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Abstract. In previous work we have shown that the MapReduce frame-
work for distributed computation can be deployed for highly scalable
inference over RDF graphs under the RDF Schema semantics. Unfortu-
nately, several key optimizations that enabled the scalable RDFS infer-
ence do not generalize to the richer OWL semantics. In this paper we
analyze these problems, and we propose solutions to overcome them. Our
solutions allow distributed computation of the closure of an RDF graph
under the OWL Horst semantics.

We demonstrate the WebPIE inference engine, built on top of the Hadoop
platform and deployed on a compute cluster of 64 machines. We have
evaluated our approach using some real-world datasets (UniProt and
LDSR, about 0.9-1.5 billion triples) and a synthetic benchmark (LUBM,
up to 100 billion triples). Results show that our implementation is scal-
able and vastly outperforms current systems when comparing supported
language expressivity, maximum data size and inference speed.

1 Introduction

In this paper, we address the problem of massively scalable OWL reasoning
and present WebPIE (Web-scale Parallel Inference Engine). In [15] we already
presented a scalable and distributed method for materializing the closure of an
RDF graph, using the RDFS semantics. That method encoded RDFS inference
using the MapReduce framework, which allowed execution on a compute cluster.

In this paper, we extend our approach to deal with the complexity of the
OWL semantics. We chose the OWL Horst fragment [8] of OWL because it
provides a complete set of entailment rules represented as if-then rules. Because
the rules in this fragment are more complex than the RDFS entailment rules,
our previous approach is no longer sufficient. For example, previously, we could
exploit the fact that all rules require a join between one schema triple and
one instance triple. This observation underlies several key papers in this area
[6, 15, 16], and allowed replicating schema triples in the main memory of all the
nodes and performing the required joins on the fly. In the OWL Horst fragment,
however, there are some rules that do not respect this pattern. As a result, this
crucial optimization is no longer applicable.



Hence, the complexity of the OWL entailment rules required us to redesign
our approach and to come up with novel optimizations that can deal with this
higher complexity. In this paper we first recall the RDFS-specific optimizations
(section 2), we then point out what are the major challenges for OWL reasoning
and how our approach solves these problems (section 3). To evaluate our tech-
nique (section 4), we have implemented the WebPIE engine using Hadoop and
performed experiments using both real-world and benchmark data. As real-world
data, we have used the UniProt dataset1, containing about 1.5 billion triples and
the LDSR dataset2 containing about 0.9 billion triples. As a benchmark, we have
used the Lehigh University Benchmark (LUBM), for up to 100 billion triples.
The obtained results show that our approach can scale to very large size, out-
performing all published approaches, both in terms of triple throughput and
maximum system size by at least an order of magnitude. To the best of our
knowledge it is the only approach that demonstrates Semantic Web reasoning
for an input in the order of 1011 triples.

2 Previous work: RDFS reasoning with MapReduce

To explain the use of MapReduce for reasoning, we first explain the basic idea of
the framework, and then briefly recall the optimizations that we used to achieve
efficient RDFS reasoning in our previous work, before turning to OWL Horst
reasoning in section 3.

MapReduce is a programming model introduced by Google for large data
processing [3]. The execution of a MapReduce program applies two user-specified
functions, map and reduce, to the input data. The map function processes the
input and outputs some intermediate key/value pairs. These pairs are partitioned
according to the key and each partition is processed by a reduce function.

The closure of an RDF input graph can be computed by applying all rules
iteratively on the input until no new data is derived (fixpoint). Single-antecedent
rules can be easily implemented by iterating over the input and matching each
triple individually. Applying rules is only challenging when there are multiple
antecedents, since matching multiple antecedents means performing a join on
the input triples, hence placing requirements on how to partition the data across
compute nodes.

As an example, let us consider the rule from RDFS [5] which derives rdf:type
based on the sub-class hierarchy:

s rdf:type x, x rdfs:subClassOf y ⇒ s rdf:type y (1)

This rule effectively performs a join, which we can implement in MapReduce
with a map and reduce function, as shown in Figure 1. In the map operation, we
process each triple and output a key/value pair, using as value the original triple,
and as key the triples term on which the join should be performed. In the case

1 http://www.uniprot.org
2 http://www.ontotext.com/ldsr/
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Fig. 1. Encoding the RDFS subclass-type rule in MapReduce.

of the above rule, to perform the sub-class join, triples with rdf:type should be
grouped on their object (“x” in the rule’s first antecedent), while triples with
rdfs:subClassOf should be grouped on their subject (the “x” in the rule’s
second antecedent). When all emitted tuples are grouped for the reduce phase,
these two will group on “x” and the reducer will be able to perform the required
join. To calculate the complete closure, the application of all rules should be
iterated, until fixpoint.

This example illustrates some important elements of the MapReduce pro-
gramming model:

– since the map operates on single pieces of data without dependencies, input
partitions can be created arbitrarily and can be scheduled in parallel across
many nodes.

– the reduce operates on an iterator of values because the set of values is
typically far too large to fit in memory. This means that the reducer can only
partially use correlations between these items while processing: it receives
them as a stream instead of a set.

– the reduce operates on all pieces of data that share a key. By assigning
proper keys to data items during the map phase, the data is partitioned for
the reduce phase. A skewed partitioning (i.e. skewed key distribution) will
lead to imbalances in the load of the compute nodes. If term x is relatively
popular, the node performing the reduce for x will be slower than others. To
use MapReduce efficiently, we must find balanced partitions of the data.

A naive implementation of such RDFS reasoning is straightforward, but is
inefficient because it produces duplicate triples (several rules generate the same
conclusions), suffers from poor load-balancing and requires fixpoint iteration.
In [15], we introduced three optimizations that vastly improved performance:

Loading schema triples in memory Typically, schema triples are far less
numerous than instance triples. Furthermore, RDFS rules have at most one
antecedent that is not a schema triple, so that no joins are required between
instance triples. This allowed us to load the schema triples in the memory of
each node and stream the instance triples, which improved load balancing.

Data preprocessing to avoid duplicates We have devised a way to parti-
tion triples in a manner that dramatically reduced duplicate derivations.
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Ordering the application of the RDFS rules We have analyzed the RDFS
ruleset and devised a rule ordering that removed the need to apply each rule
more than once (no fixpoint iteration).

3 OWL Horst Reasoning with MapReduce

In this section, we will present an efficient implementation of OWL reasoning
using MapReduce. First, we will define the logic we are interested in. Second, we
will identify the main challenges it poses, in comparison with the optimizations
presented in Section 2. Third, we will present efficient algorithms to address
these challenges.

3.1 OWL Horst fragment

In this paper, we consider the Horst fragment of OWL [8]. The reasons for this
choice are: (a) it is a de facto standard for scalable OWL reasoning, implemented
by industrial strength triple stores such as OWLIM; (b) it can be expressed by a
set of rules; and (c) it strikes a balance between the computationally unfeasible
OWL full and the limited expressiveness of RDFS. The OWL Horst ruleset
(formally known as pD) consists of the RDFS rules[5] (defined as D) and the
rules shown in table 1 (defined as p). Our method performs forward inference.
However, we should note:

– Similar to [15], we omit some rules with one antecedent (rules 5a,5b) as
these can be parallelized efficiently and are commonly ignored by reasoners
as yielding consequences that can also be easily simulated at query-time.

– We do not directly materialize inferences based on owl:sameAs triples. In-
stead, we construct a table of all sets of resources connected by owl:sameAs
relationships (rules 6, 7, 9, 10 and 11 from Table 1). In other words, we
represent the equivalence classes under owl:sameAs. Again, this is common
practice in industrial strength triple stores. Note that this does not change
the computational complexity of the task, since the owl:sameAs relation-
ships are still calculated. The sameAs-table simply provides a more compact
representation, reducing the amount of intermediate data that need to be
processed and the size of the output.

3.2 Challenges in OWL reasoning

The OWL Horst rules in Table 1 show that the techniques presented in Section 2
are not always applicable. Here, we present some of the challenges for OWL
reasoning.

No rule ordering For D, there is a rule execution order that allows us to
compute the closure by executing each rule only once, in most cases. In the
Horst fragment, there is no such ordering. Hence we must repeatedly apply
rules until no new triples are derived (fixpoint iteration is required);
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1: p rdf:type owl:FunctionalProperty, u p v , u p w ⇒ v owl:sameAs w
2: p rdf:type owl:InverseFunctionalProperty, v p u, w p u ⇒ v owl:sameAs w
3: p rdf:type owl:SymmetricProperty, v p u ⇒ u p v
4: p rdf:type owl:TransitiveProperty, u p w, w p v ⇒ u p v

5a: u p v ⇒ u owl:sameAs u
5b: u p v ⇒ v owl:sameAs v
6: v owl:sameAs w ⇒ w owl:sameAs v
7: v owl:sameAs w, w owl:sameAs u ⇒ v owl:sameAs u

8a: p owl:inverseOf q, v p w ⇒ w q v
8b: p owl:inverseOf q, v q w ⇒ w p v
9: v rdf:type owl:Class, v owl:sameAs w ⇒ v rdfs:subClassOf w

10: p rdf:type owl:Property, p owl:sameAs q ⇒ p rdfs:subPropertyOf q
11: u p v, u owl:sameAs x, v owl:sameAs y ⇒ x p y

12a: v owl:equivalentClass w ⇒ v rdfs:subClassOf w
12b: v owl:equivalentClass w ⇒ w rdfs:subClassOf v
12c: v rdfs:subClassOf w, w rdfs:subClassOf v ⇒ v rdfs:equivalentClass w
13a: v owl:equivalentProperty w ⇒ v rdfs:subPropertyOf w
13b: v owl:equivalentProperty w ⇒ w rdfs:subPropertyOf v
13c: v rdfs:subPropertyOf w, w rdfs:subPropertyOf v ⇒ v rdfs:equivalentProperty w
14a: v owl:hasValue w, v owl:onProperty p, u p v ⇒ u rdf:type v
14b: v owl:hasValue w, v owl:onProperty p, u rdf:type v ⇒ u p v
15: v owl:someValuesFrom w, v owl:onProperty p, ⇒ u rdf:type v

u p x, x rdf:type w
16: v owl:allValuesFrom u, v owl:onProperty p, ⇒ x rdf:type u

w rdf:type v, w p x
Table 1. p ruleset.

Joins between multiple instance triples In D, at most one antecedent can
be matched by instance triples. In p, rules 1, 2, 4, 7, 11, 15 and 16 contain
two antecedents that can be matched by instance triples. Thus, loading one
side of the join in memory (the schema triples) and processing instance
triples in a streaming fashion no longer works because instance triples greatly
outnumber schema triples and the main memory of a compute node is not
large enough to load the instance triples.

Duplicate derivations The two challenges above contribute to a third chal-
lenge, namely generation of duplicates. First, since there is no rule ordering
that can prevent fixpoint iteration, rules will be applied repeatedly and de-
rive the same conclusions.

Multiple joins per rule In D, all the rules require at most one join between
two antecedents. In p, rules 11, 15 and 16 require two joins.

In the next sections, we will describe how we overcome these challenges.

3.3 Overall structure

Our approach tackles the above challenges interleaving the application of the D
rules and the p rules. Algorithm 1 summarizes the control flow of our algorithm.
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Algorithm 1 RDFS/OWL reasoner: main control flow

calculate_closure(data):
boolean first_time=true;
while (true) {
derived=apply_rules(data, D); // Apply D rules once
if (derived == null && first_time == false)
return data; // D derived nothing, return
data= data + derived;

do { // Do fixpoint iteration for p rules
derived=apply_rules(data, p);
data= data + derived; }

while (derived != null);

first_time=false; }

For D, we use the methods from [15], which will not be discussed. In this paper,
we will deal with the p rules, for which fixpoint iteration is required.

On a rare occasion (when there are subproperties of rdfs:subPropertyOf ), the
implementation in [15] does not produce the full closure for D without fixpoint
iteration. To prevent this, the overall algorithm will stop when the application
of the D rules does not produce any new triple so that no derivation is left out.

If we take a closer look at the rules of the p fragment, we notice that some
rules can be implemented exploiting the optimizations introduced for the RDFS
reasoning. These are the rules 3,8a,8b,12a,12b,12c,13a,13b,13c,14a,14b.

Furthermore, rules 1 and 2 require a join on subject and predicate or pred-
icate and object for two instance triples and a join on predicate with a schema
triple. We found that these rules were straightforward to implement by parti-
tioning on subject and predicate or predicate and object while the others can
be efficiently implemented exploiting the RDFS optimizations. Thus, we will
exclude these rules from further discussion.

All other rules from p are indeed challenging and require detailed explanation:
Section 3.4 deals with rule 4, Section 3.5 deals with rules 6, 7, 9, 10, 11 and
Section 3.6 deals with rules 15 and 16.

3.4 Transitivity algorithm

Rule 4 of the Horst fragment requires a three-way join between one schema
triple and two instance triples. It seems similar to rules 1 and 2, suggesting that
it can be implemented by partitioning triples according to (pw) (i.e. partition
triples according to subject-predicate and predicate-object) and performing the
join in-memory, together with the schema triple. Nevertheless, there is a critical
difference with rules 1 and 2: the descendant is likely to be used as an antecedent
(i.e. we have chains of resources connected through a transitive relationship).
Thus, this rule must be applied iteratively.

Applying rule 4 as above will lead to a large number of duplicates, because
every time the rule is applied, the same relationships will be inferred. For a
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Algorithm 2 owl:transitivity closure (p rule 4)

map(key, triple, n):
//key: distance of the triple
//triple: triple in input
//n: current step

if (key.step = 2^(n - 2) || key.step = 2^(n -1)) then
emit({triple.predicate, triple.object}, {flag=L, key.step, triple.subject});
if (key.step > 2^(n-2) then
emit({triple.predicate, triple.subject}, {flag=R, key.step, triple.object});

reduce(key, iterator values):
for(value in values) do
if (value.flag = ’L’)
leftSide.add({key.step, value.subject})

else
rightSide.add({key.step, value.object})

for(leftElement in leftSide)
for(rightElement in rightSide)
newKey.step = leftElement.step + rightElement.step //distance new triple
emit(newKey,triple(leftElement.subject, key.predicate, rightElement.object));

transitive property chain of length n, a naive implementation will generate O(n3)
copies while the maximum output only contains O(n2) unique pairs.

We can solve this problem if we constrain how triples are allowed to be
combined. At the nth iteration of the algorithm we would like not to derive
triples which have a graph distance less or equal than 2n−2 because these were
already derived in the previous execution. We also would like to derive the new
triples only once and not by different combinations. The conditions to assure
this are:

– on the left side of the join (triples which have the key as object) we allow
only triples with distance 2n−1 and distance 2n−2;

– on the right side of the join (triples which have the key as subject) we allow
only triples with the distance greater than 2n−2.

The complete picture is shown in Algorithm 2. The map function filters out
all the triples that do not have a transitive predicate by checking the input with
the in-memory schema and it selects the triples which suit the possible join by
checking their distance value. The reduce function simply loads the two sets
in memory and returns new triples with distances corresponding to the sums
of the combinations of distances in the input. In the ideal case, this algorithm
completely avoids duplicates. Nevertheless, when there are different chains that
intersect, it will produce duplicate derivations, but much fewer than without this
optimization.

3.5 SameAs algorithm

Rules 7 and 11 from p are problematic because they involve a two-way and a
three-way join between instance triples. Similarly to before, since the join is on
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the instance data, we cannot load one side in memory but instead we are obliged
to perform the join by partitioning the input based on the part of the antecedents
involved in the join.

However, in this case, this approach would cause severe load balancing prob-
lems. For example, rule 11 involves joins on the subject or the object of an
antecedent with no bound variables. As a result, the data will need to be par-
titioned on subject or object, which follow a very uneven distribution. This will
obviously lead to serious load balancing issues, since a single machine will be
called to process a large portion of the triples in the system (e.g. consider the
number of triples with foaf:person as object).

To avoid these issues, we first apply the logic of rule 7 to find all the groups of
synonyms (e.g. resources connected by the owl:sameAs relation) that are present
in the datasets and we assign a unique key to each of these groups. In other
words, we calculate all non-singleton equivalence classes under owl:sameAs. We
store the pairs (resource, group key) in a table that we call the sameAs-table.
Subsequently, we replace in our input all the occurrences of the resources in the
sameAs-table with their corresponding group key. In other words, we use a single
canonical representation for each equivalence class.

This procedure, which is common practice in existing reasoners, does not
explicitly materialize all the derivations by rule 11, but instead produces a more
compact representation of these results. This procedure brings as additional
advantages that it reduces the complexity of a three-way join of rule 11 to a
two-way join applied during the operation of replacement; and it makes the
execution of the p rules 6, 9 and 10 trivial and redundant to implement.

We will now describe building the sameAs-table and replacing all items by
their canonical representation.

Building the sameAs-table. Our purpose is to calculate all the groups of
resources that are connected with the owl:sameAs relation. The graph with
owl:sameAs relationships is undirected, since owl:sameAs is symmetric. We turn
this into a directed acyclical graph by assigning all nodes id, and having edges
point to the node with higher id. The node with the lowest id in a group will
be the canonical representation for all nodes that are reachable from it. We now
want to efficiently calculate all nodes reachable from the canonical node.

To this end, we have developed a MapReduce algorithm. The intuition be-
hind this algorithm is that edges that create a shorter path to the canonical
representation should be created incrementally and in parallel and edges that
are no longer needed should be removed. Eventually, all edges will originate
from the canonical representation. Algorithm 3 shows this process: the graph
is partitioned across nodes and the outgoing edges of a node are replaced by
the incoming edge from the node with the lowest id, if such a node exists. This
process is repeated until no edges can be replaced.

Replacing resources with their canonical representation. Since our pur-
pose is to replace in the original dataset the resources in the sameAs-table with
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Algorithm 3 owl:sameas reasoning (p rule 7)

map(key, edge): //key: irrelevant
//Partition graph across nodes
emit(edge.from, {forward, edge.to});
emit(edge.to, {backward, edge.from});

reduce(key, values):
//key:
// value: the nodes of the edge
toNodes.empty(); // edges to other nodes
fromNodes.empty(); // edges from other nodes
fromNodes.add(key);
for (value in values) // collect all incoming and outgoing edges to node
if (value.forward) toNodes.add(value);
else if (value.backward) fromNodes.add(value);

for (to in toNodes)
emit(null, {fromNodes.minValue(), to});

their canonical representation, we must perform a join between the input data
and the information contained in the table. In principle, the join is executed
by partitioning the dataset on the single term. Since the term distribution is
very uneven, we suffer from a severe load balancing problem. We circumvent
this problem by sampling the dataset to discover the most popular terms, and
loading their eventual replacements in the memory of all nodes. (In our imple-
mentation, we typically sample a random subset of 7% of the dataset). When
the nodes read the data in the input, they check whether the resource is already
cached in memory. If it is, the nodes replace it on-the-fly and send the outcome
to a random reduce task flagging it to be output immediately. For non-popular
terms, the standard partitioning technique is used to perform the join, but since
these terms are not popular, the partitioning will not cause load balancing issues.

Note that this approach is applicable to datasets with any popularity distri-
bution: If we have a large proportion of terms that are significantly more popular
than the rest, they will be spread to a large number of nodes, dissipating the
load balancing issue. If there is a small proportion of popular terms, there will
be enough memory to store the mappings.

3.6 someValuesFrom and allValuesFrom algorithm

Rules 15 and 16 present the following challenges: (a) they contain two joins, for
v and for w. (b) one join is between antecedents that match many triples ((u p
x) matches all triples, (x rdf:type w) matches a large subset). In this section,
we will focus on rule 15. The algorithm for rule 16 is entirely analogous.

As with all schema triples, triples of the form (v owl:someValuesFrom w)
and (v owl:onProperty p) are few and can be loaded into memory. The join
between the schema triples can be done in the nodes’ memory using the standard
techniques. The join between the instance triples (u p x) and (x rdf:type w)
is the most challenging part: since these triples are too many to fit in the memory
of a single machine, they will need to be partitioned.
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Algorithm 4 owl:someValuesFrom reasoning (p rule 15)

map(key, triple): //key: irrelevant
joinSchema = join on the subject between someValuesFrom and onProperties triples
if (triple.predicate == "rdf:type")
if (triple.object in joinSchema.someValuesFromObjects)

entries = joinSchema.getJoinEntries(triple.object)
for (entry in entries)
emit({entry.p,triple.subject}, {type=typetriple, resource=entry.

onPropertySubject});
else if (triple.predicate in joinSchema.onPropertiesSet)
emit({triple.predicate,triple.object}, {type=generictriple, resource=triple.subject});

reduce(key, iterator values):
// key: partition (p,x)
// values: parts of the instance triples used for the derivation
types.clear(); generic.clear();
for (value in values)
if (value.type = typetriple) types.add(value.resource)
else generic.add(value.resource)

for (v in types)
for (u in generic)
emit(null, triple(u, "rdf:type", v));

To overcome memory limitations, these partitions should be small. Our initial
implementation has filtered the instance triples which match against the two
schema triples. Then, it partitioned them according to x. Since x is a single
resource, one partition may contain many elements. Thus, the available memory
of each node was not always sufficient to store the partition and perform the
join in-memory. Consequently, this method was abandoned.

To reduce the size of the partitions, we have developed Algorithm 4. It aims at
reducing the size of the partitions by performing the joins with the schema triples
as soon as possible. We first perform the join between the two schema triples ((v
owl:someValuesFrom w) 1 (v owl:onProperty p)). Then, before we partition,
we perform the join between the above and either (u p x) or (x rdf:type
w), calculating (v owl:someValuesFrom w) 1 (v owl:onProperty p) 1 (u p
x) and (x rdf:type w) 1 (v owl:someValuesFrom w) 1 (v owl:onProperty
p). Now, in both cases, we have all possible bindings for x and p. Thus, we can
partition on (xp) and perform the join during the reduce phase. Since partition-
ing is now done on two variables, each partition is much smaller. The pseudo
code is shown in Algorithm 4.

4 Evaluation

We have used the Hadoop framework3, an open-source Java implementation of
MapReduce, to implement and test the algorithms explained in the previous
sections4. Hadoop uses a distributed file system that uses the local disks of the

3 http://hadoop.apache.org
4 Our open source code is available at https://launchpad.net/reasoning-hadoop
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participating machines, and manages execution details such as data transfer, job
scheduling, and error management.

Our implementation was validated against the OWLIM reasoner5. It should
be noted that our results do not completely coincide with those of OWLIM, since
the latter offers limited support of owl:intersectionOf and owl:unionOf, which is
not part of the Horst semantics.

We have performed the experiments on the Vrije Universiteit cluster of the
DAS-3 distributed supercomputer6 using up to 64 compute nodes. Nodes were
equipped with two dual-core 2.4GHz Opteron processors, 4GB of main memory,
250GB hard disk and a Gigabit Ethernet interconnect.

4.1 Datasets

The evaluation was performed using three datasets: UniProt is one of the largest
(1.51 billion unique triples) curated sets of real-world OWL statements available
to date, and has been used before to stress-test the performance of OWL rea-
soners. LDSR includes DBPedia, Freebase, Geonames and other datasets repre-
senting general knowledge and consists of 0.9 billion triples. LUBM is a widely
used benchmark that can generate semi-realistic datasets of arbitrary size. We
have chosen to use LUBM because: (a) it is widely used for reasoner evaluation,
allowing comparison of our results with existing approaches; (b) there exists no
real-world dataset of the size we want to test (up to 100 billion triples); (c) rea-
soning over arbitrary triples retrieved from the Web would result in useless and
unrealistic derivations [7]. All datasets do indeed use the OWL Horst fragment.

4.2 Experimental results

Performance on real world data: For UniProt, our system derived 2.03 bil-
lion triples, as well as a synonyms table for owl:sameAs relationships, consist-
ing of equality statements between 35 million entries. The entire process took
6.1 hours on 32 nodes. For LDSR, our system derived 0.94 billion triples in
3.52 hours. Figure 2a shows the sequence of the launched MapReduce jobs for
UniProt along with the time spent for each of them. The analysis shows that
the computation is dominated by the costs of the equality reasoning, in partic-
ular, the costs of replacing all RDF resources by the canonical members of the
sameAs-equivalence classes. When no owl:sameAs statements are present (as in
the LUBM case, figure 2b), the costs are more evenly spread across the different
phases. A future challenge is to reduce the cost of the equality-reasoning, either
by smarter algorithms or by further parallelization of this phase.

Scalability: Table 3a shows how our approach scales with an increasing
number of compute nodes, using 10 billion triples generated by LUBM as a fixed
input. We define speedup as runtime for baseline

runtime . We use the time on the 8-node
configuration as baseline, because in DAS3 a single node does not have enough
5 http://www.ontotext.com/owlim/
6 http://www.cs.vu.nl/das3/

11



 0

 1000

 2000

 3000

 4000

 5000

D rules

p rules 1,2,3,8a,8b

Cleanup duplicates

sam
eAs: synonym

 table 1

sam
eAs: synonym

 table 2

sam
eAs: synonym

 table 3

sam
eAs: synonym

 table 4

Cleanup duplicates

sam
eAs: sam

pling

sam
eAs: replacem

ent

sam
eAs: replacem

ent

Cleanup duplicates

p rules 12a, 12b, 13a, 13b, 13c

p rules 15, 16

Cleanup duplicates

p rules 15, 16

p rules 1,2,3,8a,8b

Cleanup duplicates

sam
eAs: synonym

 table 1

Cleanup duplicates

p rules 12a, 12b, 13a, 13b, 13c

D rules

p rules 1,2,3,8a,8b

Cleanup duplicates

sam
eAs: synonym

 table 1

Cleanup duplicates

p rules 12a, 12b, 13a, 13b, 13c

p rules 15, 16

Cleanup duplicates

D rules

se
co

nd
s

RDFS/1
21 min. OWL/1

253 min.
OWL/2
21 min.

RDFS/2
15 min. OWL/3

39 min.
RDFS/3
17 min.

1232

184

1019

104 130 127 184 107 362

5278
4668

1935

64 155
759

119 130

804

126 129 42

875

184
831

125 126 45 193
824 1016

(a)

 0

 200

 400

 600

 800

 1000

D rules

p rules 1,2,3,8a,8b

p rule 4 - step 1

Cleanup duplicates

p rule 4 - step 2

Cleanup duplicates

p rules 12a, 12b, 13a, 13b, 13c

p rules 15, 16

Cleanup duplicates

p rules 15, 16

p rules 1,2,3,8a,8b

p rule 4 - step 1

p rules 12a, 12b, 13a, 13b, 13c

D rules

se
co

nd
s

RDFS/1
13 min.

OWL/1
26 min.

OWL/2
3 min.

RDFS/2
14 min.

763

179

29
88

28

458

27
133

484

121 112
29 27

829

(b)

Fig. 2. Execution steps for UniProt (a) and LUBM (b)

resources (disk space) to store all the data. Table 3b shows how our approach
scales with increasing input size, using a fixed configuration of 64 nodes.

We make the following observations:

– The throughput is significantly (almost 30%) higher for larger datasets. This
is attributed to platform startup overhead which is amortized over a larger
processing time for large datasets. The platform overhead is also responsible
for the superlinear speedup in table 3a. Since the overhead becomes more
relevant with fewer nodes, the calculated speedup will be higher than the
real one.

– The execution time greatly depends on the complexity of the input: on
UniProt and LDSR, we achieve a throughput of 68.3 Ktriples/sec and
74.9 Ktriples/sec respectively, while the throughput on the much simpler
LUBM dataset is around 10 times higher (table 3b). If the input is more
complex, the algorithm needs to launch more iterations to reach fixpoint (as
shown in Figure 2).
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Nodes Runtime Speedup
(hours)

8 44.4 1.00
16 22.3 1.99
32 10.6 4.17
64 5.0 8.78

(a)

Input Output Runtime Throughput
(GTriples) (MTriples) (hours) (Kt/sec)

1.07 495.5 0.61 455.2
10.71 4971.7 4.06 684.6

102.50 47563.1 45.77 606.8

(b)

Fig. 3. Scalability over the number of nodes (left) and over input data (right)

– Considering the effects of the platform overhead, we conclude that the results
show linear scalability regarding the size of the input and number of nodes.
Currently, the only way to test this is by using the LUBM benchmark data.
We have no evidence on how the algorithm behaves with a real world dataset
of 100 billion triples, since such dataset currently does not exist.

5 Related work

Hogan et al. [6] compute the closure of an RDF graph using two passes over the
data on a single machine. They implement only a fragment of the OWL Horst
semantics to allow efficient materialization and to prevent “ontology hijacking”.

Schlicht and Stuckenschmidt [13] show peer-to-peer reasoning for the expres-
sive ALC logic but focusing on distribution rather than performance.

Soma and Prasanna [14] present a technique for parallel OWL inferencing
through data partitioning. Experimental results show good speedup but only on
very small datasets (1M triples) and runtime is not reported. In contrast, our
approach needs no explicit partitioning phase and we show that it is scalable
over increasing dataset size.

In [10, 12], we have presented a technique based on data-partitioning in
a peer-to-peer network. A load-balanced auto-partitioning approach was used
without upfront partitioning cost. Experimental results were however only re-
ported for datasets of up to 200M triples.

In Weaver and Hendler [16], straightforward parallel RDFS reasoning on a
cluster is presented. This approach replicates all schema triples to all processing
nodes and distributes instance triples randomly. Each node calculates the clo-
sure of its partition using a conventional reasoner and the results are merged.
To ensure that there are no dependencies between partitions, triples extending
the RDFS schema are ignored. This approach is not extensible to richer log-
ics, or complete RDFS reasoning, since, in these cases, splitting the input to
independent partitions is impossible.

Newman et al. [11] decompose and merge RDF molecules using MapReduce
and Hadoop. They perform SPARQL queries on the data but performance is
reported over a dataset of limited size (70,000 triples).
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Several proposed techniques are based on deterministic rendezvous-peers on
top of distributed hashtables [1, 2, 4, 9]. However, because of load-balancing
problems due to the data distributions, these approaches do not scale [10].

Some Semantic Web stores support reasoning and scale to tens of billions of
triples7. We have shown inference on a triple set which is one order of magnitude
larger then reported anywhere (100 billion triples against 12 billion triples).
Furthermore, our inference is 60 times faster (10 billion triples in 4 hours against
12 billion triples in 290 hours for LUBM) against the best performing reasoner
(BigOWLIM). For UniProt, BigOWLIM 3.1 needs 21 hours to perform forward
reasoning on 1.15 billion triples8 (yielding a throughput of 15.2 Ktriples/sec)
while our system needs only 6 hours for 1.5 billion triples (yielding a throughput
of 68.3 Ktriples/sec). It should be noted that the comparison of our system with
RDF stores is not always meaningful, as our system does not support querying.

6 Conclusion

Summary In this paper, we have shown a massively scalable technique for par-
allel OWL Horst forward inference and demonstrated inference over 100 billion
triples. Both in terms of processing throughput and maximum data size, our
technique outperforms published approaches by a large margin.
Discussion of scope The computational worst-case complexity of even the
OWL Horst fragment precludes a solution that is efficient on all inputs. Any
approach to efficient reasoning must make assumptions about the properties of
realistic datasets, and optimize for those realistic cases. Some of the key assump-
tions behind our algorithms are: (a) The schema must be small enough to fit
in main memory; (b) for rules with multiple joins, some of the joins must be
performed in-memory, which could cause memory problems for some unrealistic
datasets or for machines with very limited memory; (c) we assume that there
is no ontology hijacking [7]; and (d) all the input is available locally in the dis-
tributed filesystem. The difference in performance on UniProt and LUBM shows
that the complexity of the input data strongly affects performance Although it
is easy to create artificial data which break the performance, we did not observe
such cases in realistic data. In fact, the above assumptions (a)-(d) could also
serve as guidelines in the design of ontologies and datasets, to ensure that they
can be used effectively.
Future challenges The technique presented is optimized for the OWL-Horst
rules. Future work lies in reasoning over user-supplied rulesets, where the sys-
tem would chose the correct implementation for each rule and the most efficient
execution order, depending on the input.

Furthermore, as with all scalable triple stores, our approach cannot efficiently
deal with distributed data. Future work should extend our technique to deal with
data streamed from remote locations.

7 http://esw.w3.org/topic/LargeTripleStores
8 D5.5.2 at http://www.larkc.eu/deliverables
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In fact, we believe that this paper establishes that computing the closure of a
very large centrally available dataset is no longer an important bottleneck, and
that research efforts should switch to other modes of reasoning. Query-driven
backward-chaining inference over distributed datasets might turn out to be more
promising than exhaustive forward inference over centralized stores.
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