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Abstract

The paper provides an approach for developing reliable knowledge-based systems.
Its main contributions are: Specification is done at an architectural level that abstracts
from a specific implementation formalism. The model of expertise of CommonKADS
distinguish different types of knowledge and describes their interaction. Our archi-
tecture refines this model and adds an additional level of formalization. The formal
specification and verification system KIV is used for specifying and verifying such ar-
chitectures. We have chosen KIV for four reasons: (1) it provides the formal means
required for specifying the dynamics of knowledge-based systems (i.e., dynamic logic),
(2) it provides compositional specifications, (3) it provides an interactive theorem
prover, and (4) last but not least it comes with a sophisticated tool environment
developed in several realistic application projects.

1 Introduction

As computerised decision making and control systems proliferate ever more widely, the
results of hazards arising during their operation increase correspondingly. New decision
making technologies in medicine, manufacturing, industrial process control, and trans-
portation are increasingly using knowledge-based technologies. The current techniques for
developing Knowledge-based Systems (KBS) are unsatisfactory with respect to ensuring
the safe operation of the systems they are meant to develop. For KBS development such
safety-ensuring methods have in fact barely been developed.
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As argued in the survey paper by Blair and others [Blair et al., 1995], the major benefit
that KBSs have over traditional Decision Support Systems or Information Systems is
that they assist decision makers to gain insight into the difficult decision at hand rather
than just solving the problem or producing a somehow “correct” model of the decision
[Holtzman, 1989].

In order to ensure high quality KBS, research in knowledge engineering developed method-
ologies, techniques and tools for the construction of KBS. Although these methods were
highly successful and widely adopted, almost all of them were often criticised from both
within and from outside the KBS community (e.g. from Software Engineering) for their in-
formality and corresponding lack of precision. The conceptual models that are constructed
in a modern Knowledge Engineering process are typically defined using a combination of
natural language and graphical elements. As a result, these models are defined only infor-
mally or at best semi-formally. As is well known, such documents in natural language have
an ambiguous and imprecise semantics. There are as many meanings for a specification as
there are readers, and it is a question of text interpretation as to whether a specification
is as intended for a system. The ambiguity of such conceptual models in a Knowledge
Engineering context was aptly illustrated by Aben’s analysis of the use of a single infer-
ence step from the KADS framework in a number of papers in [Bauer & Karbach, 1992].
Aben [Aben, 1995, p.36] states that out of nine papers that use the abstract inference
step, only one author uses it in correspondence with Aben’s interpretation of the original
definition in [Breuker et al., 1987, p.37]. Most of the other papers use different versions
of the inference step, even including versions with different numbers of input arguments.

Although current KBS technology is well developed and actively used in practice, very
little attention has been given in this technology to aspects like (i) functioning in an
asynchronously changing environment; (ii) ensuring constraints on possible behaviours of
the system, and (iii) dealing with uncertain observations and uncertain results of actions.
These aspects are essential for safety-critical systems, and until such features are integrated
in existing KBS technology, this technology will not be usable for such safety-critical
systems. French and Hamilton state: “Evidence from the computer industry suggests that
without a methodology for comprehensive verification and validation, Expert Systems will
not be considered safe and reliable for field use” [French & Hamilton, 1994].

An example of a KBS application where safety-considerations are paramount is the fol-
lowing: Oncology treatment consists of applying complicated protocols to cancer patients.
These general protocols are formulated by specialists, and must be applied to individual
patients. In such an individual application, many decisions must be made on the basis
of current status and specific properties of the particular patient (drug dosis, drug va-
riety, treatment duration, treatment frequency). Doctors need support in applying and
executing these protocols. Support can be given by knowledge-based DSSs (demonstrator
applications have already been built [Fox et al., 1995, Rogers, 1998]). Assurance is needed
that such a system does not exceed safety limits.

Besides the needs of safety-critical applications, there is a second important motivation for
quality ensurance on KBS. Because of the strong separation of inference and knowledge
in KBS (see later sections of this paper), there has always been a strong emphasis in KBS



research on the development of reusable components, and on the construction of libraries
of such components.

Quality ensurance is particularly important in a library of reusable components, because

e components are used more than once, thereby increasing the cost of errors in a
component (this repeated use can also serve to ammortise the increased costs that
must be made to obtain the higher quality),

e components are used in a software context for which they were not originally de-
veloped, increasing the risk of unforeseen and therefore incorrect functioning of the
component,

e components are used by programmers who did not develop the components, again
increasing the risk of unforeseen usage of the component.

An additional complication with reusable components is that (through their use in dif-
ferent software contexts), they will have to be adapted to suit the specific details of each
application. Because of this, the components must be adaptable, rather than fixed and
immutable.

In traditional software engineering, the problems with informal specifications have lead
to the development of formal approaches to software specification and design. Formal
methods in knowledge engineering share the benefits of rigor and preciseness with formal
methods in software engineering. Consequently, it may seem attractive to apply existing
formal methods from software engineering to knowledge engineering.

In this paper we will outline our approach towards this goal. Section 2 discusses particular
ways of describing the architectures of KBSs. Section 3 describes why these architectures
(and the way they are used) are different for KBS than for arbitrary software. Section 4
describes how the formal specification and verification system KIV can be used to support
the formal development of KBS that are based on our particular architecture. Finally,
section 5 concludes.

2 Software architectures for KBS

In this section we will describe a particular software architecture for KBSs. We will do this
by following the historical development of the field, starting from implementation-oriented
descriptions in the late ’70s and ’80s, moving to implementation-independent descriptions
in the early 90s, and generalising these architectures to facilitate reuse of components in
recent work. This section ends by pointing out the consequences of all this for validation
and verification of KBS.

The first era of KE technology stretched from the late ’70s to the mid ’80s. This period
was characterised by the development of new programming techniques. New systems were
described in terms of the representation techniques that they employed: rules, frames,
Horn clauses, semantic networks, etc. KBS development environments gave support at



the level of these representation techniques, and often aimed at integrating these different
representations (e.g ART, KEE, Knowledge Craft, see [Jaurent et al., 1986] for a compari-
son). Such programming techniques were often developed and widely used before a proper
formal understanding of them was available.

The move away from this first period was already heralded as early as 1980 by Alan Newell
in his “knowledge level” lecture [Newell, 1982], but should more properly be situated as
late as 1985 when Clancey published his “heuristic diagnosis” paper [Clancey, 1985]. In
this paper, Clancey analysed a number of systems at a higher level of abstraction than
simply their code. In particular, he identified a specific problem solving method which
underlay the behaviour of a number of systems, even though they were all coded in differ-
ent ways. Clancey called this method “heuristic classification” and described it in terms
of its essential inference steps and the types of knowledge manipulated by these inference
steps. Most importantly, this analysis was entirely independent of the particular way this
method could be programmed in any particular representation language. This type of
analysis triggered the development of a number of Knowledge Engineering methodologies.
The late ’80s saw a number of such methodologies which were all aimed at so called “knowl-
edge level” analysis of KBS tasks and domains. Generic Tasks [Chandrasekaran, 1986],
CommonKADS [Wielinga & Breuker, 1986, Schreiber et al., 1994], Methods-to-Tasks
[Eriksson et al., 1995] and Role-limiting methods [Marcus, 1988] are some of the promi-
nent examples of such methods.

These approaches all differ in the structure that they propose for analysing knowledge, the
degree of task-specificity, their link with executable code, and many other properties, but
all of them are based on the idea of constructing a “conceptual model” of a system which
describes the required knowledge and strategies at a sufficiently high level of abstraction,
independent of any particular implementation formalism.

As an illustration, we describe the structure of one particular such model, namely the Ex-
pertise Model from the CommonKADS methodology: A CommonKADS expertise model
consists of three categories of knowledge: domain, inference and task knowledge (for the
purposes of this paper we ignore the strategic knowledge). The first category contains
a description of the domain knowledge of a KBS application. This description should
be as much as possible independent from the role this knowledge plays in the reasoning
process. The inference knowledge of a CommonKADS expertise model describes the rea-
soning steps (or: inference actions) that can be performed using the domain knowledge,
as well as the way the domain knowledge is used in these inference steps. The inputs and
outputs of such inference steps are called “knowledge roles”. CommonKADS represents
the relations between the inference steps through their shared input/output roles, with a
dependency graph among inference steps and knowledge roles. Such a graph, called an
inference structure, specifies only data dependencies among the inferences, not the order in
which they should execute. This execution order among the inference steps is specified as
task knowledge. For this purpose, CommonKADS uses a simple procedural language with
procedural decomposition to execute inference steps and predicates to test the contents
of knowledge roles. These procedures can be combined using sequences, conditionals and
iterations. The CommonKADS architecture is illustrated in figure 1.
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Figure 1: structure of the KADS conceptual model

As shown in figure 1, the CommonKADS architecture consists of separate layers, with ex-
plicit connections between these layers. Primitive procedures at the task-layer are mapped
to inference steps at the inference layer, and knowledge-roles at the inference layer are
mapped to knowledge at the domain layer. These separations were introduced to max-
imise the possibilities for re-use. For example, a combination of task- and inference layer
that model a reasoning strategy for design could be reused and applied to different sets of
domain knowledge (e.g. designing a ship or designing an airplane). Vice versa, the same
domain knowledge (e.g knowledge about cars) could be used for different inference- and
task-layers (e.g. to either design a ship or to perform fault-analysis on ships).

In [Fensel & Groenboom, 1997], we presented an architecture for the specification of KBSs
based on different reusable elements. This architecture is a refinement of the Com-
monKADS model of expertise which has been widely used by the knowledge engineering
community. Our framework for describing a KBS consists of three reusable elements: a
task defines the problem that should be solved by the KBS, a problem-solving method
(PSM) defines the reasoning process of a KBS, and a domain model describes the domain
knowledge of the KBS (see figure 2). Each of these elements is described independently
to enable the reuse of task descriptions in different domains and with different PSMs,
the reuse of PSMs for different tasks and domains, and the reuse of domain knowledge



for different tasks and PSMs. In terms of the standard CommonKADS model, the op-
erational specification of the PSM_O corresponds to task- and inference-layer of figure
1, while the domain knowledge (DK_K) corresponds to the domain-layer of that figure.
Our component-oriented architecture supplements each of these elements with interface
definitions defining what a component require and what it provides. A fourth element of a
specification of a KBS is an adapter that is necessary to adjust the three other (reusable)
parts to each other and to the specific application problem. It is used to introduce as-
sumptions and to map the different terminologies.

A survey on the different elements and their relationships is provided in figure 2. This
architecture decomposes the entire system in smaller components of different types. In
addition, it defines some structuring principles for the different components providing en-
capsulation of internal aspects. For example, a problem-solving method has two interfaces
and an internal kernel. First, it provides some functionality for solving a task as specified
by its competence description. Second, it requires some functionality provided by domain
knowledge as specified by its requirements interface. Finally, it internally defines a rea-
soning process that achieves the specified competence by using the domain knowledge as
resource.

Our conceptual and formal model is a software architecture for a specific class of systems,
i.e. KBSs. Software architectures have found increasing interest by the software engi-
neering community in order to enhance the system development process and the level of
software reuse (cf. [Garlan & Perry, 1995, Shaw & Garlan, 1996]). A software architec-
ture decomposes a system into components and defines their relationships. This recent
trend in software engineering works on establishing a more abstract level for describing
software artifacts than was previously customary. The main concern of this new area is
the description of generic architectures that describe the essence of large and complex
software systems. Such architectures specify classes of application problems instead of
focusing on the small and generic components from which a system is built up.

Much of the past research in validation and verification (V&V) of KBSs is done in terms of
implementation languages, and mostly rule-based languages ([Preece et al., 1992]). Such
V&V systems check for such properties as loop-freeness of rule-bases, redundancy and
reachability of rules, consistency etc. However, it is well known from software engineering,
and it is argued in more recent work on V&V of KBS ([Vermesan & Wergeland, 1994b,
Vermesan & Wergeland, 1994a, vanHarmelen, 1998]), that advantages can be gained by
doing V&V in terms of a more abstract formal specification language, instead of an imple-
mentation language. If we are using an implementation-independent formal specification
language, we can (i) do V&V in a much earlier stage of the life-cycle: we can already verify
properties of the system in terms of its specification, before the expensive effort of making
an implementation, and (ii) we can separate the verification of functional, implementation-
independent properties from the verification of implementation-specific properties. Finally,
(iii) V&V is facilitated by the higher level of mathematical abstraction that can be em-
ployed in an implementation-independent specification language.
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Figure 2: The four component architecture for knowledge-based system
3 Iterative requirements engineering

In KBS (and in AI in general), we are typically dealing with intractable problems: infer-
ence, planning, diagnosis, scheduling, design and learning are all typical AI problems of
which even the simple varieties are intractable. (A standard text-book [Rich & Knight,
1991] even defines AT as the study of how to deal with intractable problems!). As a result,
no program exists that will compute correct solutions with an acceptable efficiency. Al-
though such problems are not exclusive to AI, and are also known in traditional Software
Engineering, they have received particular attention within AI.

In AT we exploit heuristics to solve such problems. The use of heuristics turns our programs
into methods that approximate the ideal algorithm: our heuristic methods will sometimes
fail to find a solution (incompleteness), they may erroneously claim to have found a solution
(unsoundness), or they may find approximations of solutions when exact solutions are
too expensive to compute. Besides the introduction of heuristics, KBS make such hard
problems practically feasible by placing additional requirements on the domain knowledge
and the possible inputs, or by removing some of the requirements on the desired outputs.

Such incompleteness and unsoundness clearly introduce a “gap” between what we want
from our system (the task-definition from figure 2), and what the system manages to
achieve (applying the problem-solving methods from figure 2 to the domain-model). The
purpose of the adapter in figure 2 is to characterise this gap, in terms of assumptions
and requirements which are not met, although ideally they should have been. Therefore



making strong assumptions on available domain knowledge and problem restrictions is
not a bug but a feature of KBSs that should enable efficient reasoning. For example in
[Fensel & Benjamins, 1998], we collected a large number of assumptions and related them
to the different subtasks of diagnostic problem solving. This assumption list can be used
to check given domain knowledge, to define goals for knowledge acquisition, to restrict the
size of the problem that must be solved by the KBS, or to select a problem-solving method
that fits to the given context as characterized by the established assumptions. However,
this was a kind of post-analysis based on 20 years of developing system for model-based
diagnosis. Therefore, we will sketch a more direct method (called inverse verification, cf.
[Fensel & Schonegge, 1998]) that allows us to find and to construct such assumptions.

In practice, it is not realistic to capture this gap between ideal task-definition and actual
competence of a system in one step. In Software Engineering, this process is known as
evolutionary requirements capture: much time in verification effort is spent not in proving
theorems that verify the behaviour of the system, but in failing to prove non-theorems
because of errors or missing assumptions in the system-specification.

4 Using KIV to develop knowledge-based systems

In the past sections we identified two main requirements for a formalization and verification
framework for KBSs:

e Formalization and verification must be possible at an architectural level (section
2). We cannot base our framework on commitments to a specific implementation
formalisms like production rules. Instead, we have to make use of a conceptual model
that structure our subspecifications and our verification tasks.

e The competence (i.e., functionality) of a KBS cannot be described independently of
assumptions that describe necessary properties of the provided domain knowledge
or the precise definition of the goals that should be achievable (section 3). In conse-
quence, a significant part of the effort in developing a KBS must be spent in more
precisely characterizing the assumptions under which proper and suitable problem
solving can be guaranteed.

Establishing a proper composition of a system requires to ensure the local correctness of
its components as well as the proper relationships between its components (i.e., global
correctness). Figure 2 provides our architecture that decomposes the entire system into
components of smaller grainsize. In consequence, two different types of proof obligations
can be distinguished. First, proof obligations that are internally for components ensuring
local correctness. These proofs can be reused together with the components. In the case
of the domain model we have to ensure that the meta knowledge actually follows from
the domain knowledge and the assumptions of the domain model. In the case of the task
definition we have to ensure that the task is solvable given its requirements. In the case of
the problem-solving methods we have to ensure a certain competence and the termination.
Second, there are proof obligations that must be established during composing a system out



of different components. These obligations ensure the global correctness of the composed
system. The architecture helps to distinguish these different types of proof obligations
and enables reuse as much as possible.

We discuss the specification and verification of the different elements of such an architec-
ture and sketch the process of detecting hidden assumptions via inverse verification. We
use the KIV system [Reif, 1995] for these activities. It is an advanced tool for the con-
struction of provably correct software. KIV was originally developed for the verification
of procedural programs but it serves well for verifying KBSs.

4.1 KIV

KIV supports the entire design process starting from formal specifications and ending
with verified code. It offers functional algebraic as well as state-based modeling. Modu-
lar software- and system designs can be specified, explored, validated, and verified with
respect to formal safety and security models. KIV can be used as a pure specification
environment with an integrated, user-friendly proof component. When it comes to im-
plementation, specification components can be realised using applicative programs (in a
Pascal-like syntax, and grouped together into modules). Proof obligations for implemen-
tation correctness are generated automatically, and can be discharged with KIV’s proof
component. KIV comes with a large library of reusable specifications, proved lemmas,
and verified implementations that can be included into new developments. KIV supports
a tight integration of proving and error detection- and correction. This is important
since most proof attempts are more likely to reveal errors in specifications, programs, and
lemmas than to prove their absence.

KIV supports the entire design process starting from formal specifications (algebraic full
first-order logic with loose semantics) and ending with verified code (Pascal-like proce-
dures grouped into modules). It has been successfully applied in case-studies up to a
size of several thousand lines of code and specification (see e.g. [Fuchf et al., 1995]). Its
specification language is based on abstract data types for the functional specification of
components and dynamic logic for the algorithmic specification. It provides an interac-
tive theorem prover integrated into a sophisticated tool environment supporting aspects
like the automatic generation of proof obligations, generation of counter examples, proof
management, proof reuse etc. Such a support is essential for making the verification of
complex specifications feasible.

KIV provides mechanisms for combining elementary specifications to more complex ones
(e.g. sum, enrichment, renaming, and actualization of parameterized specifications) which
are common to most algebraic specification languages, cf. [Wirsing, 1995].

In addition to (elementary) specifications, KIV provides modules to describe implemen-
tations in a Pascal-like style. A module consists of an export specification, an import
specification, and an implementation that defines a collection of procedures implementing
the operations of the export specification.

Finally, the KIV system offers well-developed proof engineering facilities: Proof obliga-



tions are generated automatically. Proof trees are visualized and can be manipulated with
the help of a graphical user interface. Even complicated proofs can be constructed with
the interactive theorem prover. A high degree of automation can be achieved by a number
of implemented heuristics. However, interaction is necessary for two reasons: In general,
complex proofs cannot be completely automated, and proving usually means finding errors
either in the specification or in the implementation. An elaborated correctness manage-
ment keeps track of lemma dependencies (and their modifications) and the automatic reuse
of proofs allows an incremental verification of corrected versions of programs and lemmas
(see [Reif & Stenzel, 1993]). Both aspects are essential to make verification feasible given
the fact that system development is a process of steady modification and revision.

Over the years, KIV was applied in a large number of substantial software case studies
and pilot applications in academia and industry. Application areas were e.g. avionics,
space systems, medicine, automotive electronics, system software, smartcards, and digital
signatures. Here are four examples:

Safe Command Transfer in a Space Craft.! In cooperation with the company Intecs
Sistemi, Pisa, that developed the software, part of the guidance and navigation control
(GNC) system of a space craft was treated formally, and reevaluated in KIV 3.0 at the
University of Ulm. The given safety requirements have been verified, and a prototypical
implementation has been proved correct. The major benefits of the formal verification
were the detection of an error in the informal specification, and the explicit (and correct)
specification of implicit assumptions.

Access Control. In this case study a generic access control model (based on [Abadi et al.,
1991]) is specified, implemented, and the implementation is proved correct. Furthermore,
it was formalized and proved that it is not possible for a user to increase his rights without
help from others. All specifications together contain about 1,100 lines of text, while the
efficient implementation has a size of 1,200 lines of text. All in all 837 theorems and
lemmas were proved. The overall time needed to complete the case study (including a
vast number of modifications, error corrections, and reuse of proofs) was 14 weeks. See
[FuchB et al., 1995].

Compiler Verification.? The case study is about correct compilation of PROLOG

into code for the Warren Abstract Machine (WAM). In [Borger & Rosenzweig, 1994], the
semantics of PROLOG is defined by a simple interpreter, which is refined in eleven steps
to an interpreter of WAM machine code. The formal specification has more than 4,000
lines of text. The correctness of all the steps can be shown independently. In the course
of verification several errors were revealed in the compiler assumptions as well as in the
interpreters.

A Booking System. 3 A booking system for a national radio network was a formal
redevelopment of the safety-critical kernel of an industrial project. The vast number of
possible operations makes the specification (and implementation) large: The specification

!Sponsored by BSI, the german agency for IT security, and the European Space Agency, as a part of
the VSE project, [Hutter et al., 1995].

2Part of the DFG-project “Integration of Automatic and Interactive Theorem Proving”.

3Part of the VSE project, [Hutter et al., 1995].
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contains 4,000 lines, and the implementation 7100 lines of text. The verification effort
amounts to ca. 2 person years.

4.2 Specifying the Architecture in KIV

The use of the KIV system for the verification of KBSs is quite attractive. KIV sup-
ports dynamic logic (cf. [Harel, 1984]) which has been proved useful in the specification of
KBSs (cf. KARL [Fensel, 1995], (ML)%[vanHarmelen & Balder, 1992], MLPM and MCL
[Fensel et al., 1998]). Dynamic logic has two main advantages (especially if compared to
first-order predicate logic). First, dynamic logic is quite expressive, e.g. we can formalize
and prove termination or equivalence of programs or generatedness of data types. Sec-
ond, in dynamic logic programs are explicitly represented as part of the formulas. Thus
(especially if compared to the verification condition generator approach) formulas and
proofs are more readable for people and provide more structural information which can
be employed by proof heuristics.

KIV allows structuring of specifications and modularisation of software systems. There-
fore, the conceptual model of our specification can be realized by the modular structure of
a specification in KIV. Figure 3 summarises the way in which the components from figure
2 are specified in KIV.

‘ Architectural component KIV structure ‘ Ex. ‘
Domain Knowledge — axiomatic theory in form of a
structured algebraic specification
Task — axiomatic specification fig. 4
PSM specification — abstract program and axiomatic specification | fig. 5
Adapter — abstract program and axiomatic specification

Figure 3: Mapping between architectural components and KIV structures

4.3 Formalizing the Components

In the following, we will sketch the specification of two components: a functional speci-
fication (we choose the definition of a task) and an operational specification that defines
the control of the reasoning process of the problem-solving method.

The description of a task consists of two parts (cf. figure 2): It specifies a goal that should
be achieved in order to solve a given problem. The second part of a task specification is
the definition of requirements on domain knowledge necessary to define the goal in a given
application domain. Both parts establish the definition of a problem that should be solved
by the KBS. Contrary to most approaches in software engineering this problem definition
is kept domain independent, which enables the reuse of generic problem definitions for
different applications.

The concept of a problem-solving method can be found in most current knowledge-
engineering frameworks (e.g. Generic Tasks [Chandrasekaran, 1986], CommonKADS

11



explanation = enrich abduction problem with
constants goal: hypotheses;
axioms
complete(goal)
parsimonious(goal)
end enrich

abduction problem = enrich hypotheses, data with
constants observables: data;
functions ezplain: hypotheses — data ;
predicates
complete: hypotheses,
parsimonious: hypotheses;
axioms
complete(H) < explain(H)=observables,
parsimonious(H) < — 3 H’. H'CH A explain(H) C explain(H’),
Jz. z € observables
end enrich

Figure 4: Specification of the abductive task

[Schreiber et al., 1994], Method-to-task approach [Eriksson et al, 1995]). A problem-
solving method defines the control over a number of primitive inference actions (see figure
2). The inference actions (i.e., the elementary state transitions) are defined functionally.
This combined specification style enables to specify explicitly as much control as required
and hid further control aspects in the declarative specifications of the elementary steps.
Providing an algorithmic solution for them has to be done during the design and imple-
mentation of the KBSs. During knowledge level modeling we want to be able to abstract
from it. The PSM we show in figure 5 is set-minimizer ([Fensel & Groenboom, 1997])
which minimizes sets by a one-step look-ahead search process.

[Akkermans et al., 1993] define the competence of a problem-solving method indepen-
dently from the specification of its operational reasoning behavior (i.e., a functional black-
box specification). Proving that a problem-solving method has some competence has the
clear advantage that the selection of a method for a given problem and the verification
whether a problem-solving method fulfills its task can be performed independent from
details of the internal reasoning behavior of the method. We will sketch some of these
proof activities in the next subsection.

4.4 Verifying Components
When introducing a problem-solving method into a library we have to prove two aspects

of the operational specification of the problem-solving method. We have to ensure the
termination of the procedure and we have to establish some proven competence (i.e.,

12



control = module

export competence

refinement
representation of operations

control implements output

import inferences
procedures hill-climbing(objects) : objects
variables output, current, new: objects;
implementation

control(var output)
begin

hill-climbing(input, output)
end

hill-climbing(current, var output)
begin
var new = select(current, generate(current))
if new=current
then output := current
else hill-climbing(new,output)
end

Figure 5: The operational specification of the problem-solving method set-minimiser

functionality) of the component. When reusing the problem-solving method this proof
need not to be repeated and can (implicitly) be reused.

The according proof obligations are automatically generated by KIV as formulas in dy-
namic logic (cf. [Harel, 1984]). These proof obligations ensure that the problem-solving
method terminates and that it terminates in a state that respects the axioms used to
characterize the competence of the problem-solving method.

The next step is to actually prove these obligations using KIV. For constructing proofs
KIV provides an integration of automated reasoning and interactive proof engineering.
The user constructs proofs interactively, but has only to give the key steps of the proof
(e.g. induction, case distinction) and all the numerous tedious steps (e.g. simplification)
are performed by the machine. Automation is achieved by rewriting and by heuristics
which can be chosen, combined and tailored by the proof engineer. If the chosen set of
heuristics get stuck in applying proof tactics the user has to select tactics on his own or
activate a different set of heuristics in order to continue the partial proof constructed so
far. Most of these user interactions can be performed by selecting alternatives provided
by a menu.

To give an impression of how to work with KIV, figure 6 is a screen dump of the KIV
system. The current proof window on the right shows the partial proof tree currently

13



under development. Each node represents a sequent (of a sequent calculus for dynamic
logic); the root contains the theorem to prove. In the messages window the KIV system
reports its ongoing activities. The KIV-Strategy window is the main window which shows
the sequent of the current goal i.e. an open premise (leaf) of the (partial) proof tree.
The user works either by selecting (clicking) one proof tactic (the list on the left) or by
selecting a command from the menu bar above. Proof tactics reduce the current goal
to subgoals and thereby make the proof tree grow. Commands include the selection of
heuristics, backtracking, pruning the proof tree, saving the proof, etc.

- Strategy

File Print View Lemma Tree Goal Control Strategy

iii-3-lem Unfinished goals: 1. Current goal: 1. Proof steps: 13.

all left
simplifier
pl simplifier

I | (kappa # hill-climbing#(select-ome-correct
i Ceurrent0, generate-successors(eurrent())

weak simplifier g Output0)> cutputd = os0,
switch formula left [E|¥ current, os, o .
(kappa # hill-climbing#(current; output)} sutput = os

weakening formulas
s‘mmnl.] tion Ao of os A correctlos o\ o) + false,
cut formla B[ o0 o€ 080, correct(es0 o\ o0,

insert lemma [[|select-one-correct(cnrrentd,

l:JISEl'lS]JeC_-lemma generate-successors{current0}) # current0
insert revrite lemma L

| ——————— |
T

»»> Displaying the goal.

Applying proc omega left on goal No. 1.
Stop »>> Displaying the goal.

Applying structural induction on goal No. 1.
>>> Got one additional goal. Unfinished goals: 2.
Messages simplifier: simplifier.
>»> Di ing the goal.

Figure 6: A screen dump of the KIV system

4.5 Component Connection: Adapter Specification

The description of an adapter maps the different terminologies of the task definition, the
problem-solving method, and the domain model. Usually an adapter introduces new re-
quirements or assumptions, because, in general most problems tackled with KBSs are
inherently complex and intractable (cf. [Fensel & Straatman, 1998]). A problem-solving
method can only solve such tasks with reasonable computational effort by introducing
assumptions that restrict the complexity of the problem or by strengthening the require-
ments on domain knowledge.

4.6 Component Connection: Inverse Verification

The question may arise of how to provide such assumptions that close the gap between
task definitions and problem-solving methods. In [Fensel & Schonegge, 1998], we present
the idea of inverse verification . We start a proof with KIV that the competence of the
problem-solving method implies the goal of the task. This proof usually cannot succeed
but its gaps provide hints for assumptions that are necessary for it. That is, we use the

14



technique of a mathematical proof to search for assumptions that are necessary to guar-
antee the relationship between the problem-solving method and the task. When applying
the interactive theorem prover to an impossible proof it returns a open goal that cannot
be proven but which would allow to finish the proof. Therefore such an open goal defines
a sufficient assumption. Further proof attempts have to be made to refine it to neces-
sary assumptions, i.e. to minimize them. An assumption that is minimal in the logical
sense (i.e., necessary) has the clear advantage that it maximizes the circumstances under
which it holds true. It does not require anything more than what is precisely necessary
to close the gap between the competence and the problem. In general, minimizing (i.e.,
weakening) assumptions can be achieved by analyzing their sufficiency proof with KIV
and eliminating aspects that are not necessary for continuing the proof. However, besides
logical minimality other aspects like cognitive minimality (effort in understanding an as-
sumption) or computational minimality (effort in proving an assumption) may influence
the choice of assumptions, too.

5 Conclusions

In this paper we have motivated the need for high quality standards in Knowledge Engi-
neering, given the requirements of safety-critical applications for KBSs. We have seen how
the last decade of research in Knowledge Engineering has resulted in a number of KBS
development methods which all aim at modelling knowledge and inference at a high level
of abstraction, and do so using structured but informal representations such as diagrams
or stylised natural language. Because of the informal nature of these high-level models,
validation and verification efforts for KBS has mostly concentrated on implementation-
oriented formalisms such as rules and frames.

More recent developments in Knowledge Engineering have made it possible to apply ver-
ification and validation techniques even at the high level of abstraction of the knowledge
models. This is achieved by providing formal counterparts of these high level models which
are at the same time free from implementation details yet amenable to formal analysis by
virtue of their mathematical structure.

The growing importance of libraries of reusable components in the construction of KBS has
increased the need for high quality software (besides the classical arguments concerning
safety-critical applications). The need for adjusting predefined components in order to
enable their reuse in varying environments has prompted refinements of the previously
available development methods. Again, these refined methods can be given a mathematical
basis.

In this paper we have described the current state in Knowledge Engineering with respect
to formal verifiability of software and software components. We have described one soft-
ware architecture that is particularly suitable or reusable KBS-components, and we have
described how a formal verification tool from Software Engineering can be employed for
the types of models used in Knowledge Engineering.

This use of formal tools to support quality assurance, reusability and adaptability of KBSs
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and components dates only from recent years, and the work described in this paper is still
in its laboratory stage. Many aspects of the use of KIV for formally specifying KBS can
be improved, and we mention a few below.

First, as discussed in section 3, KBS often do not completely fulfill their idealised specifica-
tions because of the inherent complexity of their task. In [tenTeije & vanHarmelen, 1998]
we try to capture the notion of the degree to which a system satisfied its specification, as
a replacement for the traditional notion of either meeting a specification in full or not at
all. Secondly, KBS are typically interactive systems, and their interaction with the user
(e.g. to obtain data or to provide explanations of the results) are as important for the
success of a system as the final conclusion itself. However the dynamic logic in KIV is
aimed at proving properties of the final output after termination of the program, and not
so much at properties that must hold during execution of the program. Other logics, such
as temporal logics might well be better suited for such verification tasks, and research
along these lines is already underway [Cornelissen et al., 1997]. Finally, the use of KIV to
specify KBS-architectures has until now only been applied to small scale examples. The
IBROW project* is aimed at describing a full-scale library of reusably KBS components
using the architecture described in section 2, and can provide the basis for an industrial
strength verification of KBS components.
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