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person behind the computer? Which content on 
the news Web portal is attracting the most atten-
tion? Which navigation pattern would lead readers 
to other news related to that content? Do trends in 
medical records indicate any new disease spread-
ing in a given part of the world? Where are all my 
friends meeting? Can we detect any intra-day cor-
relation clusters among stock exchanges? What are 
the top 10 emerging topics under discussion in the 
blogosphere, and who is driving the discussions?

Although the information required to answer 
these questions is becoming increasingly available 
on the (Semantic) Web, there’s currently no soft-
ware system capable of computing the answers—
indeed, no system even lets users issue such que-
ries. The reason is straightforward: answering 
such queries requires systems that can manage 
rapidly changing worlds at the semantic level.

Of course, rapidly changing data can be ana-
lyzed on the fl y by specialized data-stream man-
agement systems, but such systems can’t perform 
complex reasoning tasks, and they lack a protocol 
to publish widely and to provide access to the rap-
idly changing data.

Reasoners, on the other hand, can perform such 
complex reasoning tasks, and the Semantic Web is pro-
viding the tools and methods to publish data widely 
on the Web. These technologies, however, don’t re-
ally manage changing worlds: accessing and reasoning 
with rapidly changing information have been neglected 
or forgotten by their development communities.

The state of the art in reasoning over changing 
worlds is based on temporal logic and belief revi-
sion; these are heavyweight tools, suitable for data 
that changes in low volumes at low frequency. Sim-
ilarly, the problem of changing vocabularies and 
evolving ontologies has undergone thorough inves-
tigation, but here the standard practice relies on 
confi guration management techniques taken from 
software engineering, such as vocabulary and on-
tology versioning. These are suitable for ontologies 
that change on a weekly or monthly basis, but not 
for high-change-rate, high-frequency domains.

Moreover, the typical (Semantic) Web architec-
ture, which caches all the information, can hardly 
be applied to rapidly changing information, be-
cause the crawled data would be obsolete at the 
time of querying.

We therefore suggest a completely different ap-
proach. Stream reasoning, an unexplored yet high-
impact research area, is a new multidisciplinary 
approach that can provide the abstractions, foun-
dations, methods, and tools required to integrate 
data streams, the Semantic Web, and reasoning 
systems, thus providing a way to answer our ini-
tial questions and many others.

In this column, we describe two concrete ex-
amples of stream-reasoning applications and in-
troduce stream-reasoning research problems. We 
also present a list of research areas that we believe 
should be investigated to turn stream reasoning 
into a reality.

Stream-Reasoning Applications: 
Concrete Examples
Stream reasoning can benefi t numerous areas: 
Traffi c monitoring and traffi c pattern detection 

Will there be a traffi c jam on this highway? 

Can we reroute travelers on the basis of 

the forecast? By examining the clickstream from 

a given IP, can we discover shifts in interest of the
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appear to provide a natural applica-
tion area; several independent works 
have already addressed this topic.1–4 
Other areas of interest are financial-
transaction auditing,5 wind power 
plant monitoring,6 situation-aware 
mobile services,7 and patient moni-
toring systems.8 All the works we’ve 
just cited have come out of the Se-
mantic Web community; researchers 
have been struggling with “classical” 
tools to solve streaming problems.

But if researchers turn their atten-
tion to stream reasoning, they will be 
able to create the methods and tools 
for easily answering the queries with 
which we began this column. Now 
let’s look at two concrete applications 
for stream reasoning.

Reasoning for Mobile Applications
Mobility is one of the defining char-
acteristics of modern life. Technology 
can support and accompany our mo-
bility in several ways, both for business 
and entertainment. Mobile phones are 
popular and widespread; they pro-
vide good territory for challenging the 
stream-reasoning concept. To be im-
mersed in our everyday life, mobile ap-
plications must fulfill real-time require-
ments, especially if we are to use them 
to make short-term decisions. Using 
data from sensors, which is likely to 
come in streams, mobile applications 
must find answers to the problems of 
reasoning with streams: coping with 
noisy data, dealing with errors, mov-
ing heavy reasoning computations to 
the server rather than doing them on 
the mobile devices, and so on. 

Dealing with users’ stream of ex-
perience, mobile applications must 
reason on what part of the streaming 
information is relevant and what its 
meaning is. For example, they have to 
abstract from quantitative information 
about latitude and longitude to quali-
tative information about places such 
as home, office, and gym. Then they 

have to raise the level of abstraction to 
reason about concrete problems, such 
as how to reach those places: means 
of transportation, a route that avoids 
traffic jams, and so on. By treating 
mobile phone users themselves as sen-
sors, mobile applications could pro-
vide an understanding of the urban 
environment and its structure.

Monitoring Public-Health Risks
Early detection of potentially threat-
ening public-health events such as 
outbreaks and epidemics is a major 
priority for national and interna-
tional health-related organizations. 
Recent examples are infections such 

as SARS, the H5N1 avian flu, and 
the H1N1 virus. Dealing with this 
priority requires improving early 
detection capabilities—by enabling 
more timely and thorough relevant 
data acquisition and by advancing 
technologies for near real-time re-
porting and automated outbreak 
identification. 

This requires an integrated public-
health event detection platform that 
monitors a large variety of data to de-
tect events and situations that might, 
when interpreted in the appropriate 
context, signify a potential threat to 
public health. Such a dynamic plat-
form must identify, integrate, and in-
terpret heterogeneous, distributed data 

streams, with information flowing  
from these data sources automati-
cally analyzed and expressed on the 
basis of rich background knowledge. 
When this platform estimates an in-
creased threat probability, it will have 
to streamline notifications to public-
health bodies over various communi-
cation channels and deliver traces of 
the reasoning process and data that 
led to the calculation, so that authori-
ties can evaluate and use the informa-
tion appropriately.

Existing systems, such as Google’s 
now classical Flu Trends, do in-
deed process high-volume streams of 
data, but all semantic processing of 
this data takes place in a predefined, 
hard-coded manner—a priori (when 
integrating streams) or a posteriori 
(when interpreting the results). The 
challenge is to make the transition 
from such handcrafted systems to au-
tomatic reasoning over data streams 
of similar magnitudes.

Problems to Be Solved
Several years ago, proposing a sys-
tem to answer stream-reasoning ques-
tions would have sounded like science 
fiction, mainly because of the lack of 
data. Nowadays, a large amount of the 
required information is already avail-
able in digital format. For example, 
the mobile application we described 
earlier could use data such as maps 
with commercial activities and meet-
ing places, events scheduled in the city 
and their locations, average speed in 
highways, positions and speed of pub-
lic transportation vehicles, parking 
availabilities in specific parking areas, 
geo-positioned Twitter posts, user-
generated media of any kind, blogs, 
clickstreams, and so on. Sources that 
are less subject to change can be made 
available through (Semantic) Web 
technologies, but for rapidly changing 
sources, the Semantic Web does not 
offer ready-to-use solutions.

The challenge is to make 
the transition from 
handcrafted systems to 
automatic reasoning over 
data streams of similar 
magnitudes.
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To answer the questions we posed 
at the beginning of this column, a 
stream-reasoning system must be able 
to cope with several issues.

Lack of Theory for  
Stream Reasoning
Several theoretical aspects of stream 
reasoning have never been formalized. 
Missing elements include a model 
theory for stream reasoning; the for-
mal properties of inference problems 
in stream reasoning beyond belief re-
vision; a definition of soundness and 
completeness that takes into account 
the transient nature of streams; the 
general strategies for incremental rea-
soning beyond techniques known in 
the database area; a family of logic 
representation languages for streaming 
information; and a corresponding fam-
ily of stream-reasoning algorithms.

Heterogeneous Formats  
and Access Protocols
Streams can appear in multiple forms, 
ranging from relation data over bi-
nary messaging protocols, such as data 
streams originated by sensor networks, 
to text streams over Web protocols, 
such as blogs and micro blogs. Conver-
sion and wrapping solutions already 
available for large-scale but static data 
sets (such as DB2RDF) will have to be 
developed for dynamic data streams.

Semantic Modeling
Semantic modeling of data streams 
involves several difficulties.

Window dependencies. A stream is ob-
served through a window, which can 
be a span in time or a number of ele-
ments. Thus, such windows can con-
tain incomplete information (for ex-
ample, because some sensors did not 
provide data) or over-constrained in-
formation (for example, because dif-
ferent sensors observe the same event) 
about individuals.

Time dependencies. By their very na-
ture, streams of data can be inspected 
only while they flow. If information 
is not captured and immediately sum-
marized (aggregated, for example), 
then information reconstruction may 
be impossible.

Relationships between summarization 
and inference. Given that aggregation 
can perform lossy data compression, 
stream reasoning will require meth-
ods to determine which inferences are 
possible even after summarization 
and which must be performed before 
summarization.

Merging with static information sources. 
Data streams are naturally time-
stamped, but the time validity of 
static information sources is nor-
mally not stated. Thus, merging data 
streams with static information can 
create hybrid data that must be care-
fully managed. Also needed are vo-
cabularies to state future validity of 
information.

Learning from stream. If analyzed, the in-
formation that flows through the win-
dows opened over streams, especially 
text streams, can determine changes in 
the static information sources. For ex-
ample, new terms can emerge, and the 
number and nature of attributes de-
scribing an object can vary.

Scale
Scale is an issue for stream reason-
ing due both to the presence of huge 
data throughputs and to the need to 
link streaming data with large static 
knowledge bases. In many applica-
tions, a limited amount of data and 
knowledge is sufficient for a given 
stream-reasoning task. In these cases,  
the data should be sampled, abstracted, 
and approximated.

Continuous Processing
Stream reasoning requires continuous 
processing, because queries are nor-
mally registered and remain continu-
ously active while data streams into 
the stream-reasoning system.

Real-Time Constraints
Stream-reasoning systems must pro-
vide answers before they become use-
less. Thus, the system must be able to 
provide incremental query-answering 
or reasoning, and it must also be able 
to tell the user whether it will deliver 
the answer to her continuous query 
on time.

Parallelization and Distribution
Stream-reasoning systems will require 
adaptation to novel hardware and 
software architectures that assign the 
reasoning tasks to independent com-
putational units. This also requires 
controlling the reasoning process by 
modularizing reasoning and minimiz-
ing data transmission among the units.

Research Areas
We systematically analyzed the prob-
lems we presented in the previous sec-
tion and have divided stream-reasoning 
research into five areas. We illustrate 
these new challenges by pointing to 
publications, particularly works pre-
sented at the First Stream Reasoning 
Workshop (SR 09), which took place 
in conjunction with the European Se-
mantic Web Conference in May 2009.

If information is not 
captured and immediately 
summarized, information 
reconstruction may be 
impossible.
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Theory for Stream Reasoning
Stream-reasoning research definitely 
needs new theoretical investigations 
that go beyond data-stream manage-
ment systems,9 event-based systems,10 
and complex event processing.11 Simi-
larly, we must go beyond current ex-
isting theoretical frameworks such as 
belief revision12 and temporal logic.13 
Existing theoretical frameworks either 
give a good basis for formal and explicit 
semantics, or they are appropriate for 
high-frequency, high-volume change 
rates. No current framework deals 
with both aspects simultaneously.

Examples of important theoretical 
problems that need investigation be-
yond these existing foundations are 
the following: 

dealing with incomplete or over-•	
constrained information about 
individuals;5

revising a notion of symbol ground-•	
ing for temporal data;2 and 
revising the traditional notions of •	
soundness and completeness for 
stream reasoning.

Logic Language for  
Stream Reasoning
The investigation about whether a logic 
language is appropriate for stream 
reasoning is an important theoreti-
cal question. At the moment there is 
no agreement on the ways in which 
logic languages can integrate stream 
reasoning; the articles submitted to 

SR 09 adopted a variety of differ-
ent logics. A constructive descrip-
tion logic14 is at the core of Michael  
Mendler’s and Stephan Scheele’s work.5 
Matteo Palmonari and Davide Bogni 
propose a commonsense spatial hy-
brid logic.1,15 Metric temporal logic16 
is the logical language of the DyKnow 
middleware.2 Several other logics also 
appear to be valid starting points—for 
example, temporal action logic,17 step 
logic,18 and active logic.19

Stream Data Management  
for the Semantic Web
A first step toward stream reason-
ing is certainly trying to combine the 
power of existing data-stream man-
agement systems and the Semantic 
Web. The key idea is to keep stream-
ing data in relational format as long 
as possible and bring it to the seman-
tic level as aggregated events.4 Ex-
isting data models, access protocols, 
and query languages for data-stream 
management systems and the Seman-
tic Web are not sufficient to do so; 
they must be combined.

Streaming SPARQL6 and Continu-
ous SPARQL (C-SPARQL)20 are two 
proposals for extending SPARQL to 
stream data management. Both of them 
introduce the notion of RDF streams as 
the natural extension of the RDF data 
model to this scenario, and then extend 
SPARQL to query RDF streams.

Figure 1 shows an example of a  
C-SPARQL query that, given a static 

description of brokers and a stream 
of financial transactions for all Swiss 
brokers, computes the total of their 
transactions within the last hour. At 
line 1, the REGISTER clause tells the 
C-SPARQL engine that it should reg-
ister a continuous query—that is, a 
query that will continuously compute 
answers to the query. The COMPUTE 
EVERY clause states the frequency of 
every new computation. In line 5, the 
FROM STREAM clause defines the RDF 
stream of financial transactions used 
in the query. Next, line 6 defines the 
window of observation of the RDF 
stream. Streams, by their very nature, 
are volatile and so should be con-
sumed on the fly; thus, the C-SPARQL 
engine observes them through a win-
dow that contains the stream’s most 
recent elements and that changes over 
time. In the example, the window 
comprises RDF triples produced in 
the last hour, and the window slides 
every 10 minutes. The WHERE clause is 
standard; it includes a set of matching 
patterns and FILTER clauses. Finally,  
at line 12, the AGGREGATE function asks 
the C-SPARQL engine to include in 
the result set a new variable, ?total, 
which is bound to the sum of the 
transaction amounts for each broker.

However, more investigation into 
stream-data management is needed. 
Following are some of the interesting 
research topics:

semantic modeling of streams, ex-•	
tending the notion of RDF streams;
protocols providing real-time ac-•	
cess over the Web to streams;
vocabularies to assert future valid-•	
ity of information;
query language for RDF streams, •	
extending approaches such as C-
SPARQL and Streaming SPARQL;
cost metrics to measure query plan •	
cost and to predict whether enough 
time is available to provide an 
answer;

Figure 1. C-SPARQL example. Continuous SPARQL (C-SPARQL) is an extension of the 
SPARQL protocol to support continuous queries by handling streams of RDF triples. 
In this example, given a static description of brokers and a stream of financial 
transactions for all Swiss brokers, the C-SPARQL engine computes the total of their 
transactions within the last hour.

 1. REGISTER QUERY TotalAmountPerBroker COMPUTE EVERY 10m AS
 2. PREFIX ex: <http://example/>
 3. SELECT DISTINCT ?broker ?total
 4. FROM <http://brokerscentral.org/brokers.rdf>
 5. FROM STREAM <http://stockex.org/market.trdf> [RANGE 1h STEP 10m]
 6. WHERE {
 7.  ?broker ex:from ?country .
 8.  ?broker ex:does ?tx .
 9.  ?tx ex:with ?amount .
10.  FILTER (?country = “CH” )
11. }
12. AGGREGATE { (?total, SUM(?amount), ?broker) }
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query-rewriting techniques to le-•	
verage existing data-stream man-
agement systems; 
continuous query plan adapta-•	
tion to the bursty nature of data 
streams;
parallel processing of multiple que-•	
ries to exploit interquery optimiza-
tion opportunities; and
distributed query processing, ex-•	
tending current ongoing efforts in 
SPARQL.

Stream Reasoning for  
the Semantic Web
Combining stream data management 
and reasoning at the data-model and 
query-language level is only a first 
step toward stream reasoning. From 
different viewpoints, part of this re-
search has been conducted in AI under 
the name belief revision.21 However, a 
well-developed notion of stream rea-
soning has not yet been proposed.

The central research question is 
this: can the idea of continuous se-
mantics as introduced in data-stream 
management systems be extended to 
reasoners such as those currently be-
ing developed for the Semantic Web? 
For instance, does the current ap-
proach to materialization of onto-
logical entailments still hold? Can an 
updated materialization be incremen-
tally computed before it will be out-
dated? Last, but not least, can such 
techniques benefit from distribution 
and parallelization?

The state of the art in this area has 
its roots in deductive database re-
search that considers how changes to 
facts should lead to changes in the ex-
tensions of logical predicates.22 Pio-
neering work by Raphael Volz, Stef-
fen Staab, and Boris Motik extends 
database techniques to changes to the 
ontology manifesting themselves in 
changes to the rules of the logic pro-
gram.23 Moreover, work presented 
at SR 09 includes very interesting  

attempts to answer these questions 
by the incremental evaluation of com-
plex temporal formulas2 and the in-
cremental answering of reachability 
queries on streaming graphs.3

Engineering and Implementations
The three preceding sections of this 
article constitute our proposal for 
a research agenda for basic and ap-
plied research in stream reasoning. 
However, because the engineering of 
stream reasoning is clearly in its in-
fancy, a large amount of engineering 
work will also be necessary to make 
concrete progress toward the stream-
reasoning vision.

Several implemented stream-reasoning 
systems exist.1,2,8 However, there have 
been only two systematic approaches  
attempted: DyKnow, which intro duces 
the notion of primitive streams, stream 
generator, stream consumer, and 
stream processor;2 and the work by 
Emanuele Della Valle and colleagues,4 
which applies to data streams the 
concepts of identification, selection,  
abstraction, and reasoning proposed in 
the LarKC approach.24 Investigations 
into a conceptual architecture, con-
crete implementations, design environ-
ments, and an evaluation framework 
to compare and contrast different im-
plementations are clearly still needed.

Measuring Progress
Although the problem of measuring 
progress in the stream-reasoning field 
may appear intractable at this stage, 
we believe that it is possible to assess 
the degree to which a stream reasoner 

meets different technical and applica-
tion requirements.

On a general level, currently there 
are solutions for reasoning about 
static knowledge and solutions for 
handling streaming data. Therefore 
a basic requirement for a stream- 
reasoning system is to integrate these 
two aspects in a common approach 
that can perform reasoning on seman-
tic streams. We can define progress rel-
ative to this integration qualitatively, 
as shown in Figure 2.

The simplest way of integrating the 
two aspects is in terms of a loose inte-
gration of reasoning and stream-data 
management: in a first step, a suitable 
data-stream management infrastruc-
ture acquires streaming data; and in 
a second step, reasoning is performed 
on the result of a view on this data. 
Although such integration doesn’t  
exist today, the ambition of stream-
reasoning research is to go beyond 
this simple case and create progress 
in two directions. On the engineering 
side, the goal of stream-reasoning re-
search is to achieve a tight integration 
of reasoning and stream data man-
agement, where reasoning and stream 
querying are intertwined to improve 
performance. On the theoretical side, 
a goal of stream-reasoning research 
is to extend investigation to cases in 
which not only the instance data is 
provided in a streaming way, but also 
knowledge on the conceptual level is 
subject to frequent change.

Because it is not clear how to quan-
tify progress in these two directions, 
we suggest indirectly measuring the 

Figure 2. Basic schema for measuring progress in stream reasoning.
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degree of integration and the cover-
age of knowledge change by system-
atically evaluating stream-reasoning 
implementations against several well-
defined quality criteria. As an initial 
set, we suggest the following:

number of data streams handled •	
simultaneously;
update speed of the data streams •	
(for example, in assertions per 
second);
number of subscribed queries han-•	
dled in parallel;
number of query subscribers that •	
must be notified; and
time between event occurrence and •	
notification of all subscribers.

A lthough the work we have dis-
cussed in this column grounds stream 
reasoning and gives it credence as an 
attainable goal, a huge amount of in-
novation will be necessary to make 
stream reasoning a reality.

Starting from lessons learned from 
databases (such as the ability to effi-
ciently abstract and aggregate informa-
tion out of multiple, high-throughput  
streams) and the Semantic Web (stan-
dard tools and methods for publish-
ing and accessing structured data 
on the Web) we need a new foun-
dational theory of stream reason-
ing, capable of associating reasoning 
tasks to time windows that delin-
eate data validity and therefore pro-
duce time-varying inferences. From 
these foundations, we must de-
rive new paradigms for knowledge  
representation—for example, extend-
ing RDF streams, query languages, 
and C-SPARQL. We will also need to 
deploy the consequent computational 
frameworks for stream-reasoning-
oriented software architectures and 
their instrumentation.

This shift from static to highly  
dynamic data domains is not an  

incremental step. It will require sub-
stantial revisions to the very corner-
stones on which the current Semantic 
Web is built.
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