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Abstract. We present (ML)2, a formal language
for the representation of KADS models of expertise.
(ML)? is a combination of first order predicate logic
(for the declarative representation of domain knowl-
edge), meta-logic (for the representation of how to use
the domain knowledge) and dynamic logic (for the rep-
resentation of control information). After a brief sum-
mary of KADS, we describe how each of the four KADS
layers is represented in (ML)2, and we compare our for-
malism to other formalisms that have been proposed
for the formalisation of KADS models.

1 Introduction

One of the central concerns of “knowledge engineer-
ing” is the construction of a model of problem solving
behaviour. One of the prominent approaches in recent
years to this problem (at least in Europe) has been
the KADS methodology for knowledge engineering [9].
KADS 1s centered around a so-called model of exper-
tise which describes the problem solving expertise of
the system to be modelled independent of a possible
implementation.

Traditionally, these models have always been ex-
pressed in an informal way, using a vocabulary of natu-
ral language, semi-structured language and graphical
notation. In this paper, we present (ML)?, a formal
language for the representation of KADS models. This
paper is a short version of a more detailed presentation
of the language [7], and is intended as a description of
the language for a wider audience.

This paper is structured as follows: to keep this
paper self-contained, we first give a brief description
of KADS models (section 2). We present (ML)? by
showing how it represents each of the four layers of
a KADS model (sections 3-7). Finally, we compare
(ML)? with some other recent proposals for formalising
KADS models (section 8).
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2 A brief description of KADS models

A central feature of the KADS methodology for con-
structing knowledge-based systems is the so-called
model of expertise. Its goal is to provide a model of the
problem solving behaviour required of the knowledge-
based system in an implementation independent way.
KADS models consist of four hierarchically organised
layers and prescribe the contents of the layers and the
relations among them, as follows:

Domain layer: This is the “lowest” of the four
layers, and represents knowledge about the applica-
tion domain of the system. An important property
of the domain layer is that the knowledge should be
represented as much as possible independently from
the way it will be used (i.e. the domain layer is a
declarative representation of the domain knowledge of
a system).

Inference layer: This second layer plays a central
role. It specifies how to use the knowledge from the
domain layer. This is done in two ways: the inference
layer specifies (1) the basic inference steps that can
be made using the domain knowledge (these basic in-
ference steps are known as “knowledge sources”), and
(2) the roles that the elements of the domain knowl-
edge can play in the inference process. These roles
are known as “meta-classes”. The inference layer also
specifies the data-dependencies between these steps
and roles. The inference layer does not specify any
control knowledge: no ordering is imposed on the var-
ious inference steps.

Task layer: The purpose of the task layer is to
specify control over the execution of the basic infer-
ence steps specified at the inference layer. It does this
by imposing an ordering on these steps in terms of ex-
ecution sequences, iterations, conditional statements
etc.

Strategy layer: This “highest” of the four levels
in a KADS models is concerned with task selection:
how to choose between various tasks that achieve the
same goal.

For a more detailed description of KADS, we refer
to [9].



3 The domain layer in (ML)?

The domain layer represents declarative knowledge
about the domain of application: Logic has been de-
veloped to represent exactly this kind of information,
and it is therefore not surprising that we chose first
order predicate logic, as the representation language
for the domain layer.

For practical reasons, we include two extensions to
the language of first order logic: we use order-sorted
logic because it is more compact and combinatorially
tractable than unsorted logic, and we divide our ax-
ioms into sub-theoriesto give us a mechanism for mod-
ularisation. Both these extensions are conservativein
the sense that they do not alter the strength of the
logic: they are only notational devices.

No other aspects of (ML)? depend on the fact that
we use first order predicate logic on the domain layer,
and if required by the application, we can easily extend
(ML)? to use temporal, modal or other non-standard
logics.

A domain theory in (ML)? consists of the declara-
tion of the language of the theory (the signature), plus
the axioms of the theory. A simple example is given
below:

theory T4
signature
sorts reading, car ;
constants myCar:car ;
functions gasDial:car — reading ;
predicates
engineDoesntRun: car ;
noGas:reading ;
axioms
¥ X:car[noGas(gasDial(X)) — engineDoesntRun(X)] ;
endtheory

4 The inference layer in (ML)?

The purpose of the inference layer is to state what the
potential inference steps (knowledge sources) are that
can be made using knowledge from the domain layer,
and what roles the various domain expressions will
play in these steps. In other words, the inference layer
is a theory about the domain layer, namely about the
use of the domain layer. This makes the inference layer
a meta-layer of the domain layer, in the technical sense
of meta-: a theory M is a meta-theory of a theory O
if (some of the) terms from M refer to formula from
0.

Representing meta-classes: In any meta-logic,
the meta-theory must have names for the expres-
sions from the object-theory in order to refer to these
object-expressions. In (ML)2 we exploit these names
to encode the roles that the object-expressions play in
the inference process (the KADS meta-classes). Since

knowledge-engineers decide which meta-classes fea-
ture in a KADS model, the knowledge-engineers must
be able to define the names of domain-expressions. In
order to encode these meta-classes, it must be possible
to give different names (for different meta-classes) to
syntactically similar expressions. This departs from
standard constructions in meta-logic where the meta-
names of object-expressions depend only on the syn-
tactic form of the expressions.

To achieve definable names, we allow the knowledge
engineer to specify sets of rewrite rules. Such a set of
rewrite rules defines how a domain-expression must
be “rewritten” to obtain its meta-name. Such a set
of rewrite rules is called a lift-definitionin (ML)?. A
lift-definition also defines (through a signature defini-
tion) the language-elements in the meta-theory that
are used to represent the meta-classes. Typically, for
any meta-class m, we introduce a function symbol m()
in the meta-theory. For example?

lift-definition cause&abstract from Tq, Ty ;
signature
constants “P,", “Py”
functions
causation, cause, symptom,
abstraction, element, class ;
lift-variables Pi, P;:predicate ;
mapping
lift(Tl,Pl — P2) [
causation(cause(“P;”),symptom(“P>"));
lift(TQ,Pl — P2) [
abstraction(element(“P;"),class(“P>"));
end-lift-definition

This lift-definition introduces the meta-classes cau-
sation and abstraction, and define that implications
from theory 71 will be interpreted as causations (map-
ping causes to symptoms). Similar looking implica-
tions, but from 7%, will be interpreted as abstractions
(mapping concrete elements to abstract classes).

Representing knowledge sources: The second
aspect of an inference layer are the primitive inference
steps (knowledge sources). Such knowledge sources
map a number of input meta-classes onto a single out-
put meta-class. In (ML)?, knowledge sources are rep-
resented by meta-level theories of a restricted form. A
knowledge source K Sy corresponds to a theory with
axioms of the form

LHSKsk — [(Sk(tl,...,tn,tn+1) (1)

(or any formulation that is logically equivalent to this).
The left-hand side LH Sks, can be an arbitrary for-
mula constructed from reflective predicates and pred-
icates of the form inputarc,(t;), and each ¢; will be
a term whose outermost function symbol represents

Ifor simplification, we have left out the type declara-
tions from this section



the meta-class M C;, along the lines defined above.
We will postpone the definition of the inputarc, pred-
icates to section 5. We call the predicate K Sy the
knowledge source predicate. Such a knowledge source
predicate, axiomatised by formulae of form (1), repre-
sents the knowledge source as an (n—l— 1)—place relation
between the n input meta-classes and the single out-
put meta-class.

A very simple example of knowledge source defini-
tion is:
theory abduct
use causes,symptoms;
signature

predicates KS, pquct
variables X, Y ;
axioms

VX [inputcauses(causation(cause(X),symptom(Y))) A

inputsymptoms(symptom(Y)) —

KSabduct (symptom(Y),
causation(cause(X),symptom(Y)),
cause(X))]

endtheory

As can be seen from this example, a knowledge
source definition can use lift-definitions, which results
in the signature of the lift-definition becoming avail-
able to the knowledge source theory.

Reflection rules in (ML)?: Besides the naming
relation defined by the lift-operators, there is an ad-
ditional connection between inference- and domain-
layer (or: between meta- and object-theory), namely
through the use of inference rules that provide a link
between inference in the two layers. In (ML)?2, we re-
quire three inference rules between meta- and object-
layers, generally known as reflection rules:

Fo ¢ wpy. T tel((O1,[e) o
sk (0, Tg]) () Fo (down);
¢ €0 (axiom)

Fat ask€([O], [¢])

(where the meta-term [¢] is the name for the object-
formula ¢, as defined through lift-definitions). Rule
(up) states that if a formula ¢ is provable in the object-
theory O, then the formula ask™ ([O7], [4]) is provable
in the meta-theory M, allowing inferences in O to
affect inferences in M. Conversely, rule (down) allows
inferences in M to affect inferences in O. Finally, rule
(aziom) states that if formula ¢ is an axiom of O,

then ask€([O], [¢]) is provable in M.

5 The task layer in (ML)?

The purpose of the task-layer in a KADS model is to
enforce control over the inference steps specified at the
inference layer.

In (ML)? we employ Quantified Dynamic Logic
(QDL) to represent the task layer. QDL is a modal
extension of first order logic developed by computer
scientists for reasoning about properties of programs
[3]. Before describing the use of QDL in (ML)? task
layers, we first give a brief introduction to QDL.

Quantified Dynamic Logic: In QDL, first order
logic is extended with the notions of program, vari-
able and state. A variableis a named storage that can
hold a value. In contrast to ordinary logic, a variable
may assume different values during the execution of a
program. A program operates on an execution state,
determined by the current value of all its variables.
A program is conceived as a transformation from its
inetial state into 1ts final state. QDL introduces a sin-
gle type of atomic program, the assignment statement
¢ :=t (with « a variable and ¢ a term) which maps any
state into a similar state but with variable = having
the new value ¢t. Three program constructors allow the
composition of complex programs out of atomic ones:
if & and f are programs and ¢ is a predicate, then the
following are also programs: a;§ (do « followed by f);
o |J # (do either « or §, nondeterministically); ax
(repeat o a nondeterministic finite number of times);
@7 (proceed if ¢ is true, else fail). These elementary
constructs allow the definition of various traditional
programming constructs such as if-then-else, while-do,
etc.

The final new ingredient of QDL is a modal operator
() for every program a. The compound formula ()¢
has the following intended meaning: ¢ is true in at
least one terminal state of a. We abbreviate —{(a)—¢
to [a]¢ which is intended to mean: ¢ is true in all
terminal states of «.

The semantics of dynamic logic is a modal one,
where a “possible world” is characterised by the val-
ues of all the variables (also known as a “state”),
atomic programs are transitions between states, and
atomic formulae are assigned a truth value in each
state. Thus, the meaning of an expression like {a)¢
is: there is a state s such that s can be reached by
executing «, and ¢ is true in state s.

Tasks as programs: We now explain how we ex-
ploit the machinery of QDL to represent the task layer
of a KADS model. Since the purpose of a task layer is
to enforce control over the inference layer, it is natural
to represent the task layer as a QDL program, which
expresses how the knowledge sources from the infer-
ence layer should be “executed”. QDL’s test-operator
“?” allows us to turn the declarative representation of
a knowledge source (as the (n+ 1)-place relation K Sk
from formula (1)) into a program that can be “called”
from the task-layer.

Representing states: Since at the task layer we
want to “execute” knowledge sources, we require a
representation of the state of the inference process.
We use QDL variables for this purpose as follows: for



each knowledge source K.S;, we assume a QDL variable
Vi s, whose value will be a tuple of all input/output
relations that have been computed so far for knowl-
edge source K 5;.

Furthermore, for each meta-class MC; we assume
a QDL variable VMcj whose value will be the tuple
of all values that have been computed for meta-class
MC;.

The entire state of an inference process is now rep-
resented by the collection of all variables Vi, and
VMcj (one variable for every knowledge source and
for every meta-class).

Primitive operations on knowledge sources:
The above representation of the state of the inference
process allows us to define the following four prim-
itive operations on any knowledge source [(Si(f, 0)

(we write T as an abbreviation for a sequence of vari-
ables I1,...,Ip):

. has—solution—KSi(f, O) is true iff the tuple (f, o)
satisfies the knowledge source predicate KS;. This
operation is independent of the current state of the
inference process.

. old—solution—KSi(f, O) is true iff the tuple (f, o)
has previously been computed as the result of “exe-
cuting” KS;. The knowledge source variable K'S; is
inspected for this purpose.

. more—solutions—KSi(f, O) is true iff the tuple
(f, O) is a previously uncomputed solution to K S;.
This can be defined in terms of the previous two pred-
icates.

. give—solution—KSi(f, O) is true iff the tuple (f, o)
is a previously uncomputed solution, but the new so-
lution will also be recorded in the state of the infer-
ence process. This operation corresponds to “calling”
a knowledge source from the task layer and storing
the result in the process state, whereas the other three
operations do not alter the state of the computations.
Consequently, the other 3 operations are predicates
of QDL, and gwve-solutton-K S; is the only operation
that corresponds to a program in QDL.

Notice that the execution of this program does not
specify in any way in which order the different solu-
tions to K S; will be computed. This is in accordance
with the principle in KADS that knowledge sources
are computional units that do not require any further
internal control.

Using these four basic operations, we are now
in a position to define a task: a task in a for-
malised KADS model is a QDL program defined out of
the expressions has-solution-K S;, old-solution-KS;,
more-solutions-K S; and give-solution-K S; (for each
knowledge source K.S;).

Using the semantics of QDL, we see that a task in
(ML)? is a program that maps one state of the in-
ference process onto another state, with states repre-
sented by the collection of variables Vs, and VMcj.

The input predicates: In section 4, we used pred-
icates of the form inputarc,(t;) in the axioms for the
knowledge source predicates. These predicates rep-
resent the input meta-classes M C; to the knowledge
source. In (ML)?, the contents of a meta-class can
be obtained in two ways: since meta-classes are de-
scriptions of (the role of) domain expressions, we can
retrieve the contents of meta-classes by referring to
the contents of domain theories. In this case, the
inputyrc, predicate can be defined as

V& :inputyo,(z) — aske(O, ) (2)

where O is (the name of) the object-theory mentioned
in the left-hand side of the rewrite rules in the lift-
operator for meta-class MC2.

Alternatively, we can retrieve the contents of meta-
classes from the VMcj variables used to store the state
of the inference process, by using one of the following:

Yo inputuc, (z) < dy: Ve, = (z]...) (3)
Vo sinputyco; () — 1z € Ve, (4)
Vo :inputyc; (z) = = Ve, (5)

(6)

We use (3) if we are interested in the most recently
computed value, (4) if we are interested in any previ-
ously computed value, or (5) if we want all previously
computed values. Thus, our formalism allows for any
of the multiple uses that are often made of the con-
tents of meta-classes in KADS models, but forces the
user to make clear in which way each meta-class is
used.

6 The strategy layer in (M L)?

Although the strategy layer is the least well devel-
oped layer of KADS models, it is generally perceived
as task-selection: given various tasks for achieving var-
ious goals, which task should be chosen under which
circumstances?

The language of QDL incorporated in (ML)? pro-
vides a natural way to represent such information: an
expression of the form ¢ — [r]¢ can be interpreted as:
“given certain preconditions ¢, program 7 is a way of
achieving 9¥”. Expressions of this form can be used
to derive complex programs that achieve certain goals
starting from certain initial conditions.

For example, given the following knowledge at the
strategic layer about properties of tasks 71, 7 and 73:

o1 —  [r]é2
b3 —  [m]da
2V s — [m]de

2Formula (2) might suggest that ask€ is the only predi-
cate used in formulating KADS models in (ML)2. However,
the reader should remember that other reflective predi-

cates, notably ask" can occur in the bodies of knowledge
source predicates, as specified in section 4.



we can deduce that the program (¢17;(m;7)) U
(¢a?; (72; 73)) is a way of achieving goal ¢s.

7 Relation between the layers

Although an earlier publication on (ML)? [1] presented
inference, task and strategy layer each as a meta-
layer of the layer below, the current relation between
the layers in (ML)? is much more diverse. As de-
scribed above, the relation between domain and in-
ference layer is an object/meta-relation. The relation
between inference and task layer on the other hand is
entirely different: the inference layer (a set of first or-
der theories) is embeddedin the task layer (a QDL the-
ory, containing first order logic as a subset). The rela-
tion between task and strategy layer is different again:
both are theories in QDL, but the strategy layer ez-
tends the task layer with additional axioms that com-
prise the strategic knowledge concerning properties of
tasks.

8 Comparison and conclusions

(ML)? is not the only attempt at formalising KADS
models. However, (ML)? differs from some of the other
approaches because (ML)? models are meant as a for-
malisation of models of expertise rather than as a
way to mechanise them. For instance, the MODEL-
K approach from [5] is mainly aimed at mechanising a
model, and not at providing a declarative represen-
tation. As a result, MODEL-K representations can
contain arbitrary pieces of code, which do not lend
themselves very well to inspection, derivation, etc.

Some other approaches are perhaps closer in spirit
to (ML)2, notably FORKADS [8], KARL [2] VITAL-
CML [4], and DESIRE [6]. A major drawback of
FORKADS is that it provides no syntactic distinction
between domain and inference layers, and as such does
not force the formal model to have the form required
by KADS in the same way that other formalisms (in-
cluding (ML)?) do.

KARL resembles (ML)? in many respects, but it is
restricted to function-free Horn logic for representing
domain and inference layers. It is an open question
whether this restriction (made with an eye to mech-
anising KARL models, and absent from (ML)?) is not
too strong.

The VITAL-CML language is also close in spirit to
(ML)2, particularly in its use of modularised first order
theories. It employs parameterised theories as a very
elegant way of connecting domain layer and inference
layer, and the relation between this solution and the
one chosen in (ML)? (an object/meta-construction)
deserves further study.

Finally, DESIRE also shares a number of properties
with (ML)2, notably the use of meta-constructions as a
way of capturing the relation between different layers

in a model, but the DESIRE language has no strong
underlying conceptual model, in the way that (ML)?
and others are based on KADS.

Conclusions: We have presented (ML)2, a formal
language for representing KADS models. It turned out
to be possible to represent all of the components of a
model of expertise in a language that is a combina-
tion of a number of logical constructs. (ML)? can be
summarised by the following pseudo-equation

(ML)? = FOPC + sorts + sub-theories + meta-logic+ QDL

These components of (ML)? have been motivated as
follows: (1) Logic is used at the domain layer be-
cause it is well suited for the declarative representa-
tion of knowledge independent of use. Sorts and sub-
theories are simply pragmatic conservative extensions.
(2) Meta-logic is used to represent the inference layer
since the inference layer is about the use of the knowl-
edge at the domain layer. (3) QDL is used to represent
the task layer, since this layer is represents procedu-
ral knowledge (sequence, state) and QDL is one of the
few formalisms that offer a declarative representation
of this type of knowledge.

Each of these components is well understood, and
has known properties, a well-defined proof-theory and
a clear declarative semantics.
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