in \text{Prog}\}, V)$ with

$\hat{R}_a = R_a$

$\hat{R}_\alpha;\beta = \hat{R}_\alpha; \hat{R}_\beta$

$\hat{R}_\alpha \cup \beta = \hat{R}_\alpha \cup \hat{R}_\beta$

$\hat{R}_\alpha^* = (R_\alpha)^*$

$\hat{R}_\phi^? = \{(x, x) \mid \mathcal{M}, x \models \phi\}$