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Abstract� We present �ML��� a formal language
for the representation of KADS models of expertise�
�ML�� is a combination of �rst order predicate logic
�for the declarative representation of domain knowl�
edge�� meta�logic �for the representation of how to use
the domain knowledge� and dynamic logic �for the rep�
resentation of control information�� After a brief sum�
mary of KADS� we describe how each of the four KADS
layers is represented in �ML��� and we compare our for�
malism to other formalisms that have been proposed
for the formalisation of KADS models�

� Introduction

One of the central concerns of �knowledge engineer�
ing� is the construction of a model of problem solving
behaviour� One of the prominent approaches in recent
years to this problem �at least in Europe� has been
the KADS methodology for knowledge engineering �	
�
KADS is centered around a so�called model of exper�
tise which describes the problem solving expertise of
the system to be modelled independent of a possible
implementation�
Traditionally� these models have always been ex�

pressed in an informal way� using a vocabulary of natu�
ral language� semi�structured language and graphical
notation� In this paper� we present �ML��� a formal
language for the representation of KADS models� This
paper is a short version of a more detailed presentation
of the language ��
� and is intended as a description of
the language for a wider audience�
This paper is structured as follows� to keep this

paper self�contained� we �rst give a brief description
of KADS models �section �� We present �ML�� by
showing how it represents each of the four layers of
a KADS model �sections ����� Finally� we compare
�ML�� with some other recent proposals for formalising
KADS models �section ���
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� A brief description of KADS models

A central feature of the KADS methodology for con�
structing knowledge�based systems is the so�called
model of expertise� Its goal is to provide a model of the
problem solving behaviour required of the knowledge�
based system in an implementation independent way�
KADS models consist of four hierarchically organised
layers and prescribe the contents of the layers and the
relations among them� as follows�

Domain layer� This is the �lowest� of the four
layers� and represents knowledge about the applica�
tion domain of the system� An important property
of the domain layer is that the knowledge should be
represented as much as possible independently from
the way it will be used �i�e� the domain layer is a
declarative representation of the domain knowledge of
a system��

Inference layer� This second layer plays a central
role� It speci�es how to use the knowledge from the
domain layer� This is done in two ways� the inference
layer speci�es ��� the basic inference steps that can
be made using the domain knowledge �these basic in�
ference steps are known as �knowledge sources��� and
�� the roles that the elements of the domain knowl�
edge can play in the inference process� These roles
are known as �meta�classes�� The inference layer also
speci�es the data�dependencies between these steps
and roles� The inference layer does not specify any
control knowledge� no ordering is imposed on the var�
ious inference steps�

Task layer� The purpose of the task layer is to
specify control over the execution of the basic infer�
ence steps speci�ed at the inference layer� It does this
by imposing an ordering on these steps in terms of ex�
ecution sequences� iterations� conditional statements
etc�

Strategy layer� This �highest� of the four levels
in a KADS models is concerned with task selection�
how to choose between various tasks that achieve the
same goal�

For a more detailed description of KADS� we refer
to �	
�



� The domain layer in �ML��

The domain layer represents declarative knowledge
about the domain of application� Logic has been de�
veloped to represent exactly this kind of information�
and it is therefore not surprising that we chose �rst
order predicate logic� as the representation language
for the domain layer�
For practical reasons� we include two extensions to

the language of �rst order logic� we use order�sorted
logic because it is more compact and combinatorially
tractable than unsorted logic� and we divide our ax�
ioms into sub�theories to give us a mechanism for mod�
ularisation� Both these extensions are conservative in
the sense that they do not alter the strength of the
logic� they are only notational devices�
No other aspects of �ML�� depend on the fact that

we use �rst order predicate logic on the domain layer�
and if required by the application� we can easily extend
�ML�� to use temporal� modal or other non�standard
logics�
A domain theory in �ML�� consists of the declara�

tion of the language of the theory �the signature�� plus
the axioms of the theory� A simple example is given
below�

theory T�
signature

sorts reading� car �

constants myCarcar �
functions gasDialcar� reading �

predicates

engineDoesntRun car �

noGasreading �
axioms

� Xcar�noGas�gasDial�X��� engineDoesntRun�X�� �
endtheory

� The inference layer in �ML��

The purpose of the inference layer is to state what the
potential inference steps �knowledge sources� are that
can be made using knowledge from the domain layer�
and what roles the various domain expressions will
play in these steps� In other words� the inference layer
is a theory about the domain layer� namely about the
use of the domain layer� This makes the inference layer
ameta�layer of the domain layer� in the technical sense
of meta�� a theory M is a meta�theory of a theory O
if �some of the� terms from M refer to formula from
O�
Representing meta�classes� In any meta�logic�

the meta�theory must have names for the expres�
sions from the object�theory in order to refer to these
object�expressions� In �ML�� we exploit these names
to encode the roles that the object�expressions play in
the inference process �the KADS meta�classes�� Since

knowledge�engineers decide which meta�classes fea�
ture in a KADS model� the knowledge�engineers must
be able to de�ne the names of domain�expressions� In
order to encode these meta�classes� it must be possible
to give di�erent names �for di�erent meta�classes� to
syntactically similar expressions� This departs from
standard constructions in meta�logic where the meta�
names of object�expressions depend only on the syn�
tactic form of the expressions�
To achieve de�nable names� we allow the knowledge

engineer to specify sets of rewrite rules� Such a set of
rewrite rules de�nes how a domain�expression must
be �rewritten� to obtain its meta�name� Such a set
of rewrite rules is called a lift�de�nition in �ML��� A
lift�de�nition also de�nes �through a signature de�ni�
tion� the language�elements in the meta�theory that
are used to represent the meta�classes� Typically� for
any meta�class m� we introduce a function symbol m��
in the meta�theory� For example�

lift�de�nition cause�abstract from T��T� �

signature

constants �P��� �P�� �

functions

causation� cause� symptom�
abstraction� element� class �

lift�variables P�� P�predicate �
mapping

lift�T�� P� � P�� ��
causation�cause��P����symptom��P�����

lift�T�� P� � P�� ��
abstraction�element��P����class��P�����

end�lift�de�nition

This lift�de�nition introduces the meta�classes cau�
sation and abstraction� and de�ne that implications
from theory T� will be interpreted as causations �map�
ping causes to symptoms�� Similar looking implica�
tions� but from T�� will be interpreted as abstractions
�mapping concrete elements to abstract classes��
Representing knowledge sources� The second

aspect of an inference layer are the primitive inference
steps �knowledge sources�� Such knowledge sources
map a number of input meta�classes onto a single out�
put meta�class� In �ML��� knowledge sources are rep�
resented by meta�level theories of a restricted form� A
knowledge source KSk corresponds to a theory with
axioms of the form

LHSKSk � KSk�t�� � � � � tn� tn��� ���

�or any formulation that is logically equivalent to this��
The left�hand side LHSKSk can be an arbitrary for�
mula constructed from re�ective predicates and pred�
icates of the form inputMCi�ti�� and each ti will be
a term whose outermost function symbol represents

�for simpli�cation� we have left out the type declara�
tions from this section



the meta�class MCi� along the lines de�ned above�
We will postpone the de�nition of the inputMCi pred�
icates to section �� We call the predicate KSk the
knowledge source predicate� Such a knowledge source
predicate� axiomatised by formulae of form ���� repre�
sents the knowledge source as an �n����place relation
between the n input meta�classes and the single out�
put meta�class�
A very simple example of knowledge source de�ni�

tion is�

theory abduct

use causes�symptoms�
signature

predicates KSabduct �
variables X� Y �

axioms

�X�inputcauses�causation�cause�X��symptom�Y��� �

inputsymptoms�symptom�Y���
KSabduct�symptom�Y��

causation�cause�X��symptom�Y���
cause�X���

endtheory

As can be seen from this example� a knowledge
source de�nition can use lift�de�nitions� which results
in the signature of the lift�de�nition becoming avail�
able to the knowledge source theory�
Re�ection rules in �ML��� Besides the naming

relation de�ned by the lift�operators� there is an ad�
ditional connection between inference� and domain�
layer �or� between meta� and object�theory�� namely
through the use of inference rules that provide a link
between inference in the two layers� In �ML��� we re�
quire three inference rules between meta� and object�
layers� generally known as re�ection rules�

�O �

�M ask��O� d�e�
�up��

�M tell�dOe� d�e�

�O �
�down��

� � O

�M ask��dOe� d�e�
�axiom�

�where the meta�term d�e is the name for the object�
formula �� as de�ned through lift�de�nitions�� Rule
�up� states that if a formula � is provable in the object�
theory O� then the formula ask��dOe� d�e� is provable
in the meta�theory M� allowing inferences in O to
a�ect inferences inM� Conversely� rule �down� allows
inferences in M to a�ect inferences in O� Finally� rule
�axiom� states that if formula � is an axiom of O�
then ask��dOe� d�e� is provable in M�

� The task layer in �ML��

The purpose of the task�layer in a KADS model is to
enforce control over the inference steps speci�ed at the
inference layer�

In �ML�� we employ Quanti�ed Dynamic Logic
�QDL� to represent the task layer� QDL is a modal
extension of �rst order logic developed by computer
scientists for reasoning about properties of programs
��
� Before describing the use of QDL in �ML�� task
layers� we �rst give a brief introduction to QDL�
Quanti�ed Dynamic Logic� In QDL� �rst order

logic is extended with the notions of program� vari�
able and state� A variable is a named storage that can
hold a value� In contrast to ordinary logic� a variable
may assume di�erent values during the execution of a
program� A program operates on an execution state�
determined by the current value of all its variables�
A program is conceived as a transformation from its
initial state into its �nal state� QDL introduces a sin�
gle type of atomic program� the assignment statement
x �� t �with x a variable and t a term� which maps any
state into a similar state but with variable x having
the new value t� Three program constructors allow the
composition of complex programs out of atomic ones�
if � and � are programs and � is a predicate� then the
following are also programs� ��� �do � followed by ���
�
S

� �do either � or �� nondeterministically�� ��
�repeat � a nondeterministic �nite number of times��
�� �proceed if � is true� else fail�� These elementary
constructs allow the de�nition of various traditional
programming constructs such as if�then�else�while�do�
etc�
The �nal new ingredient of QDL is a modal operator

h�i for every program �� The compound formula h�i�
has the following intended meaning� � is true in at
least one terminal state of �� We abbreviate �h�i��
to ��
� which is intended to mean� � is true in all
terminal states of ��
The semantics of dynamic logic is a modal one�

where a �possible world� is characterised by the val�
ues of all the variables �also known as a �state���
atomic programs are transitions between states� and
atomic formulae are assigned a truth value in each
state� Thus� the meaning of an expression like h�i�
is� there is a state s such that s can be reached by
executing �� and � is true in state s�
Tasks as programs� We now explain how we ex�

ploit the machinery of QDL to represent the task layer
of a KADS model� Since the purpose of a task layer is
to enforce control over the inference layer� it is natural
to represent the task layer as a QDL program� which
expresses how the knowledge sources from the infer�
ence layer should be �executed�� QDL�s test�operator
��� allows us to turn the declarative representation of
a knowledge source �as the �n����place relation KSk
from formula ���� into a program that can be �called�
from the task�layer�
Representing states� Since at the task layer we

want to �execute� knowledge sources� we require a
representation of the state of the inference process�
We use QDL variables for this purpose as follows� for



each knowledge source KSi� we assume a QDL variable
VKSi whose value will be a tuple of all input�output
relations that have been computed so far for knowl�
edge source KSi�
Furthermore� for each meta�class MCj we assume

a QDL variable VMCj whose value will be the tuple
of all values that have been computed for meta�class
MCj �
The entire state of an inference process is now rep�

resented by the collection of all variables VKSi and
VMCj �one variable for every knowledge source and
for every meta�class��
Primitive operations on knowledge sources�

The above representation of the state of the inference
process allows us to de�ne the following four prim�

itive operations on any knowledge source KSi��I�O�

�we write �I as an abbreviation for a sequence of vari�
ables I�� � � � � In��

� has�solution�KSi��I�O� is true i� the tuple h�I�Oi
satis�es the knowledge source predicate KSi� This
operation is independent of the current state of the
inference process�

� old�solution�KSi��I�O� is true i� the tuple h�I�Oi
has previously been computed as the result of �exe�
cuting� KSi� The knowledge source variable KSi is
inspected for this purpose�

� more�solutions�KSi��I�O� is true i� the tuple

h�I� Oi is a previously uncomputed solution to KSi�
This can be de�ned in terms of the previous two pred�
icates�
� give�solution�KSi��I�O� is true i� the tuple h�I�Oi

is a previously uncomputed solution� but the new so�
lution will also be recorded in the state of the infer�
ence process� This operation corresponds to �calling�
a knowledge source from the task layer and storing
the result in the process state� whereas the other three
operations do not alter the state of the computations�
Consequently� the other � operations are predicates
of QDL� and give�solution�KSi is the only operation
that corresponds to a program in QDL�
Notice that the execution of this program does not

specify in any way in which order the di�erent solu�
tions to KSi will be computed� This is in accordance
with the principle in KADS that knowledge sources
are computional units that do not require any further
internal control�
Using these four basic operations� we are now

in a position to de�ne a task� a task in a for�
malised KADS model is a QDL program de�ned out of
the expressions has�solution�KSi� old�solution�KSi�
more�solutions�KSi and give�solution�KSi �for each
knowledge source KSi��
Using the semantics of QDL� we see that a task in

�ML�� is a program that maps one state of the in�
ference process onto another state� with states repre�
sented by the collection of variables VKSi and VMCj �

The input predicates� In section �� we used pred�
icates of the form inputMCi�ti� in the axioms for the
knowledge source predicates� These predicates rep�
resent the input meta�classes MCi to the knowledge
source� In �ML��� the contents of a meta�class can
be obtained in two ways� since meta�classes are de�
scriptions of �the role of� domain expressions� we can
retrieve the contents of meta�classes by referring to
the contents of domain theories� In this case� the
inputMCi predicate can be de�ned as

�x � inputMCi�x�� ask
��O� x� ��

where O is �the name of� the object�theory mentioned
in the left�hand side of the rewrite rules in the lift�
operator for meta�class MCi

��
Alternatively� we can retrieve the contents of meta�

classes from the VMCj variables used to store the state
of the inference process� by using one of the following�

�x � inputMCj
�x� � �y � VMCj � hxj � � �i ���

�x � inputMCj �x� � x � VMCj ���

�x � inputMCj �x� � x � VMCj ���

���

We use ��� if we are interested in the most recently
computed value� ��� if we are interested in any previ�
ously computed value� or ��� if we want all previously
computed values� Thus� our formalism allows for any
of the multiple uses that are often made of the con�
tents of meta�classes in KADS models� but forces the
user to make clear in which way each meta�class is
used�

� The strategy layer in �ML��

Although the strategy layer is the least well devel�
oped layer of KADS models� it is generally perceived
as task�selection� given various tasks for achieving var�
ious goals� which task should be chosen under which
circumstances�
The language of QDL incorporated in �ML�� pro�

vides a natural way to represent such information� an
expression of the form �� �� 
� can be interpreted as�
�given certain preconditions �� program � is a way of
achieving ��� Expressions of this form can be used
to derive complex programs that achieve certain goals
starting from certain initial conditions�
For example� given the following knowledge at the

strategic layer about properties of tasks ��� �� and ���

�� � ���
��
�� � ���
��

�� � �� � ���
��

�Formula ��� might suggest that ask� is the only predi�
cate used in formulatingKADS models in �ML��
 However�
the reader should remember that other re�ective predi�
cates� notably ask� can occur in the bodies of knowledge
source predicates� as speci�ed in section 	




we can deduce that the program ����� ���� ���� 	
����� ���� ���� is a way of achieving goal ���

	 Relation between the layers

Although an earlier publication on �ML�� ��
 presented
inference� task and strategy layer each as a meta�
layer of the layer below� the current relation between
the layers in �ML�� is much more diverse� As de�
scribed above� the relation between domain and in�
ference layer is an object�meta�relation� The relation
between inference and task layer on the other hand is
entirely di�erent� the inference layer �a set of �rst or�
der theories� is embedded in the task layer �a QDL the�
ory� containing �rst order logic as a subset�� The rela�
tion between task and strategy layer is di�erent again�
both are theories in QDL� but the strategy layer ex�
tends the task layer with additional axioms that com�
prise the strategic knowledge concerning properties of
tasks�


 Comparison and conclusions

�ML�� is not the only attempt at formalising KADS
models� However� �ML�� di�ers from some of the other
approaches because �ML�� models are meant as a for�
malisation of models of expertise rather than as a
way to mechanise them� For instance� the MODEL�
K approach from ��
 is mainly aimed at mechanising a
model� and not at providing a declarative represen�
tation� As a result� MODEL�K representations can
contain arbitrary pieces of code� which do not lend
themselves very well to inspection� derivation� etc�
Some other approaches are perhaps closer in spirit

to �ML��� notably FORKADS ��
� KARL �
 VITAL�
CML ��
� and DESIRE ��
� A major drawback of
FORKADS is that it provides no syntactic distinction
between domain and inference layers� and as such does
not force the formal model to have the form required
by KADS in the same way that other formalisms �in�
cluding �ML��� do�
KARL resembles �ML�� in many respects� but it is

restricted to function�free Horn logic for representing
domain and inference layers� It is an open question
whether this restriction �made with an eye to mech�
anising KARL models� and absent from �ML��� is not
too strong�
The VITAL�CML language is also close in spirit to

�ML��� particularly in its use of modularised �rst order
theories� It employs parameterised theories as a very
elegant way of connecting domain layer and inference
layer� and the relation between this solution and the
one chosen in �ML�� �an object�meta�construction�
deserves further study�
Finally� DESIRE also shares a number of properties

with �ML��� notably the use of meta�constructions as a
way of capturing the relation between di�erent layers

in a model� but the DESIRE language has no strong
underlying conceptual model� in the way that �ML��

and others are based on KADS�
Conclusions� We have presented �ML��� a formal

language for representing KADS models� It turned out
to be possible to represent all of the components of a
model of expertise in a language that is a combina�
tion of a number of logical constructs� �ML�� can be
summarised by the following pseudo�equation

�ML�� � FOPC� sorts� sub�theories�meta�logic�QDL

These components of �ML�� have been motivated as
follows� ��� Logic is used at the domain layer be�
cause it is well suited for the declarative representa�
tion of knowledge independent of use� Sorts and sub�
theories are simply pragmatic conservative extensions�
�� Meta�logic is used to represent the inference layer
since the inference layer is about the use of the knowl�
edge at the domain layer� ��� QDL is used to represent
the task layer� since this layer is represents procedu�
ral knowledge �sequence� state� and QDL is one of the
few formalisms that o�er a declarative representation
of this type of knowledge�
Each of these components is well understood� and

has known properties� a well�de�ned proof�theory and
a clear declarative semantics�
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