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Abstract

The most widely accepted models of diagnos-
tic reasoning are all phrased in terms of the
logical consequence relations. In work in re-
cent years, Schaerf and Cadoli have proposed
efficient approximations of the classical con-
sequence relation. The central idea of this
paper is to parameterise the notion of diagno-
sis over different approximations of the con-
sequence relation. This yields a number of
different approximations of classical notions
of diagnosis. We derive results about the re-
lation between approximate and classical no-
tions of diagnosis. Our results are attractive
for a number of reasons. We obtain more
flexible notions of diagnosis, which can be
adjusted to particular situations. Further-
more, we obtain efficient anytime algorithms
for computing both approximate and classi-
cal diagnoses.

1 INTRODUCTION

The motivations of this paper come from two areas,
namely from the theory of diagnosis and from recent
work on approximate entailment. We will discuss each
of these in turn.

Diagnosis. The current theories of diagnostic reason-
ing give a strict definition of the functionality of diag-
nosis in terms of the classical consequence relation.
The current literature gives little or no indication of
what to do when the results of diagnostic reasoning do
not satisfy the goal of the computation (e.g. when no
diagnosis is obtained, or too many, etc.). We propose a
number of approximate notions of diagnoses that may
be usefully exploited in such cases.

Even in cases where current methods compute good
solutions, we may be interested in solutions which are
not exact (too large, too few, etc) but cheaper to com-
pute. An advantage of the method we use is that ap-
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proximate diagnoses can be computed more efficiently
than classical diagnoses. In fact, an accumulation of
ever better approximate diagnoses is no more expen-
sive to compute than the most precise diagnosis of this
series. This can be exploited by iteratively computing
ever better approximations. This iteration can stop at
a point when either a sufficiently suitable diagnosis has
been obtained or when no time for further computation
is available, yielding attractive any-time interruptible
algorithms.

Approximate entailment. The proposal for ap-
proximate deduction from Schaerf and Cadoli (1995)
includes a parameter S (a set of predicate letters)
which determines both the accuracy and the cost of
the approximation. The correct choice of this set S
is crucial for the usefulness of the approximation. In
the worst case, when choosing S incorrectly, approxi-
mate deduction may end up as expensive as classical
deduction. In their paper, Schaerf and Cadoli admit
that they have very few general strategies for choosing
S appropriately. In general of course, this choice must
be heuristic, since a perfect choice for S would defeat
known complexity boundaries. In this paper, we ex-
ploit properties of diagnostic reasoning to propose a
number of informed strategies for choosing this crucial
parameter.

The structure of this paper is as follows: section 2
summarises the results on approximate deduction from
Schaerf and Cadoli. Section 3 repeats some basic def-
initions on diagnosis and introduces some notation.
Section 4 constitutes the main body of this paper. We
derive theorems that characterise the influence of ap-
proximate entailment relations on the diagnoses that
can be obtained. Section 5 discusses ways in which the
results from this paper can be put to practical use and
section 6 concludes.



2 SUMMARISING APPROXIMATE
ENTAILMENT

In this section we will summarise the work in (Schaerf
and Cadoli 1995), which defines the approximate en-
tailment relations that we will exploit for our work on
diagnoses. Schaerf and Cadoli define two approxima-
tions of classical entailment, named F; and k3 which
are either unsound but complete (1) or sound but
incomplete (F3). By analogy, they sometimes write
ko for classical entailment. Both of these approxima-
tions are parameterised over a set of predicate letters S
(written 7 and F5) which determines their accuracy.
We repeat some of the basic definitions from (Schaerf
and Cadoli 1995):

A 1-S-assignment is a truth assignment to all literals
such that

e If x € § then z and —z are given opposite truth
values

o If ¢ S then x and -z are both given the value 0.

A 3-S-assignment is a truth assignment to all literals
such that

e If x € S then z and —x are given opposite truth
values

o If x ¢ S then z and —z are not both given the value
0.

In other words: for letters in S, these assignments
behave as classical truth assignments, while for let-
ters £ ¢ S they make either all literals false (1-S-
assignments) or make one or both of z and -z true
(3-S-assignments).

The names of the assignments can be explained as fol-
lows. In 1-S-assignments means: there is one possible
model for letters outside S, namely false for both z
and —z. In 2-S-assignments: there are two possible
models for letters namely x true and -z false, or z
false and —z true. In 3-S-assignments: there are three
possible models for letters outside S namely z true and
-z false, or x false and —x true or true for both z and
.

Satisfaction of a clause by a 1-S- or 3-S-assignment is
defined in the usual way: a formula ¢ is satisfied by
an interpretation o if o evaluates ¢ into true using the
standard rules for the connectives.

The notions of 1-S-entailment and 3-S-entailment are
now defined in the same way as classical entailment: a
theory T 1-S-entails a formula ¢ written (T F{ @) iff
every 1-S-assignment that satisfies T also satisfies ¢,
and similarly for 3-S-entailment (7 5 ¢). Similarly,
we can speak of 1-S- and 3-S-consistency.

The following syntactic operations! can be used to

1t is because of this close correspondence between 1,3-
S-entailment and these syntactic operations that we write
I instead of |=F, which was the notation used in (Schaerf

clarify these definitions. For a theory in clausal
form, 1-S-entailment corresponds to classical entail-
ment, but after removing from every clause any lit-
erals with a letter outside S. When this results in an
empty clause, the theory becomes the inconsistent the-
ory L. Similarly, 3-S-entailment corresponds to clas-
sical entailment, but after removing every clause from
the theory that contains a literal with a letter outside
S. This may result in the empty theory T. These in-
tuitions lead to the main result of (Schaerf and Cadoli
1995):

Theorem 1 (Approximate entailment)

o=k sk 2k =1

where S C S’. Everywhere in this paper we will use
primed letters to represent sets that are a superset of
the unprimed letter.

This states that I—?‘? is a sound but incomplete approx-
imation of the classical 5. The counterpositive of the
second halve of the theorem (reading b=>l/7 =>|7’2)
states that I#f is a sound but incomplete approxima-
tion of Hs.

Example 1 [Illustrating F5 and 7] We illustrate
these notions with the example theory given in figure
1. We shall call this theory BM, for reasons that will
become apparent later. We will use this simple theory
throughout the paper to illustrate our results.

We can see that 5 is incomplete with respect to
ko, since in the theory BM of figure 1 we have that
classically BM U {Hs} k2 O1, but if we restrict S
to LET(BM) \ {Hs}, where LET(BM) stands for all
the predicate letters in BM, we do not have that
BMU{H3} I—3 O;. Similarly, I/ is incomplete with re-
spect to I#5 since, for example, if S = LET(BM) \S{HO}
then BM U {Hl} t/2 O1, but not BM U {Hl} .

Furthermore, with increasing S, the accuracy of these
approximations improves, until the approximate ver-
sions coincide with classical entailment when all let-
ters are included in S. Conversely, the approximations
trivialise when S = @: any formula is F} satisfiable,
and no formula is - satisfiable.

Without proof, we give a number of simple lemma’s on
basic properties of I—? that we will use in this paper.
In the following lemma’s, v and § are clauses, ¢ is any
formula, [ is a literal, and z is a proposition letter.

The first lemma shows that a familiar property of F
also holds for all approximations:

Lemma 1 (Monotonicity of -¥)
If T ¢ then TAzk? ¢

and Cadoli 1995).
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Figure 1: A simple example theory BM (non-clausal, clausal, and as causal network)

The second lemma again shows that a simply property
of I continues to hold for

Lemma 2 (Extendibility of )

If TH Landz€ S

then TAzlWS L orTA-zl L
If THE L then TAzlS L orTA-zls L
While the previous lemma said that of a consistent
theory at least one extension with x or -z remained
consistent under the same S, the following lemma says
that when moving from S to S + z, both extensions
remain consistent:

Lemma 3 (Extendability of { with increasing

S)
IFTH Lthen T Azt Loand TA -z b2t L
The following lemmas are stated informally in (Schaerf

and Cadoli 1995). They make precise the syntactic
intuitions behind F; and 5 discussed above.

Lemma 4 (-7 amounts to removing literals)
IfLET(l) & S then

TAAVEFY v if TASFT ~

Lemma 5 (-5 amounts to removing clauses)
IfLET(l) ¢ S and LET(vy) C S then

TAIVEFS v iff THS ~

Lemma 5.1 in (Schaerf and Cadoli 1995) shows that
the condition LET(v) C S is no restriction, since 7' F§

v iff T I—?‘?ULETW) .

Schaerf and Cadoli also present incremental algorithms
for computing -{ and 5 when S increases. They have

obtained attractive complexity results which state that
even when computing s through iterative computa-
tion of 5, the total cost of the iterated computation is
not larger than the direct computation of 2 (and sim-
ilarly for /Y to compute o). However, the iterative
computation of the approximate entailment has an im-
portant advantage that the iteration may be stopped
when a confirming answer is already obtained for a
smaller value of S. This yields a potentially drastic re-
duction of the computational costs. The size of these
savings depend on the appropriate choice for S.

In this paper, we use Schaerf and Cadoli’s results on
approximating the propositional entailment relation.
However, in (Schaerf and Cadoli 1995) they show how
these results can be extended to first-order theories in a
straightforward way: instead of a set of propositional
letters, S becomes a set of ground atoms from the
Herbrand base.

3 BASIC DEFINITIONS

In this section we introduce the definition of a diagnos-
tic problem and a diagnostic solution that we will use
in this paper, and we introduce some notation. We use
a common definition of diagnosis that is widespread in
the literature. We adopt the mainstream approach of
using entailment to characterise the relation between
the observations, behavioural model and computed di-
agnoses. In this paper we present the results on the
standard abductive notion of diagnosis. However, we
have results on consistency based notion of diagno-
sis, and results on the combination of abductive based
and consistency based notion of diagnosis proposed in
(Console and Torasso 1991).

Definition 1 (Diagnostic problem and its solu-
tion)
Given a behaviour model BM as a logical theory in



clausal form, and observations O as a set of literals
(read as a conjunction), a solution to a diagnostic
problem (BM,0), is a set of literals E (“E” for ez-
planation, again read as a conjunction), which satisfies
the following:

BMUE + O (1)
BMUE V¥ 1 (2)

These two formulae state that the explanation E must
explain the observations O in a non-trivial way.

For technical reasons, we restrict ourselves to causal
theories consisting of only two layers. The theory from
figure 1 can be interpreted as the causal network from
the same figure, where any intermediate layers have
been removed in the translation from causal network
to theory (in this case the removal of S;). This re-
striction does not affect the expressive power of causal
theories: any causal theory T' containing intermediate
layers can be trivially transformed into a theory T’
where the intermediate layers have been removed (by
resolution on their positive and negative occurrences
in the clausal form). T is equivalent to 7” in the sense
that for any sentence ¢ consisting of only causes and
effects, we have

Tr¢iff T'F ¢

A further restriction is that causes in the network may
only be positive literals. Observations in the network
are allowed to be either positive or negative. Although
made for technical reasons, this restriction is observed
by many of the causal models found in the diagnostic
literature. The work in (Bylander et al. 1991) shows
that even for such reduced causal theories, the com-
putational complexity of abductive reasoning is suf-
ficiently bad to require the kind of computationally
attractive approximations that we investigate in this

paper.

Example 2 [Illustrating diagnosis] In figure 1, if we
take O = {01,02}, then {H(],Hl} and {H(],Hl,_!H4}
are both diagnoses according to definition 1. The dif-
ference between these alternatives is that the the sec-
ond says that H, is false, whereas the first is uncom-
mitted to the states of Hy. A set like {Ho, H1, H4} is
not a solution, since it violates (2) via Hy.

Note that we have not mentioned a notion of minimal
diagnosis. The literature contains a large number of
proposals for different notions of minimality, each of
which are appropriate in different contexts. Our the-
orems are largely independent of particular notions of
minimality. We have therefore not included it in our
definition, thereby making our results more widely ap-
plicable.

The central idea of this paper is to parameterise the
notion of diagnosis over different approximations of the
entailment relation. In particular, we will want to use

F{ and 5 in our definition of diagnosis. We will write
ABD3 for formulae (1) and (2) but using -5 instead of
F, and ABD{ for using F{. We will write ABD; when
we intend both ABD{ and ABD3. Remember that we
write k5 for the classical deduction relation -, and we
will therefore also write ABD, for (1)—(2).

We want to emphasise that our particular definition of
a diagnostic problem and its solution, while very com-
mon in the literature, is not of crucial importance to
our work. It would be well possible to adopt another
definition, as long as this definition is again based on
logical entailment. The details of our theorems would
change, but our central message (namely that approxi-
mate entailment can be usefully exploited for diagnos-
tic reasoning to obtain interesting and efficient results)
would still hold.

4 APPROXIMATING DIAGNOSES

This section constitutes the main body of work in this
paper. We derive theorems that characterise the influ-
ence of approximate entailment relations on the diag-
noses that can be obtained. The choice for a particular
approximation

is characterised by selecting either -7, k5 or 5, and
additionally choosing a value for the set of predicate
letters S.

The main intuitions behind using 7 and 5 in diag-
nosis are as follows. By using 7, candidate solutions
more easily satisfy part (1) of our definition of diagno-
sis, because Fo=>7. Similarly, by using I3, candidate
solutions more easily satisfy part (2) of our definition
of diagnosis, since Ho=>l/5.

Example 3 [lllustrating ABD;Y and ABD3 diagnoses]
Again in figure 1, if we take O = {01,005}, then
{H2,H3} is an ABDs diagnosis, i.e. satisfying (1)-
(2). {H2} is not an ABD, diagnosis, but if we take
S =LET(BM)\ {H3}, then {H,} is an ABD; diagno-
sis. In this case, Hs is no longer required for explaining
O;. Because H3 ¢ S, Hz and - Hjz are both false in all
1-S-models, and since (wH3z V O1) € BM, O; must be
true in all 1-S-models satisfying BM, i.e. BM I—f 0.
In other words, O; requires no further explanation. We
will sometimes say that in such a case O; is explained
“for free”.

Similarly, {Ho, H1, Hs} is not a classical ABD2 diag-
nosis, since it violates (2). However, if we take S =
LET(BM)\ {H4}, then {Hy, H,, H,} is an ABDS di-
agnosis, showing that it is easier to satisfy (2) through
using ABDS.

The organisation of this section is as follows: we start
with some observations that restrict the choice of S;
we then investigate the effects of using 7,5 in (1-2)
(in other words: using ABD?)



4.1 RESTRICTIONS ON CHOOSING S

The first restriction on the choice of S follows from
the following theorem. It states that we must demand
O C S if we are to find any diagnoses at all. (Unless
stated otherwise, variables are universally quantified):

Theorem 2 (S must contain O)

[3E: ABD{(E)] - 0CS

Proof Suppose that there would be an 0o € O with
o € S, then o would have valuation false in all 1-S-
models (by definition of {), and then formula (1) can
only hold if BM U E also has valuation false in all 1-S-
models, in other words, BM UFE would be inconsistent,
but this would contradict requirement (2). O

The next theorem states that for ABD;-diagnoses to
exist, at least one letter from each clause in BM must
occur in S.

Theorem 3 (S must meet all clauses in BM)

[3E : ABDY (E)] - Vy € BM : LET(y)N S # 0

Proof If the conclusion of the theorem were not the
case, BM would collapse into a 1-S-inconsistent the-
ory, and would never satisfies formula (2). O

Example 4 [Illustrating theorem 3] If we would take
S = LET(BM) \ {H3,01}, we would indeed have a
clause with all letters outside S. This would make BM
inconsistent, since (—Hz V O1) € BM, but since both
Hjs and O; are outside S, -H3 and O; must evaluate
to false in all 1-S-models (by definition of F7), thereby
making BM inconsistent.

Whereas the above two observations restricted S in
relation to either O or BM, the following restrict S in
relation to the explanation E:

Theorem 4 (S must contain E)

ABD{(E) — LET(E)

s
ABDS (E)A C -min(E) — LET(E)CS

c
c

where C -min(E) means that E is a subset-minimal
explanation.

Proof For ABDy, suppose that z € E and = ¢ S,
then z evaluates to false in all 1-S-models, so £ must
evaluate to false in all 1-S-models, making BM UE in-
consistent, thereby violating part (2) of our definition
of diagnosis.

For ABD3S: suppose there would be an x € E and
x ¢ S. We will prove that E \ {z} would then also
be an ABDj diagnosis, and this would contradict the
assumption that E is subset-minimal. To prove that
ABD$ (E \ {z}), we must prove BM UE \ {2z} I/5 L

and BM U E \ {z} F§ O. The first follows from
BM UE I/ L (which holds since ABD3(E)) plus us-
ing monotonicity (lemma 1), the second follows from
BM U E F§ O (again by ABD3 (E)) plus using lemma
5 which applies since z ¢ S. O

Example 5 [Illustrating theorem 5] For ABDS, take
as an example S = {Hy,H1,0:,05}, and O =
{O1,05}, then {Hy, H,} is a subset-minimal ABDj
diagnosis. Other classical subset-minimal diagnoses
(such as {Hy, H3}) are not ABDj diagnoses, since their
letters are not in S. Non-subset-minimal ABDS diag-
noses are allowed to have their letters outside S, for
example {Hy, Hy, Hs}.

On the basis of these initial restrictions on possible
choices of S, we are now ready to derive results on the
behaviour of ABD?.

4.2 APPROXIMATING ABDUCTIVE
DIAGNOSES

In general, a classical abductive diagnosis E can always
be arbitrarily expanded to EAz or EA -z (this follows
directly from lemma’s 1 and 2). The following theo-
rem shows that this property (which accounts for the
exponential number of abductive diagnoses) continues
to hold for ABD-diagnoses. On the other hand, a
classical diagnosis cannot be arbitrarily reduced, since
it might get too small to imply O and thereby fail to
satisfy formula (1). Surprisingly, ABD; diagnoses can
always be reduced in a certain way, namely by remov-
ing letters not in S. Formally:

Theorem 5 (Changing ABD; diagnoses with
fixed 9)

z€SAABDY(E) — ABDS(EAz) V

ABD? (E A —z)
© ¢ SAABDY(E) — ABDY(E\ {z,~z})

Proof First part of the theorem: The condition z € S
is only required for ABD{. For ABD; and ABD?‘? , the
first part of the theorem already holds without this
condition. This is because requirement (1) continues
to hold when expanding E (through monotonicity of
k> and F5), and requirement (2) continues to hold be-
cause at least one of BMU(E Ax) and BM U(EA-x)
must be consistent if BM U E was consistent (ex-
tendibility). For k7 this extendibility property only
holds if z € S.

Second part of the theorem: The second part of
the theorem is trivial for ABDY, since, according to
theorem 4, ©z ¢ S implies ¢ ¢ FE in which case
E\ {z,—z} simply equals E. The proof for the case
ABDg follows from monotonicity (to show consistency
of BMUE\ {z,—z}) and from lemma 5 (to show that
BMUE\{z,—z} still implies O). That lemma applies
sincex ¢ §. O



Example 6 [Illustrating theorem 5] As an exam-
ple, we can use the one from example 5, where
{Hy,H;,Hs3} is an ABD3 diagnosis if we take S =
{Ho,Hl,Ol,OQ} and consequently {Hyp,H,} is also
an ABDj since H3 ¢ S.

Theorem 5 holds for abductive diagnoses under a con-
stant value of S. A related result can be obtained when
expanding S with some letter z: when increasing S to
S + z, for any ABDY-diagnosis E, we can always find
a larger ABDS""” diagnosis E’ which is a superset of
E. Similarly for every ABDj-diagnosis E' there is a
smaller ABD3 *-diagnosis E with E C E'. As above,
such expansion and contraction properties do not in
general hold for classical diagnoses.

Theorem 6 (Changing ABD; diagnoses with
changing 9)

ABDSY®(EAZ) Vv
ABDY*®(E A )

¢ SAABDS(E) — ABD3*®(E\ {z,z})

ABDY(E) —

Proof First part of the theorem: We must prove that
the new diagnosis is 1-S + z-consistent and 1-S + 2-
implies the observations. Consistency is guaranteed
because BM U E is 1-S-consistent (since ABDY(E)),
and because we extend the existing diagnosis with ei-
ther x or =z, lemma 3 says that both extensions will be
1-S + z-consistent. Implication of the observations is
guaranteed in the following way: First observe that if
z € S, implication is guaranteed trivially by lemma 1,
so in the following we can assume z ¢ S. By extending
S with z we might loose consequences (observations)
that were explained “for free” under -7, but these can
be recovered by adding x or -z to the diagnosis. Since
we only have positive literals as causes, it will only ever
be needed to add z and never —z, so it will never hap-
pen that we need to add x for one observation and
-z for another. More formally: Since ABD;(E), we
know that BM U E +{ O, but by extendlng S with
z, BMUE I—S"'z O is no longer guaranteed (theo-
rem 1). If BM UE F{*® O does hold, then so do
BM U (E A z) F5%® O and BM U (E A =z) F5%° O
(by monotonicity), and we are done. So lets assume
that BM U E 1% O. We know that BM U E +5 O,

so the only reason for BM U E I£1® O must be the
extra 1-S + z-models introduced by allowing z or -z
to be true (instead of forcing them to be both false
because z ¢ S). Since we only have positive causes
in our network, only x can appear as a premise of a
causal link and since no node is both a cause ad and
effect (since we are in a two-layer network), only —z
can appear in the clauses of BM. We can therefore
remove the additional 1-S + z-models for BM U E by
forcing -2 to be false. Since z € S + z, this amounts
to forcing x to be true, which amounts to adding x to

BM U E. Tn other words: BM UE Az F;*® O. This
proves the first part of the theorem.

Second part of the theorem: We must show that
the new diagnosis is 3-S + z-consistent and 3-S5 + z-
implies the observations. The proof of the latter is
easy: The removal of x and —x does not lead to
loss of implication of any observations, since these lit-
erals were not used in the original dlagnosis either
(because ¢ ¢ S). More formally: ABD3 (E) means
BM UE 5 O, and since z ¢ S this is equivalent
to BM U E \ {n: -z} F§ O (by lemma 5), and this
in turn implies BM U E \ {z,~} F5*° O (by theo-
rem 1), as desired. Showing that the new diagnosis is
still consistent is somewhat more subtle: by extend-
ing S with « we gain additional causal links, namely
those links containing either « or —x as premise or con-
clusion. When enabled these additional causal links
might cause inconsistency in the following ways: (1) z
or -z are premises, and the conclusion of the link is
inconsistent with others; (2) there are both links with
z and links with —z as their consequences. However,
in case (1) the causal link would never be enabled,
since  and —x are removed as axioms, and they can
also not be implied by other causal links because they
are already premises of a causal link, and we are re-
stricted to two-layer causal networks. Case (2) can
never happen because such links would already have
caused 3-S-inconsistency, which contradicts the condi-
tion of the theorem. O

Example 7 [Illustrating theorem 6] To understand
this theorem, it is important to realise that ABDf*””
can be thought of as “more classical than ABD?”, in
other words, ABD?+Z is a little bit more like ABD2
than ABD; was. We should also recall the intuition
from the beglnnlng of this section, which stated that
ABDY{ makes it easier to satisfy dlagnostlc requirement
(1) and ABDjS makes it easier to satisfy (2).

As an example, we take S = LET(BM) }{Hz}, and

{01,02} Then {Hs3} is an ABDy diagnosis.
When increasing S with Ho, {H3} is by 1tself no longer
an explanation for {O1, 05}, and must be expanded to
{H»,H3}, in other words: {Hj, Hs} is an ABDIS"'H2
diagnosis (as predicted by the theorem). Notice that
{H;} itself is not an ABD{ T2 diagnosis, since it vi-
olates requirement (1): excluding Hy from S gave us
the explanation of Oy “for free”. Conversely, {Ho, H3}
is not an ABDY diagnosis.

Similarly, for ABDj if we take S = LET(BM) \ {H4}
(agaln with O = {O1,03}). Then {Hs, Hs, H,} is an
ABDj diagnosis. When adding Hy to S, {Hz, H3, Hy}
is no longer an ABD3 7+ diagnosis, since it violates
(2). As predicted by the theorem, {Hj, H3} is an
ABD3; ¢ diagnosis.



Because the superset and subset relations between di-
agnoses under different values of S, as in theorem 6,
will turn out to be very important, we introduce the
following notation:

Definition 2 For any set P and P', P & P’ and P C
+ P’ are defined by:

P&EP = VpeP 3IeP: pCyp
Pg&P = VvVpeP dpeP: pCyp
Example 8 [Examples of & and & ]
PEP Parp
{{a}, - {{a,b}, {{a}, < {{a,b},
N N
{a,c}, {a,c},
{b,c}} — {b,c,d}, {b,c}, « {b,c,d}}
b,e {e
injective surjective

Notice that PC P’ - P& P'and PC P' —» P' C
+ P. We can use this notation to summarise our re-
sults so far. If we write ABD; for the set of all diag-
noses E which satisfy ABD?(E), we have:

Theorem 7 (Relations between ABD?)

§= ABD"C ABD{ & ABDS & ABD,
ABD, @ ABD; & ABD3; & ABDY =)

This states that ABD{ diagnoses consist of parts of
ABD, diagnoses, and that ABD3 diagnoses contain
ABD»> diagnoses. Proof The theorem is a straight-
forward reformulation of theorem 6 using the notation
of definition 2. O

This theorem only claims that for increasing values of
S, we will find superset diagnoses for ABDfI and sub-

set diagnoses for ABDgl. The next theorem consid-
erably strengthens this result, by stating that, in the
case of ABDy, not only do we find superset diagnoses,
but that whenever we find a subset-diagnosis (when
increasing S to S'), this ABDS' subset-diagnosis was
already an ABD{-diagnosis. Stated differently: when
moving from ABDY to ABD$ we will find superset di-
agnoses, but we will not find any new subset diagnoses.
The converse also holds: when, while reducing S’ to
S, we find an ABDf diagnoses E’ which is a superset
of an ABD‘fI diagnosis E, then this E’' was already a
diagnosis under ABDY’ . Roughly speaking, theorem
7 promises that ABD{ diagnoses will become larger
with increasing S, and the following theorem promises
that we will not find any new smaller diagnoses when
increasing S. A similar result is obtained for ABDj.
Formally:

Theorem 8 (No new subset (superset) diag-
noses)

Table 1: Summarising the results of section 4.2

new new
ABD? S superset subset number
diagnosis | diagnosis
=1 | bigger yes no more
=1 | smaller no only less
t=3 | bigger no yes more
=3 | smaller only no less
ABDS(E') A ABDS'(E) —» ABDS(E) A
ABDS'(E')
ABDS(E) A ABDS' (E') — ABDS(E') A
ABDS' (E)

Proof When we write out the definitions for ABDY
and ABDIS' in the first part of the theorem, we get:

BMUE'F$ O A BMUE' W5 1
A
BMUEF' O A BMUEW L
R
BMUEFS O A BMUEW 1
A

BMUE'F'O A BMUE' ¥ 1
BM UE 5 O and BM U E' 5" O follow from

BM U E 5" O by theorem 1 and lemma 1 respec-

tively. Similarly, BM U E' /5" | and BMUE 5 1
follow from BM U E' I/{ L by theorem 1 and lemma
1 respectively.

The proof of the second part of the theorem has the
same structure, again using theorem 1 and lemma 1.
O

One final result on the relations between approximate
abductive diagnoses concerns the sizes of ABDf :

Theorem 9 (Sizes of ABDY)
0= |ABD{| < |ABD]| < |ABD{'| < |ABD,|
|ABD,| > |ABD; | > |ABDj| > | ABDY| =0

Proof Theorem 6 implies an injective map from

ABD? to ABDY', and from ABDj to ABDj , as indi-
cated in example 8. This immediately yields the the-
orem. O

The results of the main theorems in this section are
summarised in table 1.

5 HOW TO USE APPROXIMATE
DIAGNOSES

We will now briefly discuss some ways in which these
results can be exploited for diagnosis. The follow-



Table 2: Behaviour of an anytime algorithm for ABDY for O = {01, 05}

IE | nr [ E comment |

{01,057} 0 | no S violates theorem 3

+{03,H;} | 0|no Hy ¢S, therefore BM Fy =0, therefore violation of requirement (2)

+H, 6 | {1, {H1},{~H1},{-Ha}, {H1,~Hs}, {-Hi,~H4}
H, and Hj3 are not in S, therefore BM I—f 01 A Os (i.e. O1 and Oy are
explained “for free”), therefore all consistent literal-sets over H; and Hy
are diagnoses.

+Hoy 6 | all previous solutions extended with Hy

total 10

Hj is now in S, so Os is no longer explained “for free”, and therefore Hy
must be included in the solutions.

4 {Hl}y{HlaﬁH4}a{Hla_'HQ}y{Hla_'H23_'H4}

The other explanation for O, is H; (classically this would be HyA Hy, but
this becomes H; since Hy ¢ S). We also obtain all consistent extensions
of H; with letters from S

+Hy 18

and we must add Hy.

total 22

all previous solutions already containing Hs (6 of them),
possibly extended with Hy or = H)
since Hy is now in S, it is now allowed to include Hy or = Hjy, but not
required, since, Hs ¢ S, which still explains O; “for free”.
4 | {H1,Ho},{H1,~Has,Ho},{H1,~H2,Ho},{H1,~Hys,H,Ho}
these solutions are obtained from those 4 in the previous step where H;
was required as the explanation for Os, (i.e. those solutions where Ho
was missing). Since Hy is now in S, H; alone can no longer explain Oa,

TH; 22

{Hla_'H2;H0) _'H4; _'H3}

—~Hj.

total 34

all previous solutions extended with Hj

since H3 is now in S, it is now allowed to include Hj
6 {H17 H27 HO: _'H3}7 {Hla _'H47 HQ; HO: _'H3}7 {Hla HO: _'H3}5
{Hla HOJ _'H47 _'H3}5 {Hla ﬁHZa HOa _'H3}5

6 {Hla HZ; HO}; {Hla ﬁ}'71'4; HZ; HO}: {H17 HO}; {Hla HO; _'H4}a
{H17_'H27H0}7{Hla_‘H27H07_‘H4}
In the previous 22 cases, if H3 is not required for explaining O; (because
Hy and H; are present), then we are allowed to remove H3 or to add

ing gives us an anytime algorithm (Russel and Zilber-
stein 1991) for computing diagnoses: start by com-
puting ABDf for some small value of S, and itera-
tively increase the value of S. This will include ever
more causes in the set of diagnoses ABD;. This set
will be an ever better approximation of the set of
classical diagnoses ABDs. The behaviour of this al-
gorithm is described in table 2. This table shows
which ABDY solutions are computed when starting
with O = § = {0;,0,}, and gradually adding let-
ters to S as indicated. In the final row of the table,
S = LET(BM), and the diagnoses correspond to ex-
actly the set of all 34 classical ABDy diagnoses. This
algorithm can be interrupted at anytime, and will give
monotonically improving results as run-time increases.
If for example, starting by including in S only the most
urgent causes, we obtain only the urgent parts of ABD,

diagnoses. When we gradually increase S by adding
less urgent causes, we obtain ever larger segments of
ABD> diagnoses.

The complexity results in (Schaerf and Cadoli 1995)
ensure that this converging computation of ABDy will
not be more expensive than the direct computation
of ABDs by classical means. However, the results
of (Schaerf and Cadoli 1995) that we have applied
to abduction concern the worst-case complexity of
the declarative characterisation of deduction. Further
study and experimentation is needed to see how well
these results apply to specific algorithms for abduction
known in the literature.

An alternative anytime algorithm is obtained by using

ABDj: Again, we start by including in S only the
most urgent causes. The C -min-ABD; diagnoses are



now exactly those ABD, diagnoses which consist of
only these urgent causes from S. When increasing S
by including less urgent causes, we obtain more and
more of ABD,. Thus, ABD; are the urgent subsets
of classical diagnoses, whereas C -min-ABDj are only
those classical diagnoses consisting entirely of urgent
causes. Both of these anytime algorithms ensure that
we only loose less urgent causes from our approximate
diagnoses (theorem 4). Another example of the choice
for S would be the most frequently occuring causes,
etc.

In (ten Teije and van Harmelen 1996), we have ex-
plored some of such properties of the behaviour model
BM in order to select predicate letters in S. Some
examples from (ten Teije and van Harmelen 1996) are:

o specificity of observations: observations are more
specific if they have fewer possible causes in
the model. For example, in a medical context,
headache or a mild fever would be aspecific symp-
toms, while a lump in the breast would be a very
specific symptom. Beginning with the most spe-
cific symptoms in S, and gradually adding less
specific symptoms, we obtain a decreasing series
of diagnoses where inconsistency with specific ob-
servables is taken more seriously then inconsis-
tency with a-specific observables. (For this exam-
ple we used an approximation of a consistency-
based notion of diagnosis 4 la (Reiter 1987), in-
stead of the abductive notion used in this paper).

o strength of causal connections: following (Console
and Torasso 1990), we distinguish causes which
necessarily imply their effects from causes which
only possibly do so, but necessarily. Using ABDS,
we first include only necessary causal links in S,
and only add possible causal links if no diagnosis
can be obtained without them. This results in
an algorithm which computes the most reliable
diagnoses first, before investigating diagnoses that
are based on less reliable causal links.

o structure in the causal model: in the context of a
simple causal model of an automobile in (ten Teije
and van Harmelen 1996), we distinguished sub-
models for electrical or mechanical faults. Differ-
ent sub-models can be gradually incorporated in
the diagnostic process by added their letters to S.

6 CONCLUSION AND FUTURE
WORK

In this paper, we have extended a widely accepted def-
inition of diagnosis by using approximate deduction
relations instead of the usual classical deduction. This
has yielded a number of interesting approximate ver-
sions of diagnosis. We have proven theorems which
state how these approximations can be used to increase
and decrease both the total number and the individ-

ual size of the computed diagnoses, while guaranteeing
certain properties (e.g no loss of classical diagnoses, or
only loss of certain types of classical diagnoses). We
have exploited our results in efficient anytime algo-
rithms for computing both approximate and classical
diagnoses. Finally, we have sketched how the results
from this paper can be put to practical use.

As stated above, the results from (Schaerf and Cadoli
1995) ensure that the problem of iterated computa-
tion of approximate abduction is not harder (and of-
ten easier) than the problem of computing classical
abduction, but these are only worst-case results that
apply to the declarative presentation of the problem.
Further study and experimentation is needed to see
how well these results apply to specific algorithms for
abduction known in the literature.

Furthermore, in this paper we have studied the exis-
tence of diagnoses (ABD? (E), e.g. theorems 5, 6 and
8), and the set of all diagnoses (ABD?, e.g. theorems
7 and 9). Since the set of all S-diagnoses is exponential
(up to 29), we will in general not want to compute all
of these. Other properties which might be fruitfully
studied in future work are: the complexity of finding
the next diagnosis, testing whether a formula holds in
all or some diagnoses, etc.

In section 3, we stated the restriction to causal net-
works of only two layers, and we argued that this
restriction does not affect the expressiveness of the
causal networks. Although this is true, this restriction
does affect the different possibilities for approximation:
since all intermediate nodes have been removed from
the network, these letters can no longer be used to
characterise approximations by excluding them from
the set S. An example of this is the following simple
causal theory T

T = {Hl — N,Hy - N,N — O1,H; A\ Hs —>02}
This can be transformed to the two layer theory 7":
T’ = {Hl — Ol,H2 — Ol,Hl N H2 — 02}

Although T and T' are classically equivalent, in the
sense that for any sentence ¢ made from the letters
Hi,Hs,0; and Os we have

TH@IFT + ¢,
this is not the case for approximate deduction. In par-
ticular, if S = LET(T) \ {N},
T'U{H;,H} F5 O3 A Oy

while
TU{Hl,H2} *—?‘? Oy but
T U{Hy,Hy} /5 Oy,

This shows that in 77, {H;, Hs} is an ABD5-diagnosis
for both O; and Os, while in T it is only an ABD;?—
diagnosis for Os. In fact, in 7”7 it is impossible to find
any choice for S that will yield an ABDj-diagnosis for



O, that not also implies O1, while in T this is possi-
ble (S = LET(T) \ {N} as above). This shows that
two-layer networks really do restrict our options for
choosing particular approximations. We are currently
investigating under which conditions our results still
hold for networks with intermediate layers in networks.

More speculative is the use of our results to model the
iterative behaviour of various existing diagnostic sys-
tems. Such systems iterate over multiple models (Abu-
Hanna 1994), different abstraction levels (Mozetic
1991, Console and Torasso 1992), or request additional
observations (Mcilraith and Reiter 1992). Our claim
is that such iterative behaviour can be formalised in
a uniform way through our results. This would yield
insights in the differences and commonalities between
such systems, and would make our anytime algorithms
available to these existing systems. Further work is re-
quired to make these claims more precise.
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