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Summary 

A comparison of hardware and software interfaces shows some dif- 
ferences between them; these differences may explain why it is harder to 
develop modular software than modular hardware. 

A mathematical model of a software interface interconnection topology 
is developed to provide a better understanding of the mechanisms involved in 
modularization. 

1. Introduct ion 

One of the most difficult problems in software engineering is how 
to partition a complex task into a manageable number of subtasks such 
that  the job may be done by a number of people without  sacrificing 
conceptual integrity [1]. Once a description has been given of what the 
subtask consists of (i.e. the interface of the module to the rest of the world 
has been completely specified), the implementation and testing can be done 
autonomously.  

Both for hardware and for software development, techniques are 
available to specify interfaces. For example, in hardware development, 
formal specification methods (e.g. ISPS) are used to aid in the simulation of 
the circuitry being designed. However, in general the development methods 
available are informal and incomplete. The degree to which a design is truly 
modular and hierarchical depends very much on the talent and experience of 
the architect and the tools available. As long as the designer is present during 
the lifetime of his product,  the situation will be satisfactory because the 
architect can always be asked. However, a more common situation is where a 
product  arrives which does not  quite provide the required services [2] or, 
even worse, which does not  function at all because it was intended for a 
different hardware and/or software environment. For the programmer given 
the task of sorting out  the problem, any information is welcome, and the 
availability of the original design documents will be especially appreciated. 
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In this paper a method will be developed to extract some of this in- 
formation automatically from a program text.  This is done by representing 
the modular structure of  a program in a graph which is suited to automatic 
manipulation. 

2. Hardware interfaces 

In hardware technology, interfaces may be described at various levels. 
A typical chip has a number of pins to which voltages may be applied. As a 
result, currents may be drawn from other pins to drive connected circuitry. 
All voltages and currents are within certain ranges (or the circuit will blow 
up) and have precise timing constraints. A data sheet either implicitly or 
explicitly (e.g. for TTL circuitry) describes both the incoming and the 
outgoing signals completely, albeit informally. Out of these components,  
larger-scale modules which are typically on printed circuit boards are built. 
The description of  a module at the signal level is necessarily very similar to 
that  of  its components.  A module as used in computing equipment usually 
interfaces to a common bus which transports signals between modules. With 
each bus a protocol is defined to guarantee an orderly use of the transport 
capacity. The description of  an interface of a module involves the specifica- 
tion of signal levels, timing constraints, bus protocols and a functional 
description of which pin of  the interface serves what purpose. Again both 
incoming and outgoing signals are described. These properties of  hardware 
modules make it possible to build systems out  of modules acquired from 
different sources; from an economic point  of view this is very attractive. 

2.1. Interconnection topology 
Hardware interfaces mostly deal with simple topological structures. 

Many modules interface to the same bus. Some modules merely serve to 
connect  busses together. A typical interconnection topology would be as 
in Fig. 1. The busses are drawn as horizontal lines, whereas the modules 
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Fig. 1. Typical hardware module interconnection topology. 
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connected  to the busses are drawn as vertical lines. The simplicity of the 
in terconnect ion topology facilitates modular  hardware design and main- 
tenance. Designing the interfaces themselves remains a difficult problem. 

Part of the success of Digital Equipment  Corporat ion's  PDP-11 com- 
puter family is due to its modular  design around a flexible asynchronous 
bus. Functionally equivalent (e.g. memory  modules) but  electrically very 
different  modules may be mixed freely and used simultaneously. 

3. Software interfaces 

In programming, modularizat ion through separate compilation is 
possible since the advent of  FORTRAN in the late 1950s. Only more re- 
cently has the meaning of  separate compilat ion changed to separate-but-not- 
independent  compilation [3].  The design of many modern programming 
languages (e.g. ADA, Modula-2) reflects this change. These together  with the 
notions of  strong typing and abstract data types are the most  powerful  tools 
in current  programming methodology,  but  are they really powerful?  

The user of a module,  be it a programmer or another  module,  should 
not  need to know the implementat ion details. These are therefore  best 
(physically) separated from the interface specification. Unfor tunate ly ,  
practical techniques for the semantic specification of  interfaces for most 
non-trivial programming projects are current ly non-existent.  Consequently 
specifications are purely syntactical and the semantics are described (if at all) 
in an informal way (e.g. packages in ADA, or modules in Modula-2). It is 
neither practical nor  possible for  the user of a module to study its imple- 
mentat ion.  Until full semantics are included in interface specifications, other  
mechanisms are required to maximize modular  independence.  

3.1. Interconnection topology 
Software interfaces are part of  complex structures. Such interfaces are 

designed on an ad hoc basis and are f requent ly  more geared to making the 
task of  the implementor  easy than to making the module simple to use. A 
program can be thought  of as being made up of a number  of  modules 
arranged in a certain hierarchy. The "main loop"  of  a program would be at 
the top level of  the hierarchy, whereas the machine-dependent  modules 
would be at the lowest level. 

The in terconnect ion topology of a program can be represented as a 
graph (Fig. 2)*. The vertices represent separate modules whereas the edges 

*This configuration corresponds to a stand-alone real-time program which ran on a 
microcomputer. The microcomputer was connected to a number of terminals on one side 
and to a larger number of host computer ports on the other. The main purpose of the 
.system was to allow for multiple interactive sessions to be in progress concurrently from a 
single terminal. 
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Fig. 2. Typical software module interconnection topology. 

represent their interconnections. If a module a references a module b, the 
direction of the corresponding edge in the graph will be from a to b. Strictly 
speaking only three levels of  abstraction can be distinguished: the top level 
with the control program, the bot tom level with the PDP-11 module and the 
intermediate level with all other modules. This is indicated by the broken 
lines. Functionally,  seven levels of abstraction can be distinguished as in- 
dicated in the column on the left of Fig. 2. 

An intriguing question is why a design is not  strictly hierarchical. An 
equivalent question would be why services are provided at a lower level of 
abstraction and used directly at much higher levels rather than being "passed 
on"  through intermediate levels*. 

*If efficiency is of limited concern, there may be no penalty for introducing inter- 
mediate levels, but in particular in real-time applications this is not always true. In an 
early version of this example program, interrupts from serial lines were intercepted by the 
scheduler and dispatched to the appropriate driver. This introduced just enough overhead 
to cause the program to lose interrupts at busy times. After the interrupt interception 
facility (provided by the language-machine interface at the very lowest level of abstrac- 
tion) was moved to the driver level, no interrupts were lost any more. 
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In order  to  f ind an answer  to  such quest ions ,  a m o re  s tr ict  formal ism 
is needed  to  describe the  graph,  and  a r ep resen ta t ion  is needed  tha t  is sui ted 
to  au toma t i c  manipu la t ion .  

4. The  model 

Let  V be the  set of  modu les  of  a sof tware  sys tem,  and n = I VI the  
n u m b e r  of  modules .  Let  us def ine  a re la t ion  [R] on V * V  by 

x [ R ] y  *==~ modu le  x makes  a d i rec t  r e fe rence  to  m o d u l e  y (1) 

for  all x,  y in E.  [R]  can be r ep resen ted  by  its co r respond ing  graph G = 
(V, E).  V is the  set of  vert ices o f  G and E the  set of  edges as de f ined  by  

(x, y ) i n  V ~ = * x [ R ] y  (2) 

for  all x, y in V. The  graph i l lustrated in Fig. 2 cor responds  exac t ly  to  these 
def ini t ions .  

In the  fo l lowing the  graph G is assumed to  be co n n ec t ed .  This is n o t  a 
l imi ta t ion  since an u n c o n n e c t e d  graph would  represen t  several separate  
sof tware  packages,  and each package could  be t r ea t ed  separate ly .  

Various in teres t ing proper t ies  o f  the  m o d u la r  s t ruc ture  r ep resen ted  by  
G can be derived.  Fo r  this purpose ,  A is def ined  as the  incidence  mat r ix  of  
G. A is a square ma t r ix  of  o rder  n. Each ro w  and each co lu m n  are associated 
with a modu le ,  one  row  and one  co lu m n  per  modu le .  The  e lements  of  A are 
de f ined  by  

A[i, j ]  = 1 if there  is an edge f ro m  ver tex  i to  ve r tex  ] 
(modu le  i re fe rences  m o d u l e  j)  (3) 

A [ i , j ]  = 0 o therwise  

A can be in t e rp re t ed  as fol lows.  Each 1 in row x o f  A indicates a re fe rence  
f r om modu le  x to  a n o t h e r  modu le ,  and each 1 in co lu m n  y indicates a 
re fe rence  f rom a n o t h e r  m o d u l e  to  y (Fig. 3). 

It  is i m p o r t a n t  to  k n o w  w h e th e r  the  graph G conta ins  cycles or not .  
F o r  this purpose  let  us def ine  A* as the  transi t ive closure of  A. Then  

A* [i, j ]  = 1 if there  is a pa th  f ro m  ver tex  i to  ver tex  j 
(modu le  i d i rec t ly  or  indi rec t ly  re ferences  m o d u le  ]) (4) 

A*[ i , ] ]  = 0 o therwise  

An example  o f  A* is given in Fig. 4. A* conta ins  i n f o r m a t i o n  concern ing  
possible cycles  in G: 

G is cycle  free ~==* for  all i in 1, . . . ,  n: A[i ,  i] = 0 (5) 

(all diagonal  e lements  o f  A* are zero ,  i.e. the re  is no  pa th  f ro m  any  m o d u l e  
to  itself).  
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Scheduler 
Clock driver 
Exceptions 
In/Out service 
PDP-11 
Control program 
Serial line driver 
Storage 
Terminal service 

0 0 0 0 0 0 0 1 0  
1 0 1 0 0 0 0 1 0  
0 0 0 0 1 0 0 0 0  
0 0 0 0 0 0 1 0 0  
0 0 0 0 0 0 0 0 0  
1 1 0 1 0 0 1 1 1  
1 1 1 0 0 0 0 1 0  
0 0 1 0 1 0 0 0 0  
0 0 0 0 0 0 1 0 0  

corresponding to Fig. 2. Fig. 3. Incidence matrix 

Scheduler 
Clock driver 
Exceptions 
In/Out service 
PDP-11 
Control program 
Serial line driver 
Storage 
Terminal service 

~ . ~  ~ . ~  ~ ~ 

0 0 1 0 1 0 0 1 0  
1 0 1 0 1 0 0 1 0  
000010000 
111010110 
000000000 
111110111 
111010010 
0 0 1 0 1 0 0 0 0  
1 1 1 0 1 0 1 1 0  

incidencematrix. Fig. 4. Transitive closure of the 

The relation [R] in eqn. (1) implicitly defines a partial ordering on V. 
A topological sort can now be applied to G in order to put  the modules in a 
sorted list. The sorting algorithm is as follows [4]. 

(I) Create an empty list. 
(II) Look for all vertices that  have no outgoing edges. 
(III) Add these vertices (modules) to the sorted list. 
(IV) Remove these vertices and their incoming edges from G, giving G'. 
(V) Apply steps (II) - (V) from the algorithm to G'. 
This algorithm defines a total  ordering on the modules. A can now be 

rewritten such that  the rows and columns will appear according to this 
ordering, giving the matrix As. As is an upper triangular matrix, with all the 
diagonal elements zero. Figure 5 is an example of such a sorted matrix. 
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-5 c ~ ' - ' ~  ~ ~ ' ~  

0 I-- -- oo ~ oo co o_ 
Control program 0 1 1 1 1 1 1 0 0 
Terminal service 0 0 0 1 0 0 0 0 0 
In/Outservice 0 0 0 1 0 0 0 0 0 
Serial line driver 0 0 0 0 1 1 1 1 0 
Clock driver 0 0 0 0 0 1 1 1 0 

Scheduler 0 0 0 0 0 0 1 0 0 
Storage 0 0 0 0 0 0 0 1 1 
Exceptions 0 0 0 0 0 0 0 0 1 
PDP-11 0 0 0 0 0 0 0 0 0 

Fig. 5. Sorted incidence matrix corresponding to Fig. 2. 

It  is possible tha t  cer ta in  i tera t ions  of  the  a lgor i thm yield more  than  
one  candida te  fo r  the  list. In this s i tua t ion  the  sor t ing a lgor i thm does n o t  
un ique ly  def ine  the  to ta l  order ing  o f  the  modules ;  all the  modules  tha t  are 
f o u n d  in step (II) o f  a par t icu lar  i t e ra t ion  fo rm one group and can be p laced 
in an a rb i t ra ry  order .  However ,  this does  n o t  a f fec t  the  uppe r  t r iangular  
f o rm  of  A~. All modules  tha t  be long  to  one  group can be t h o u g h t  of  as 
belonging to  the  same level in the  h ie ra rchy  def ined  by  G. For  example  in 
Fig. 2 the  te rminal  service and i n / o u t  service modu les  belong to  the  same 
group.  To each m o d u l e  x in a g roup  we assign a n u m b e r  [[xH, its abs t rac t ion  
level. Groups  tha t  are higher  in the  h ie ra rchy  (groups tha t  are f o u n d  in a 
la ter  i t e ra t ion  o f  the  a lgor i thm)  have higher  abs t rac t ion  levels. 

A h ie ra rchy  is s t r ict  if, fo r  all x,  y in V 

( x , y )  is in E ~ IlxH - I l y l l  = 1 (6) 

(if one  m o d u l e  re ferences  ano the r ,  its abs t rac t ion  level mus t  be one  level 
higher) .  It  is possible to  ver i fy  w h e t h e r  G is str ict  or  no t .  Le t  us def ine  the  
co r respond ing  mat r ix  A1. Fo r  each abs t rac t ion  level, Al has one  row and one  
co lumn ,  whereas 

A ~ [ i , j ]  = 1 

A ~ [ i , j ]  = o 

if a m o d u l e  o f  abs t rac t ion  level i re ferences  a m o d u le  of  
abs t rac t ion  level j 

o therwise  

(7) 

Figure 6 gives an example  o f  this. 
G is s t r ict  if A1 on ly  has e lements  1 on  its u p p e r  secondary  diagonal  and 

n o w h e r e  else. With A 1 it  is possible to  measure  the degree to  which G is 
str ict .  The  n u m b e r  o f  e lements  1 n o t  on the upper  secondary  diagonal  
represents  the  a m o u n t  o f  non-s t r ic t  re ferences  in G, and the  dis tance o f  a 1 
to  the  diagonal  is the  n u m b e r  o f  levels t ha t  such a re fe rence  crosses. For  
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Control program 
In/Out & Terminal 
Serial line driver 
Clock driver 
Scheduler 
Storage 
Exceptions 

E . E ~  

0 1 1 1 1 1 0 0  

0 0 1 0 0 0 0 0  
0 0 0 1 1 1 1 0  
0 0 0 0 1 1 1 0  
0 0 0 0 0 1 0 0  
0 0 0 0 0 0 1 1  
O 0 0 0 0 0 O 1  

0 0 0 0  PDP-11 0 0 0 0 
Fig. 6. Abstraction level matrix. 

example  the  r e fe rence  in Fig. 2 f r o m  the  con t ro l  p rogram to  the  scheduler  
co r re sponds  to  e l emen t  [1,  5] in Fig. 6. 

A n o t h e r  in teres t ing  p r o p e r t y  o f  a graph G is w h e th e r  it is a t ree  or  no t .  
G is a t ree  if each ver tex  e x c e p t  one  ( the ro o t )  has exac t ly  one  connec t ing  
edge.  This means  tha t  each m o d u l e  is on ly  r e fe renced  by  one  o the r  modu le .  
As a consequence  each row  of  the  co r respond ing  ma t r ix  As, e x c e p t  the  first 
row,  conta ins  exac t ly  one  1. 

There  is a p r o b l e m  if G conta ins  cycles.  In such a s i tua t ion the  ab- 
s t rac t ion  levels o f  modu les  in a cycle  are n o t  well def ined.  Le t  us consider  
the  example  in Fig. 7. This example  implies the  impossible case where  
Ilxll > Ilyl[ > Ilzll > Ilxll. One so lu t ion  is to  assign the  same abs t rac t ion  level 
to  all modu les  in a cycle ,  a l though this somet imes  leads to  undes i red  con-  
clusions a b o u t  the  strictness o f  a h ie ra rchy .  This is i l lustrated in Fig. 8. In 

X 
O / \  

yO,  - O z  

Fig. 7. Abstraction levels in a cycle. 

( c l l  ( l l d l l = l )  (11c11=1) ~ (11c111=1) 
(a) (b) 

Fig. 8. Two configurations of abstraction levels. 
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Fig. 8, neither configuration is strict. However, if in Fig. 8(b) the modules 
b, c and d were considered as one, then the resulting hierarchy would be 
strict. 

5. Implementation 

The model developed in Section 4 has been applied to a number  of 
"real wor ld"  software systems. It has proved to provide interesting and 
useful information.  

The type  of information to be processed may be extracted auto- 
matically f rom program modules writ ten in languages such as ADA and 
Modula-2. It is sufficient to parse the source t ex t  of  the modules for refer- 
ence informat ion (i.e. USE and IMPORT clauses). Three Modula-2 systems 
were readily available in source form to be processed according to the model.  

The actual implementat ion of  the algorithms described in Section 4 
consists of  a program which scans source modules to discover which modules 
are referenced directly. This informat ion is fed to a topological sort program 
and converted into the desired matr ix representation,  using Unix [5] utilities 
(sed, awk, tsort  and sort) (Unix is a t rademark of Bell Laboratories).  

5.1. Constructing the incidence matrix 
During the construct ion phase of  the incidence matrix,  modules may be 

discovered to which references are found but  which themselves are not  
found.  This should be interpreted as an early warning to the programmer 
that  at some stage either the missing modules will have to be coded or the 
originator of  the software system will have to  be asked for the missing items. 
Without this warning, most  of  the programming and adaptat ion effor t  would 
have been completed  before it was discovered that  one or more modules 
were missing (e.g. during system generation or linkage). Such omissions 
manifest themselves as missing rows in the incidence matrix.  The three 
software systems processed had one missing module out  of  a total of 300. 

The matrix may or may no t  be square, because there may be columns 
missing as well; this is what  would happen if a module makes references to 
other  modules but  is not  referenced by any module itself. Let  us consider for  
example the module  containing the main loop of  a program. It will no t  be 
referenced by other  modules (at least no t  explicitly).  The case where more 
than one module is no t  referenced is more intricate. This might indicate the 
presence of obsolete modules, modules included for test purposes or modules 
that  are present in different  versions of  the system (for instance using 
condit ional compilat ion).  

In order  to make the matr ix square, either an empty  column will have 
to be in t roduced in the matr ix or the row must  be deleted. 

5.2. Interpreting the results 
Cycles in the graph of  a software system cause problems. All modules in 

a cycle have to be t reated simultaneously during design, implementat ion,  
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testing and maintenance. Therefore their presence spoils the modular struc- 
ture of  a software system. The computat ion of  the A* matrices correspond- 
ing to the three software packages unveiled the presence of some cycles, but 
these were all too small (at most three modules) to disturb the hierarchy in a 
significant way. 

The A* matrix shows which modules are directly or indirectly depen- 
dent on other modules. This information can be used to select a testing 
strategy. All modules that  reference a modified module will have to be 
retested. The order in which testing takes place is determined by the abstrac- 
tion level of the modules. The example in Fig. 4 shows the unfortunate  case 
where any modification would have to be followed by a test of almost all 
modules at higher levels of  abstraction. 

In practice, most software packages are not  strictly hierarchical. This 
impairs the portabili ty and maintainability of  software packages. 

6. Conclusions 

The aspects of the differences between hardware and software design 
that  concern the interconnect topology of  a system of  modules were dis- 
cussed. A model was developed to provide a basis for the evaluation of 
modular software. The viability of  the model was tested by applying it to a 
small set of software systems. Although many useful facts about these 
systems were derived, some questions remain. 

The usefulness of the model could be improved if more information 
about  the actual interfaces could be included in the model. Connections 
between modules could be weighted, depending on the degree to which one 
module relies on the other [6]. 

In a large set of  modules, subsets may exist which together provide a 
service to the remaining modules. A mechanism to discover such subsets 
would be useful for the evaluation and maintenance of software systems. 
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