setting

basic modal logic
formulas from basic modal logic
model: frame \((W, R)\), valuation \(V\), and state \(w \in W\)
bisimulation and invariance

first approach to temporal logic
formulas from basic modal logic
model: based on temporal frame \((W, R)\): \(R\) irreflexive and transitive
bisimulation and invariance as before

second approach to temporal logic
formulas from basic temporal logic using \(\langle F \rangle\) (future) and \(\langle P \rangle\) (past)
model: based on temporal frame
temporal bisimulation; invariance wrt temporal bisimulation

multi-modal logic for set \(\mathcal{I}\) of labels
multi-modal formulas with \(\langle a \rangle\) with \(a\) from set of labels
model: based on \(\mathcal{I}\)-frames \((W, \{R_i \mid i \in \mathcal{I}\})\)
adapted bisimulation, invariance due to Hennesy and Milner
multi-modal logic

given a set of labels \mathcal{I}

for every label i there is a modality $\langle i \rangle$

semantics makes use of a \mathcal{I}-frame $(\mathcal{W}, \{R_i \mid i \in \mathcal{I}\})$ with

$\mathcal{W} \neq \emptyset$ a set of worlds or states, and $R_i \subseteq \mathcal{W} \times \mathcal{W}$ for every $i \in \mathcal{I}$

$\mathcal{M}, w \models \langle \alpha \rangle \phi$ iff $\mathcal{M}, v \models \phi$ for some v with $R_{\alpha} w v$
multi-modal logic: bisimulation

we use one index set \mathcal{I}

let $\mathcal{M} = (W, \{R_i \mid i \in \mathcal{I}\}, V)$ and $\mathcal{M}' = (W', \{R'_i \mid i \in \mathcal{I}\}, V')$ be \mathcal{I}-models

$\emptyset \neq Z \subseteq W \times W'$ is a bisimulation if for every $(w, w') \in Z$

$w \in V(p)$ if and only if $w' \in V'(p)$

if $R_i w v$ then there is v' with $R'_i w' v'$ and $(v, v') \in Z$ (same i!)

if $R'_i w' v'$ then there is v with $R_i w v$ and $(v, v') \in Z$ (same i!)
bisimulation and modal equivalence

if two worlds are bimisimilar, then they are modally equivalent

we work with multi-modal formulas and \(I \)-models
modal equivalence and bisimulation

under the restriction that every R_i is finitely branching

(which does not imply that the model is finitely branching)

two worlds are bisimilar if and only if they are modally equivalent

theorem by Henessy and Milner (1985)
instances of multi-modal logic

we already know various instances of multi-modal logic:

\(\mathcal{I} = \emptyset \) gives propositional logic

\(\mathcal{I} = \{0\} \) gives basic modal logic

\(\mathcal{I} = \{F, P\} \) gives temporal logic with temporal model \(R_F = R_P^{-1} \)

\(\mathcal{I} = \text{Prog}(A) \) gives propositional dynamic logic with PDL-model
exercises

until not definable in basic modal logic in temporal frames

until not definable in temporal modal logic in temporal frames

next not definable in basic modal logic in temporal frames

define discrete in temporal logic

use next to define discrete in temporal logic

define right-linearity in temporal logic (similar to ex in exercise class 4)
overview

- towards propositional dynamic logic

- propositional dynamic logic
Program verification

prove that a program meets its specification

for example:

input: finite list of integers

program: sort

output: sorted permutation of the input
example: gcd program

while $y \neq 0$ do
 begin
 $z := x \mod y$;
 $x := y$;
 $y := z$;
 end
return x

x is an input variable and an output variable

y is an input variable

z is a work variable
example: run of gcd program

A trace or a run is a sequence of states.

In the gcd example:

A state is a tuple of values of x, y, z; example of a run:

$$(15, 27, 0) \rightarrow (15, 27, 15) \rightarrow (27, 27, 15) \rightarrow (27, 15, 15) \rightarrow (27, 15, 12) \rightarrow (15, 15, 12) \rightarrow (15, 12, 12) \rightarrow (15, 12, 3) \rightarrow (12, 12, 3) \rightarrow (12, 3, 3) \rightarrow (3, 3, 0) \rightarrow (3, 0, 0)$$
example: correctness of gcd program

pre:

\(x, y \in \{0, 1, 2, \ldots\} \) and \(y \neq 0 \land c = x \land d = y \)

during:

\[\text{gcd}(x, y) = \text{gcd}(c, d) \] is an invariant

post:

\(y = 0 \land x = \text{gcd}(c, d) \)
program verification: approach by Hoare

prove statements of the form $\{\text{precondition}\} \text{program} \{\text{postcondition}\}$

the precondition and postcondition are formulas

the program is a while-program

built from sequential composition, conditional, while, assignment

we have proof rules for showing $\{\phi\} \alpha \{\psi\}$
Tony Hoare

Turing Award 1980

quicksort,

Hoare Logic following work by Floyd and Turing,

Communicating Sequential Processes (CSP)
the work on program verification by Tony Hoare actually goes back to work by Turing
towards program verification using modal logic

a state of a program execution is a state or world

a program is a regular program which slightly generalizes while program

a statement \{pre\}program\{post\} is a formula pre → [program]post
overview

- towards propositional dynamic logic
- propositional dynamic logic
propositional dynamic logic (PDL): starting point

for every program α we have a modality $\langle \alpha \rangle$

$\langle \alpha \rangle \phi$ intuitively means

it is possible to execute α starting in the current state,

and halt (successfully) in a state satisfying ϕ

$[\alpha] \phi$ intuitively means

if α halts (successfully), then it halts in a state satisfying ϕ
set Prog of PDL (or regular) programs: definition

atomic program

\(a \) from a set \(A \) of atomic programs

sequential composition

\(\alpha; \beta \)

non-deterministic choice

\(\alpha \cup \beta \)

iteration

\(\alpha^* \)

test

\(\phi? \) with \(\phi \) a formula, so depends on the grammar for formulas
PDL programs: intuitive meaning

\(a \)

atomic, indecomposable, step

\(\phi \)?

if \(\phi \) then skip else abort, that is,

if \(\phi \) holds then continue without changing state,

if \(\phi \) does not hold then block without halting

\(\alpha; \beta \)

do \(\alpha \), then do \(\beta \)

\(\alpha \cup \beta \)

choose \(\alpha \) or \(\beta \) and execute it

\(\alpha^* \)

choose \(n \geq 0 \) and execute \(\alpha \) \(n \) times
PDL formulas: definition

atomic formula
p from a set Var of atomic propositions

true and false
\top and \bot

negation
$\neg \phi$

conjunction
$\phi \land \psi$

diamond
$\langle \alpha \rangle \phi$, with α a program, so depends on the grammar for programs
mutual dependency: examples

\([p?]p\)

if \(p?\) halts then in a state satisfying \(p\) with \(p\) an atomic proposition

\(\langle p?\rangle p\)

it is possible to execute \(p?\) and halt in a state where \(p\) holds

\([\alpha]\bot\)

\(\alpha\) never terminates

\([\alpha]\top\)

is always true

\(\top?\)

is skip

\(\bot?\)

is fail (unsuccessful halt)
PDL formulas: examples

$[\alpha \cup \beta]\phi$

always if we execute α or β we arrive at a state where ϕ holds

$\langle(\alpha \beta)^*\rangle\phi$

there is a sequence of alternating executions of α and β bringing us to a state where ϕ holds

$\langle\alpha^*\rangle\phi \leftrightarrow \phi \lor \langle\alpha; \alpha^*\rangle\phi$

ϕ holds after a finite number ($n \geq 0$) of α steps

if and only if

either ϕ holds here ($n = 0$), or ($n > 0$) we can do an α step and then more α steps to reach a state where ϕ holds
PDL formulas: more examples

\[[\alpha] \phi \land \psi \iff [\alpha] \phi \land [\alpha] \psi \]
(seems a tautology)

\[[\alpha; \beta] \phi \iff [\alpha][\beta] \phi \]
(seems a tautology)

\[[\alpha] p \iff [\beta] p \]
(gives an equivalence between \(\alpha \) and \(\beta \))
towards a semantics for PDL formulas

we obtain the semantics as an instance of multi-modal logic

in particular:

\(\mathcal{M}, s \models \langle \alpha \rangle \phi \) iff there is \(s' \) such that \((s, s') \in R_\alpha \) and \(\mathcal{M}, s' \models \phi \)

however:

an arbitrary model does respect the intended meaning of the programs

therefore we will impose conditions on the relations \(R_\alpha \)
intuitive requirements for a PDL model

consider $a; b$ and $R_{a;b}$

consider $a \cup b$ and $R_{a\cup b}$

consider a^* and R_a^*

this suggests to start from all the R_a with $a \in A$ an atomic program

but what to do with R_ϕ? ?
a Prog-frame $\mathcal{F} = (W, \{R_\alpha | \alpha \in \text{Prog}\})$ is a PDL-frame if

\[R_{\alpha \beta} = R_\alpha ; R_\beta, \text{ and} \]
\[R_{\alpha \cup \beta} = R_\alpha \cup R_\beta, \text{ and} \]
\[R_{\alpha^*} = (R_\alpha)^* \]

so if we know all R_a then we know enough!

what are the definitions on the relations?
definitions on relations

the composition of R and S: $R; S = \{(x, z) | \exists y : Rxy \land Syz\}$

the union of R and S: $R \cup S = \{(x, y) | Rxy \lor Sxy\}$
more definitions on relations

the identity relation: $\text{Id} = \{(x, x)\}$

the n-fold composition of R: $R^0 = \text{Id}$ and $R^{n+1} = R^n$; R

the reflexive-transitive closure of R: $R^* = \bigcup_{n \geq 0} R^n$

note: if xR^*y, then there exists $n \geq 0$ and there exist x_1, \ldots, x_{n-1}

such that $x = x_0Rx_1R\ldots Rx_n = y$

note: R^* is the smallest reflexive and transitive relation containing R
a model $\mathcal{M} = (W, \{R_\alpha \mid \alpha \in \text{Prog}\}, V)$ is a PDL-model if

$(W, \{R_\alpha \mid \alpha \in \text{Prog}\}$ is a PDL-frame, and

$R_\phi = \{(w, w) \mid \mathcal{M}, w \models \phi\}$
PDL extension: definition

we can get a PDL model as the extension of a model over labels A

Let $\mathcal{M} = (W, \{R_a | a \in A\}, V)$ be an A-model

Its PDL-extension is defined as $\hat{\mathcal{M}} = (W, \{\hat{R}_\alpha | \alpha \in \text{Prog}\}, V)$ with

- $\hat{R}_a = R_a$
- $\hat{R}_\alpha;\beta = \hat{R}_\alpha; \hat{R}_\beta$
- $\hat{R}_\alpha \cup \beta = \hat{R}_\alpha \cup \hat{R}_\beta$
- $\hat{R}_\alpha^* = (R_\alpha)^*$
- $\hat{R}_\phi? = \{(x, x) | \mathcal{M}, x \models \phi\}$