overview

- about program correctness
- propositional dynamic logic

program correctness

correctness specification:
formal description about how a program is supposed to behave

program is correct:
its executions satisfy the specification
partial and total correctness

partial correctness:
if the program starts satisfying ϕ, and if it halts, then when it halts ψ is satisfied

total correctness:
it is partially correct, and it terminates whenever started satisfying ϕ

approach to program correctness
we restrict attention to input-output behaviour

specification consists of
input condition ϕ and output condition ψ

recall: program for gcd

```plaintext
while $y \neq 0$
begin
  $z := x \mod y$;
  $x := y$;
  $y := z$;
end
return $x$
```

correctness for gcd

if the input variables x and y are c and d
the output value of x is the gcd of c and d
and the program halts
while programs

atomic instruction: assignment
\(x := t \) with \(x \) a variable and \(t \) a term

sequential composition
\(\alpha; \beta \)

conditional
if \(\phi \) then \(\alpha \) else \(\beta \)

iteration: while
while \(\phi \) do \(\alpha \)

rules for Hoare logic

one rule for every program construct, for example for while:

\[
\frac{\{ \phi \land \sigma \} \alpha \{ \phi \}}{\{ \phi \} \text{while } \sigma \text{ do } \alpha \{ \phi \land \neg \sigma \}}
\]

and a weakening rule:

\[
\frac{\phi \rightarrow \phi'}{\{ \phi' \} \alpha \{ \psi' \}} \quad \frac{\psi' \rightarrow \psi}{\{ \phi \} \alpha \{ \psi \}}
\]

illustration

the gcd program is while \(\sigma \) do \(\alpha \) with \(\sigma \) is \(y \neq 0 \)

precondition \(\phi \) is \(\neg(x = 0 \land y = 0) \land x = c \land y = d \)

postcondition \(\psi \) is \(x = \gcd(c, d) \)

invariant \(I \) is \(\neg(x = 0 \land y = 0) \land \gcd(x, y) = \gcd(c, d) \)

we have \(\phi \rightarrow I \)

we have \(I \land \neg \sigma \rightarrow \psi \)

overview

● about program correctness
● propositional dynamic logic
about propositional dynamic logic (PDL)

PDL is a formal system for reasoning about programs: proving that a program meets its specification, comparing expressive power, ...

PDL is modal so dynamic, so suitable to model computation

PDL interprets programs as input-output relation (abstracts away from program execution details)

more or less: programs are supposed to halt

program constructors such as composition are interpreted as operations on input-output relations

propositional dynamic logic (PDL): starting point

for every program α we have a modality $\langle \alpha \rangle$

$\langle \alpha \rangle \phi$ intuitively means

it is possible to execute α starting in the current state, and halt (successfully) in a state satisfying ϕ

$[\alpha] \phi$ intuitively means

for all executions of α:

if α halts (successfully), then it halts in a state satisfying ϕ

ingredients of PDL

multi-modal logic

regular programs

mixed ingredients $[\alpha] \phi$, $\langle \alpha \rangle \phi$, $? \phi$

set Prog of PDL or regular programs: definition

atomic program

a from a set A of atomic programs

sequential composition

$\alpha; \beta$

non-deterministic choice

$\alpha \cup \beta$

iteration

α^*

test

$\phi ?$ with ϕ a formula, so depends on the grammar for formulas
PDL programs: intuitive meaning

atomic, indecomposable, step

\(\phi \)
if \(\phi \) then skip else abort, that is,
if \(\phi \) holds then continue without changing state,
if \(\phi \) does not hold then block without halting

\(\alpha; \beta \)
do \(\alpha \), then do \(\beta \)

\(\alpha \cup \beta \)
nondeterministically choose \(\alpha \) or \(\beta \) and execute it

\(\alpha^* \)
nondeterministically choose \(n \geq 0 \) and execute \(\alpha \) \(n \) times

non-determinism

we have non-determinism due to choice \(\cup \)
we have non-determinism due to iteration \(\alpha^* \)
a trace may not be uniquely determined by its start state
nondeterminism is useful to model situations where we may know the range of possibilities
often a deterministic choice is forced for example for if-then-else

PDL formulas: definition

atomic formula

\(p \) from a set \(\text{Var} \) of atomic propositions

true and false

\(\top \) and \(\bot \)

negation

\(\neg \phi \)

conjunction

\(\phi \land \psi \)

diamond

\(\langle \alpha \rangle \phi \), with \(\alpha \) a program, so depends on the grammar for programs

PDL formulas: examples

\([\alpha \cup \beta] \phi\)
always if we execute \(\alpha \) or \(\beta \) we arrive at a state where \(\phi \) holds

\((\langle \alpha \beta \rangle^*) \phi \)
there is a sequence of alternating executions of \(\alpha \) and \(\beta \) bringing us to a state where \(\phi \) holds

\(\langle \alpha^* \rangle \phi \leftrightarrow \phi \lor \langle \alpha; \alpha^* \rangle \phi \)
\(\phi \) holds after a finite number \((n \geq 0) \) of \(\alpha \) steps
if and only if
either \(\phi \) holds here \((n = 0) \), or \((n > 0) \) we can do an \(\alpha \) step and then more \(\alpha \) steps to reach a state where \(\phi \) holds
PDL formulas: more examples

\[[\alpha](\phi \land \psi) \iff [\alpha]\phi \land [\alpha]\psi \quad \text{(seems a tautology)} \]

\[[\alpha; \beta]\phi \iff [\alpha][\beta]\phi \quad \text{(seems a tautology)} \]

\[[\alpha]\rho \iff [\beta]\rho \quad \text{(gives an equivalence between } \alpha \text{ and } \beta) \]

mutual dependency: examples

\[[\rho]?\rho \]
if \(\rho \) halts then in a state satisfying \(\rho \) with \(\rho \) an atomic proposition

\[(\rho)?\rho \]

it is possible to execute \(\rho \) and halt in a state where \(\rho \) holds

\[[\alpha]\bot \]

\(\alpha \) never terminates

\[[\alpha]\top \]

is always true

\[\top? \]

is skip

\[\bot? \]

is fail (? unsuccessful halt)

towards a semantics for PDL formulas

we obtain the semantics as an instance of multi-modal logic

in particular:

\[M, s \vDash (\alpha)\phi \iff \text{there is } s' \text{ such that } (s, s') \in R_\alpha \text{ and } M, s' \vDash \phi \]

however:

an arbitrary model does not respect the intended meaning of the programs

therefore we will impose conditions on the relations \(R_\alpha \)

every world (state) we have

\[(\alpha^*)(\alpha^*)\rho \land (\alpha^*)[(\alpha^*)\rho] \rho \]

example:

\[W = \{u, v, w\} \]

\[R_\alpha = \{(u, v), (u, w), (v, w), (w, v)\} \]

\[V(\rho) = \{u, v\} \]

we have \(u \vDash (a)\neg \rho \land (a)\rho \)

we have \(v \vDash [a]\neg \rho \)

we have \(w \vDash [a]\rho \)

in every world (state) we have \((a^*)(a^*)\rho \land (a^*)(a^*)\neg \rho \)
example

\[W = \{ s, t, u, v \} \]
\[R_a = \{(t, v), (v, t), (s, u), (u, s)\} \]
\[R_b = \{(u, v), (v, u), (s, t), (t, s)\} \]
\[V(p) = \{ u, v \} \]
\[V(q) = \{ t, v \} \]

we have \(p \leftrightarrow [(ab^* a)^*]p \)
we have \(q \leftrightarrow [(ba^* b)^*]q \)

PDL frame: definition

a Prog-frame \(F = (W, \{ R_\alpha | \alpha \in \text{Prog} \}) \) is a PDL-frame if

\[R_{\alpha \beta} = R_\alpha ; R_\beta, \text{ and} \]
\[R_{\alpha \cup \beta} = R_\alpha \cup R_\beta, \text{ and} \]
\[R_{\alpha^*} = (R_\alpha)^* \]

so if we know all \(R_\alpha \) then we know enough!

what are the definitions on the relations?

intuitive requirements for a PDL model

consider \(a; b \) and \(R_{a; b} \)
consider \(a \cup b \) and \(R_{a \cup b} \)
consider \(a^* \) and \(R_{a^*} \)

this suggests to start from all the \(R_a \) with \(a \in A \) an atomic program

but what to do with \(R_\phi? \)

definitions on relations

the composition of \(R \) and \(S \): \(R; S = \{(x, z) | \exists y : Rx y \land Sy z\} \)
the union of \(R \) and \(S \): \(R \cup S = \{(x, y) | Rx y \lor Sxy\} \)
the identity relation: \(\text{Id} = \{(x, x)\} \)
the \(n\)-fold composition of \(R \): \(R^n = \text{Id} \) and \(R^{n+1} = R^n; R \)
the reflexive-transitive closure of \(R \): \(R^* = \bigcup_{n \geq 0} R^n \)

note: if \(xR^* y \), then there exists \(n \geq 0 \) and there exist \(x_1, \ldots, x_{n-1} \) such that \(x = x_0Rx_1R \ldots Rx_n = y \)

note: \(R^* \) is the smallest reflexive and transitive relation containing \(R \)
PDL model: definition

A model $\mathcal{M} = (W, \{ R_\alpha | \alpha \in \text{Prog} \}, V)$ is a PDL-model if

$(W, \{ R_\alpha | \alpha \in \text{Prog} \})$ is a PDL-frame, and

$R_{\phi?} = \{(w, w) | \mathcal{M}, w \models \phi\}$

PDL extension: definition

We can get a PDL model as the extension of a model over labels A

Let $\mathcal{M} = (W, \{ R_a | a \in A \}, V)$ be an A-model

Its PDL-extension is defined as $\hat{\mathcal{M}} = (W, \{ \hat{R}_\alpha | \alpha \in \text{Prog} \}, V)$ with

$\hat{R}_a = R_a$

$\hat{R}_{\alpha;\beta} = \hat{R}_\alpha; \hat{R}_\beta$

$\hat{R}_{\alpha\cup\beta} = \hat{R}_\alpha \cup \hat{R}_\beta$

$\hat{R}_\alpha^* = (R_\alpha)^*$

$\hat{R}_{\phi?} = \{(x, x) | \mathcal{M}, x \models \phi\}$