
Interfaces in Computing, 2 (1 9 8 4) 81 - 91 SI

THE ANALYSIS OF MODULAR STRUCTURES WITH RESPECT TO
THEIR INTERCONNECT TOPOLOGY

P I E T E R H. H A R T E L and F R A N K A. VAN H A R M E L E N

Vahgroep Informatica, Universiteit van Amsterdam, Amsterdam (The Netherlands)

(Received O c t obe r 25, 1983)

Summary

A comparison of hardware and software interfaces shows some dif-
ferences between them; these differences may explain why it is harder to
develop modular software than modular hardware.

A mathematical model of a software interface interconnection topology
is developed to provide a better understanding of the mechanisms involved in
modularization.

1. Introduct ion

One of the most difficult problems in software engineering is how
to partition a complex task into a manageable number of subtasks such
that the job may be done by a number of people without sacrificing
conceptual integrity [1]. Once a description has been given of what the
subtask consists of (i.e. the interface of the module to the rest of the world
has been completely specified), the implementation and testing can be done
autonomously.

Both for hardware and for software development, techniques are
available to specify interfaces. For example, in hardware development,
formal specification methods (e.g. ISPS) are used to aid in the simulation of
the circuitry being designed. However, in general the development methods
available are informal and incomplete. The degree to which a design is truly
modular and hierarchical depends very much on the talent and experience of
the architect and the tools available. As long as the designer is present during
the lifetime of his product, the situation will be satisfactory because the
architect can always be asked. However, a more common situation is where a
product arrives which does not quite provide the required services [2] or,
even worse, which does not function at all because it was intended for a
different hardware and/or software environment. For the programmer given
the task of sorting out the problem, any information is welcome, and the
availability of the original design documents will be especially appreciated.

0 2 5 2 - 7 3 0 8 / 8 4 / $ 3 . 0 0 ~) Elsevier Sequo ia /P r in t ed in The Ne the r l ands

82

In this paper a method will be developed to extract some of this in-
formation automatically from a program text. This is done by representing
the modular structure of a program in a graph which is suited to automatic
manipulation.

2. Hardware interfaces

In hardware technology, interfaces may be described at various levels.
A typical chip has a number of pins to which voltages may be applied. As a
result, currents may be drawn from other pins to drive connected circuitry.
All voltages and currents are within certain ranges (or the circuit will blow
up) and have precise timing constraints. A data sheet either implicitly or
explicitly (e.g. for TTL circuitry) describes both the incoming and the
outgoing signals completely, albeit informally. Out of these components,
larger-scale modules which are typically on printed circuit boards are built.
The description of a module at the signal level is necessarily very similar to
that of its components. A module as used in computing equipment usually
interfaces to a common bus which transports signals between modules. With
each bus a protocol is defined to guarantee an orderly use of the transport
capacity. The description of an interface of a module involves the specifica-
tion of signal levels, timing constraints, bus protocols and a functional
description of which pin of the interface serves what purpose. Again both
incoming and outgoing signals are described. These properties of hardware
modules make it possible to build systems out of modules acquired from
different sources; from an economic point of view this is very attractive.

2.1. Interconnection topology
Hardware interfaces mostly deal with simple topological structures.

Many modules interface to the same bus. Some modules merely serve to
connect busses together. A typical interconnection topology would be as
in Fig. 1. The busses are drawn as horizontal lines, whereas the modules

. . . . " T - - I - - - 7 - - - 7

I I f I
I I I I
J J I I

I
I
f

Fig. 1. Typical hardware module interconnection topology.

. . . . j m ~

I
I
I

$3

connected to the busses are drawn as vertical lines. The simplicity of the
in terconnect ion topology facilitates modular hardware design and main-
tenance. Designing the interfaces themselves remains a difficult problem.

Part of the success of Digital Equipment Corporat ion's PDP-11 com-
puter family is due to its modular design around a flexible asynchronous
bus. Functionally equivalent (e.g. memory modules) but electrically very
different modules may be mixed freely and used simultaneously.

3. Software interfaces

In programming, modularizat ion through separate compilation is
possible since the advent of FORTRAN in the late 1950s. Only more re-
cently has the meaning of separate compilat ion changed to separate-but-not-
independent compilation [3]. The design of many modern programming
languages (e.g. ADA, Modula-2) reflects this change. These together with the
notions of strong typing and abstract data types are the most powerful tools
in current programming methodology, but are they really powerful?

The user of a module, be it a programmer or another module, should
not need to know the implementat ion details. These are therefore best
(physically) separated from the interface specification. Unfor tunate ly ,
practical techniques for the semantic specification of interfaces for most
non-trivial programming projects are current ly non-existent. Consequently
specifications are purely syntactical and the semantics are described (if at all)
in an informal way (e.g. packages in ADA, or modules in Modula-2). It is
neither practical nor possible for the user of a module to study its imple-
mentat ion. Until full semantics are included in interface specifications, other
mechanisms are required to maximize modular independence.

3.1. Interconnection topology
Software interfaces are part of complex structures. Such interfaces are

designed on an ad hoc basis and are f requent ly more geared to making the
task of the implementor easy than to making the module simple to use. A
program can be thought of as being made up of a number of modules
arranged in a certain hierarchy. The "main loop" of a program would be at
the top level of the hierarchy, whereas the machine-dependent modules
would be at the lowest level.

The in terconnect ion topology of a program can be represented as a
graph (Fig. 2)*. The vertices represent separate modules whereas the edges

*This configuration corresponds to a stand-alone real-time program which ran on a
microcomputer. The microcomputer was connected to a number of terminals on one side
and to a larger number of host computer ports on the other. The main purpose of the
.system was to allow for multiple interactive sessions to be in progress concurrently from a
single terminal.

84

Abstract ion [eve[Graph

.

Storage management ~ [? r a g e

Exception handler

Machine interface PDP-11

Fig. 2. Typical software module interconnection topology.

represent their interconnections. If a module a references a module b, the
direction of the corresponding edge in the graph will be from a to b. Strictly
speaking only three levels of abstraction can be distinguished: the top level
with the control program, the bot tom level with the PDP-11 module and the
intermediate level with all other modules. This is indicated by the broken
lines. Functionally, seven levels of abstraction can be distinguished as in-
dicated in the column on the left of Fig. 2.

An intriguing question is why a design is not strictly hierarchical. An
equivalent question would be why services are provided at a lower level of
abstraction and used directly at much higher levels rather than being "passed
on" through intermediate levels*.

*If efficiency is of limited concern, there may be no penalty for introducing inter-
mediate levels, but in particular in real-time applications this is not always true. In an
early version of this example program, interrupts from serial lines were intercepted by the
scheduler and dispatched to the appropriate driver. This introduced just enough overhead
to cause the program to lose interrupts at busy times. After the interrupt interception
facility (provided by the language-machine interface at the very lowest level of abstrac-
tion) was moved to the driver level, no interrupts were lost any more.

85

In order to f ind an answer to such quest ions , a m o re s tr ict formal ism
is needed to describe the graph, and a r ep resen ta t ion is needed tha t is sui ted
to au toma t i c manipu la t ion .

4. The model

Let V be the set of modu les of a sof tware sys tem, and n = I VI the
n u m b e r of modules . Let us def ine a re la t ion [R] on V * V by

x [R] y *==~ modu le x makes a d i rec t r e fe rence to m o d u l e y (1)

for all x, y in E. [R] can be r ep resen ted by its co r respond ing graph G =
(V, E). V is the set of vert ices o f G and E the set of edges as de f ined by

(x, y) i n V ~ = * x [R] y (2)

for all x, y in V. The graph i l lustrated in Fig. 2 cor responds exac t ly to these
def ini t ions .

In the fo l lowing the graph G is assumed to be co n n ec t ed . This is n o t a
l imi ta t ion since an u n c o n n e c t e d graph would represen t several separate
sof tware packages, and each package could be t r ea t ed separate ly .

Various in teres t ing proper t ies o f the m o d u la r s t ruc ture r ep resen ted by
G can be derived. Fo r this purpose , A is def ined as the incidence mat r ix of
G. A is a square ma t r ix of o rder n. Each ro w and each co lu m n are associated
with a modu le , one row and one co lu m n per modu le . The e lements of A are
de f ined by

A[i, j] = 1 if there is an edge f ro m ver tex i to ve r tex]
(modu le i re fe rences m o d u l e j) (3)

A [i , j] = 0 o therwise

A can be in t e rp re t ed as fol lows. Each 1 in row x o f A indicates a re fe rence
f r om modu le x to a n o t h e r modu le , and each 1 in co lu m n y indicates a
re fe rence f rom a n o t h e r m o d u l e to y (Fig. 3).

It is i m p o r t a n t to k n o w w h e th e r the graph G conta ins cycles or not .
F o r this purpose let us def ine A* as the transi t ive closure of A. Then

A* [i, j] = 1 if there is a pa th f ro m ver tex i to ver tex j
(modu le i d i rec t ly or indi rec t ly re ferences m o d u le]) (4)

A*[i ,]] = 0 o therwise

An example o f A* is given in Fig. 4. A* conta ins i n f o r m a t i o n concern ing
possible cycles in G:

G is cycle free ~==* for all i in 1, . . . , n: A[i , i] = 0 (5)

(all diagonal e lements o f A* are zero , i.e. the re is no pa th f ro m any m o d u l e
to itself).

86

Scheduler
Clock driver
Exceptions
In/Out service
PDP-11
Control program
Serial line driver
Storage
Terminal service

0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 1 1 1
1 1 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

corresponding to Fig. 2. Fig. 3. Incidence matrix

Scheduler
Clock driver
Exceptions
In/Out service
PDP-11
Control program
Serial line driver
Storage
Terminal service

~ . ~ ~ . ~ ~ ~

0 0 1 0 1 0 0 1 0
1 0 1 0 1 0 0 1 0
000010000
111010110
000000000
111110111
111010010
0 0 1 0 1 0 0 0 0
1 1 1 0 1 0 1 1 0

incidencematrix. Fig. 4. Transitive closure of the

The relation [R] in eqn. (1) implicitly defines a partial ordering on V.
A topological sort can now be applied to G in order to put the modules in a
sorted list. The sorting algorithm is as follows [4].

(I) Create an empty list.
(II) Look for all vertices that have no outgoing edges.
(III) Add these vertices (modules) to the sorted list.
(IV) Remove these vertices and their incoming edges from G, giving G'.
(V) Apply steps (II) - (V) from the algorithm to G'.
This algorithm defines a total ordering on the modules. A can now be

rewritten such that the rows and columns will appear according to this
ordering, giving the matrix As. As is an upper triangular matrix, with all the
diagonal elements zero. Figure 5 is an example of such a sorted matrix.

87

-5 c ~ ' - ' ~ ~ ~ ' ~

0 I-- -- oo ~ oo co o_
Control program 0 1 1 1 1 1 1 0 0
Terminal service 0 0 0 1 0 0 0 0 0
In/Outservice 0 0 0 1 0 0 0 0 0
Serial line driver 0 0 0 0 1 1 1 1 0
Clock driver 0 0 0 0 0 1 1 1 0

Scheduler 0 0 0 0 0 0 1 0 0
Storage 0 0 0 0 0 0 0 1 1
Exceptions 0 0 0 0 0 0 0 0 1
PDP-11 0 0 0 0 0 0 0 0 0

Fig. 5. Sorted incidence matrix corresponding to Fig. 2.

It is possible tha t cer ta in i tera t ions of the a lgor i thm yield more than
one candida te fo r the list. In this s i tua t ion the sor t ing a lgor i thm does n o t
un ique ly def ine the to ta l order ing o f the modules ; all the modules tha t are
f o u n d in step (II) o f a par t icu lar i t e ra t ion fo rm one group and can be p laced
in an a rb i t ra ry order . However , this does n o t a f fec t the uppe r t r iangular
f o rm of A~. All modules tha t be long to one group can be t h o u g h t of as
belonging to the same level in the h ie ra rchy def ined by G. For example in
Fig. 2 the te rminal service and i n / o u t service modu les belong to the same
group. To each m o d u l e x in a g roup we assign a n u m b e r [[xH, its abs t rac t ion
level. Groups tha t are higher in the h ie ra rchy (groups tha t are f o u n d in a
la ter i t e ra t ion o f the a lgor i thm) have higher abs t rac t ion levels.

A h ie ra rchy is s t r ict if, fo r all x, y in V

(x , y) is in E ~ IlxH - I l y l l = 1 (6)

(if one m o d u l e re ferences ano the r , its abs t rac t ion level mus t be one level
higher) . It is possible to ver i fy w h e t h e r G is str ict or no t . Le t us def ine the
co r respond ing mat r ix A1. Fo r each abs t rac t ion level, Al has one row and one
co lumn , whereas

A ~ [i , j] = 1

A ~ [i , j] = o

if a m o d u l e o f abs t rac t ion level i re ferences a m o d u le of
abs t rac t ion level j

o therwise

(7)

Figure 6 gives an example o f this.
G is s t r ict if A1 on ly has e lements 1 on its u p p e r secondary diagonal and

n o w h e r e else. With A 1 it is possible to measure the degree to which G is
str ict . The n u m b e r o f e lements 1 n o t on the upper secondary diagonal
represents the a m o u n t o f non-s t r ic t re ferences in G, and the dis tance o f a 1
to the diagonal is the n u m b e r o f levels t ha t such a re fe rence crosses. For

88

Control program
In/Out & Terminal
Serial line driver
Clock driver
Scheduler
Storage
Exceptions

E . E ~

0 1 1 1 1 1 0 0

0 0 1 0 0 0 0 0
0 0 0 1 1 1 1 0
0 0 0 0 1 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1
O 0 0 0 0 0 O 1

0 0 0 0 PDP-11 0 0 0 0
Fig. 6. Abstraction level matrix.

example the r e fe rence in Fig. 2 f r o m the con t ro l p rogram to the scheduler
co r re sponds to e l emen t [1, 5] in Fig. 6.

A n o t h e r in teres t ing p r o p e r t y o f a graph G is w h e th e r it is a t ree or no t .
G is a t ree if each ver tex e x c e p t one (the ro o t) has exac t ly one connec t ing
edge. This means tha t each m o d u l e is on ly r e fe renced by one o the r modu le .
As a consequence each row of the co r respond ing ma t r ix As, e x c e p t the first
row, conta ins exac t ly one 1.

There is a p r o b l e m if G conta ins cycles. In such a s i tua t ion the ab-
s t rac t ion levels o f modu les in a cycle are n o t well def ined. Le t us consider
the example in Fig. 7. This example implies the impossible case where
Ilxll > Ilyl[> Ilzll > Ilxll. One so lu t ion is to assign the same abs t rac t ion level
to all modu les in a cycle , a l though this somet imes leads to undes i red con-
clusions a b o u t the strictness o f a h ie ra rchy . This is i l lustrated in Fig. 8. In

X
O / \

yO, - O z

Fig. 7. Abstraction levels in a cycle.

(c l l (l l d l l = l) (11c11=1) ~ (11c111=1)
(a) (b)

Fig. 8. Two configurations of abstraction levels.

89

Fig. 8, neither configuration is strict. However, if in Fig. 8(b) the modules
b, c and d were considered as one, then the resulting hierarchy would be
strict.

5. Implementation

The model developed in Section 4 has been applied to a number of
"real wor ld" software systems. It has proved to provide interesting and
useful information.

The type of information to be processed may be extracted auto-
matically f rom program modules writ ten in languages such as ADA and
Modula-2. It is sufficient to parse the source t ex t of the modules for refer-
ence informat ion (i.e. USE and IMPORT clauses). Three Modula-2 systems
were readily available in source form to be processed according to the model.

The actual implementat ion of the algorithms described in Section 4
consists of a program which scans source modules to discover which modules
are referenced directly. This informat ion is fed to a topological sort program
and converted into the desired matr ix representation, using Unix [5] utilities
(sed, awk, tsort and sort) (Unix is a t rademark of Bell Laboratories).

5.1. Constructing the incidence matrix
During the construct ion phase of the incidence matrix, modules may be

discovered to which references are found but which themselves are not
found. This should be interpreted as an early warning to the programmer
that at some stage either the missing modules will have to be coded or the
originator of the software system will have to be asked for the missing items.
Without this warning, most of the programming and adaptat ion effor t would
have been completed before it was discovered that one or more modules
were missing (e.g. during system generation or linkage). Such omissions
manifest themselves as missing rows in the incidence matrix. The three
software systems processed had one missing module out of a total of 300.

The matrix may or may no t be square, because there may be columns
missing as well; this is what would happen if a module makes references to
other modules but is not referenced by any module itself. Let us consider for
example the module containing the main loop of a program. It will no t be
referenced by other modules (at least no t explicitly). The case where more
than one module is no t referenced is more intricate. This might indicate the
presence of obsolete modules, modules included for test purposes or modules
that are present in different versions of the system (for instance using
condit ional compilat ion).

In order to make the matr ix square, either an empty column will have
to be in t roduced in the matr ix or the row must be deleted.

5.2. Interpreting the results
Cycles in the graph of a software system cause problems. All modules in

a cycle have to be t reated simultaneously during design, implementat ion,

90

testing and maintenance. Therefore their presence spoils the modular struc-
ture of a software system. The computat ion of the A* matrices correspond-
ing to the three software packages unveiled the presence of some cycles, but
these were all too small (at most three modules) to disturb the hierarchy in a
significant way.

The A* matrix shows which modules are directly or indirectly depen-
dent on other modules. This information can be used to select a testing
strategy. All modules that reference a modified module will have to be
retested. The order in which testing takes place is determined by the abstrac-
tion level of the modules. The example in Fig. 4 shows the unfortunate case
where any modification would have to be followed by a test of almost all
modules at higher levels of abstraction.

In practice, most software packages are not strictly hierarchical. This
impairs the portabili ty and maintainability of software packages.

6. Conclusions

The aspects of the differences between hardware and software design
that concern the interconnect topology of a system of modules were dis-
cussed. A model was developed to provide a basis for the evaluation of
modular software. The viability of the model was tested by applying it to a
small set of software systems. Although many useful facts about these
systems were derived, some questions remain.

The usefulness of the model could be improved if more information
about the actual interfaces could be included in the model. Connections
between modules could be weighted, depending on the degree to which one
module relies on the other [6].

In a large set of modules, subsets may exist which together provide a
service to the remaining modules. A mechanism to discover such subsets
would be useful for the evaluation and maintenance of software systems.

Acknowledgments

We would like to thank L. O. Hertzberger and P. Klint for their many
helpful comments.

References

1 F.P. Brooks, Jr., The Mythical Man-month, Essays on Software Engineering, Addison-
Wesley, Reading, MA, 1975.

2 P. H. Hartel, Comparing Pascal and Modula-2 as systems programming languages. In
J. Bormann (ed.), Proe. International Federation for Information Processing TC2
Working Conf. on Programming Languages and System Design, North-Holland,
Amsterdam, 1983.

91

3 N. Wirth, Programming in Modula-2, Springer , Berlin, 1982.
4 D. E. K n u t h , The Ar t o f Computer Programming, Vol. 1, Addison-Wesley, Reading,

MA, 1967.
5 D. M. Ri tchie , The UNIX t ime-shar ing sys tem, Commun. ACM, 17 (7) (1 9 7 8) 365 -

375.
6 F. M. Haney, Module c o n n e c t i o n analysis -- a too l for schedu l ing so f tware debugging

activi t ies, Proc. 1972 Fall Joint Computer Conf., Vol. 41, Part 1, Afips Press, Mont-
vale, NJ, 1972 , pp. 173 - 179.

