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6.1 Introduction

Peer-to-Peer systems are distributed systems without centralized control or hierarchi-
cal organization, in which each node runs software with equivalent functionality. A
review of the features of recent Peer-to-Peer applications yields a long list: redundant
storage, permanence, selection of nearby servers, anonymity, search, authentication,
and hierarchical naming. Despite this rich set of features, scalability is a significant
challenge: Peer-to-Peer networks that broadcast the queries to all peers do not scale
- intelligent query routing and network topologies are required to be able to route
queries to a relevant subset of peers. In this chapter we give an overview and an eval-
uation of the model of expertise based peer selection as proposed in [4] and how it is
used in the Bibster system 18. In this model, peers use a shared ontology to advertise
semantic descriptions of their expertise in the Peer-to-Peer network. The knowledge
about the expertise of other peers forms a semantic overlay network, independent of
the underlying network topology. If the peer receives a query, it can decide to for-
ward it to peers about which it knows that their expertise is similar to the subject of
the query. The advantage of this approach is that queries will not be forwarded to
all or a random set of known peers, but only to the ones that have a good chance of
answering it.

The organization of the sections in this chapter is as follows: In the next section,
we give a small overview of related work in the domain of Semantic Overlay Net-
works. In section 3 we provide our generic model on expertise-based peer selection.
In section 4, we instantiate the generic model with the Bibster case-study. In section
5, we show simulation experiments and their results on the selection method. Sec-
tion 6 shows the results of an evaluation study on the Bibster application which was
installed on different machines of interested people. Section 7 shows a comparison
between the simulation results and the results obtained from the field study. Section
8 concludes our work.
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6.2 Related Work on Semantic Overlay Networks

Peers that keep pointers to other peers which have similar content to themselves form
a Semantic Overlay Network (SON). Edutella [6] is a schema based network where
peers describe their functionality (i.e. services) and share these descriptions with
other peers. In this way, peers know about the capabilities of other peers and only
route a query to those peers that are probably able to handle it. Although, Edutella
provides complex query facilities, it has still no sophisticated means for semantic
clustering of peers, and their broadcasting does not scale well. Gridvine [3] uses the
semantic overlay for managing and mapping data and metadata schemas, on top of
a physical layer consisting of a structured peer-to-peer overlay network, namely P-
Grid, for efficient routing of messages. In essence, the good efficiency of the search
algorithm is caused not clustering of semantically related peers based on the semantic
overlay, but by efficient term storage and retrieval characteristics of the underlying
DHT approach for mapping terms to peers.

Another SON approach is to classify the content of a peer into a shared topic
vector where each element in the vector contains the relevance for that given peer
for the respective topic. pSearch [8] is such an example where documents in the
network are organized around their vector representations (based on modern doc-
ument ranking algorithms) such that the search space for a given query is orga-
nized around related documents, achieving both efficiency and accuracy. In pSearch
each peer has the responsibility for a range for each element in the topic vector,
e.g. ([0.2 − 0.4], [0.1 − 0.3]). Now all expertise vectors that fall in that range are
routed to that peer, meaning that, following the example vector, the expertise vector
[0.23, 0.19] would be routed to this peer and [0.13, 0.19] not because 0.13 does not
fall in between 0.2 and 0.4. Besides the responsibility for a vector range, a peer also
knows the list of neighbors which are responsible to vector ranges close to itself.
The characteristic of pSearch is that the way that peers know about close neighbors
is very efficient. A disadvantage of pSearch is that all documents have to be mapped
into the same (low dimensional) semantic search space and that the dimensional-
ity on the overlay is strongly dependent of the dimensionality of the vector, with
the result that each peer has to know many neighbors when the vectors have high a
dimension.

Another approach is based on random walk clustering [9], where peers with sim-
ilar content are going to know each-other. The assumption is that queries posted by
peers are semantically closely related to the content of the peer itself. This results
in a high probability that the neighbors of the peer (the peers in the cluster of that
peer) have answers to the query. The problem of this approach in the domain of full-
text searches, is what information a peer has to tell to another peer so that they are
able to determine if they are related or not. When there is no shared data-structure
(like a fixed set of terms) in which they can describe their content, the whole content
has to be shared. This results in that much data has to be shared between peers for
determining closeness.

In contrast to the previous approach, the last SON approach that we discuss here
lets peers describe their content in a shared set of terms. Mostly these terms are or-
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ganized in a topic network or hierarchy making it able to determine the semantic
similarity between terms. Each peer is characterized by a set of topics that describe
its expertise. A peer knows about the expertise topics from other peers by analyzing
advertisement messages [4] or answers (chapter 5). In this way peers form clusters
of semantically related expertise descriptions. Given a query, a shared distance met-
ric allows to forward queries (described by a shared set of terms) to neighbors of
which their expertise description is semantically closely related to the query. The
advantages of this approach are threefold:

• Peer autonomy Each peer can, in principle, have its own distance measure, peer
selection mechanism and clustering strategy. This allows peers, for example to
keep their neighbor list or similarity metric secret. Also peers can decide at any
time to change their visibility on the network by sending advertisement mes-
sages.

• Automatic load balancing When some content is provided by many peers also
the semantic cluster on that content will contain many peers. In this way, load
balancing is an emergent property of this approach.

• Robustness/fault tolerance When peers leave the network or do not respond to a
query, the only consequence is that they probably will not be asked a next time
until they send new advertisement messages or are recommended by other peers.
In contrast, most DHT approaches have to move routing tables to other peers in
order to restore the overlay.

However there is also a disadvantage: terms that are not shared can not be found.
For example, imagine that a peer has some documents containing the word ’abstract’,
but the shared data-structure only contains the term ’summary’, then two things can
be done (1) extend the shared data-structure with the word ’abstract’ so that peers
are able to query and describe their expertise with that term or (2) the functions
that extracts the expertise description and abstract the queries should be intelligent
enough to see that ’summary’ is a good replacement for ’abstract’. Note that in this
case the original query still contains ’summary’, but the routing mechanism uses the
shared term ’abstract’ to route it to the peer that registered itself on that term. Both
solutions have their own problems, the first one will lead eventually to very large
data-structures, the second one depends very heavily on the quality of the extraction
and abstraction algorithms.

6.3 A Model for Expertise Based Peer Selection

In the model that we propose, peers advertise their expertise in the network. The peer
selection is based on matching the subject of a query and the expertise according to
their semantic similarity. Figure 6.1 below shows the idea of the model in one picture.

In this section we first introduce a model to semantically describe the expertise
of peers and how peers promote their expertise as advertisement messages in the net-
work. Second, we describe how the received advertisements allow a peer to select
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other remote peers for a given query based on a semantic matching of query sub-
jects against expertise descriptions. The third part describes how a semantic overlay
network can be formed by advertising expertise.

6.3.1 Semantic Description of Expertise

Peers

The Peer-to-Peer network consists of a set of peers P . Every peer p ∈ P has a
knowledge base that contains the knowledge that it wants to share.

Shared Ontology

The peers share an ontology O, which provides a shared conceptualization of their
domain. The ontology is used for describing the expertise of peers and the subject of
queries.

Expertise

An expertise description e ∈ E is a abstract, semantic description of the knowledge
base of a peer based on the shared ontology O. This expertise can either be extracted
from the knowledge base automatically or specified in some other manner.

Advertisements

Advertisements A ⊆ P × E are used to promote descriptions of the expertise of
peers in the network. An advertisement a ∈ A associates a peer p with a an expertise
e. Peers decide autonomously, without central control, whom to promote advertise-
ments to and which advertisements to accept. This decision can be based on the
semantic similarity between expertise descriptions.



6 Expertise-Based Peer Selection 125

6.3.2 Matching and Peer Selection

Queries

Queries q ∈ Q are posed by a user and are evaluated against the knowledge bases of
the peers. First a peer evaluates the query against its local knowledge base and then
decides which peers the query should be forwarded to. Query results are returned to
the peer that originally initiated the query.

Subjects

A subject s ∈ S is an abstraction of a given query q expressed in terms of the shared
ontology. The subject can be seen a complement to an expertise description, as it
specifies the required expertise to answer the query. We do not make any assumptions
about the abstraction process, which preferably is done automatically. For example,
a string matching approach could determine which parts of the ontology match with
strings in the query.

Similarity Function

The similarity function SF : S × E 7→ [0, 1] yields the semantic similarity between
a subject s ∈ S and an expertise description e ∈ E. An high value indicates high
similarity. If the value is 0, s and e are not similar at all, if the value is 1, they match
exactly. SF is used for determining to which peers a query should be forwarded.
Analogously, a same kind of similarity function E × E 7→ [0, 1] can be defined to
determine the similarity between the expertise of two peers.

Peer Selection Algorithm

The peer selection algorithm (c.f. Algorithm 1) returns a ranked set of peers. The
rank value is equal to the similarity value provided by the similarity function.

Algorithm 1 Peer Selection
let A be the advertisements that are available on the peer
let γ be a system parameter that indicates the minimal required similarity between the ex-
pertise of a peer and the topics of the query.
subject := ExtractSubject(query)
rankedPeers := ∅
for all ad ∈ A do
peer := Peer(ad)
rank := SF (Expertise(ad), subject)
if rank > γ then
rankedPeers := (peer, rank) ∪ rankedPeers

end if
end for
return rankedPeers

From this set of ranked peers one can, for example, select the best n peers.
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6.3.3 Semantic Overlay

The knowledge of the peers about the expertise of other remote peers is the basis
for the Semantic Overlay Network. Here it is important to state that this SON is
independent of the underlying network topology. At this point, we do not make any
assumptions about the properties of the topology on the network layer.
The SON can be described by the following relation:

Knows ⊆ P ×P , where Knows(p1, p2) means that p1 knows about the expertise
of p2.

The relation Knows is established by the selection of which peers a peer sends its
advertisements to. Furthermore, peers can decide to accept an advertisement, e.g. to
include it in their registries, or to discard the advertisement. The SON in combination
with the expertise based peer selection is the basis for intelligent query routing.

6.4 Expertise Based Peer Selection in Bibster

We now describe the bibliographic scenario using the general model presented in the
previous section. This scenario is identical to Bibster which is described in Chapter
18.

Peers

A researcher is represented by a peer p ∈ P . Each peer has an RDF knowledge base,
which consists of a set of bibliographic metadata items that are classified according
to the ACM topic hierarchy [1] The following example shows a fragment of a sam-
ple bibliographic item based on the Semantic Web Research Community Ontology
(SWRC)[2]:

<rdf:RDF xmlns=
"http://www.semanticweb.org/ontologies/swrc-onto.daml#"
xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:acm ="http://daml.umbc.edu/ontologies/topic-ont#">

<Publication rdf:about="dblp:persons/Codd81">
<title>The Capabilities of

Relational Database Management Systems.</title>
<acm:topic rdf:resource=

"http://daml.umbc.edu/ontologies/classification#
ACMTopic/Information_Systems/Database_Management"/>

<!-- ... -->
</Publication> </rdf:RDF>

Shared Ontology

The ontology O that is shared by all the peers is the ACM topic hierarchy. The
topic hierarchy contains a set, T , of 1287 topics in the computer science domain and
relations (T × T ) between them: SubTopic and seeAlso.
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Expertise

The ACM topic hierarchy is the basis for our expertise model. Expertise E is defined
asE ⊆ 2T , where each e ∈ E denotes a set of ACM topics, for which a peer provides
classified instances.

Advertisements

Advertisements associate peers with their expertise: A ⊆ P ×E. A single advertise-
ment therefore consists of a set of ACM topics [1] for which the peer is an expert
on.

Queries

We use the RDF query language SeRQL (chapter 1) to express queries against the
RDF knowledge base of a peer. The following sample query asks for publications
with their title about the ACM topic Information Systems / Database Management:

CONSTRUCT {pub} <swrc:title> {title} FROM {Subject} <rdf:type>
{<swrc:Publication>};
<swrc:title> {title};
<acm:topic>
{<topic:ACMTopic/Information_Systems/Database_Management>}

USING NAMESPACE
swrc=<!http://www.semanticweb.org/ontologies/swrc-onto.daml#>, rdf
=<!http://www.w3.org/1999/02/22-rdf-syntax-ns#>, acm
=<!http://daml.umbc.edu/ontologies/topic-ont#>,
topic=<!http://daml.umbc.edu/ontologies/classification#>

Subjects

Analogously to the expertise, a subject s ∈ S is an abstraction of a query q. In our
scenario, each s is a set of ACM topics, thus s ⊆ T . For example, the extracted
subject of the query above would be Information Systems/Database Management.

Similarity Function

In this scenario, the similarity function SF is based on the idea that topics which
are close according to their positions in the topic hierarchy are more similar than
topics that have a larger distance. For example, an expert on ACM topic Information
Systems/Information Storage and Retrieval has a higher chance of giving a correct
answer on a query about Information Systems/Database Management than an expert
on a less similar topic like Hardware/Memory Structures.

To be able to define the similarity of a peer’s expertise and a query subject, which
are both represented as a set of topics, we first define the similarity for individual top-
ics. [5] have compared different similarity measures and have shown that for measur-
ing the similarity between concepts in a hierarchically structured semantic network,
like the ACM topic hierarchy, the following similarity measure yields the best results:

S(t1, t2) =

{

e−αl · eβh−e−βh

eβh+e−βh if t1 6= t2,

1 otherwise
(6.1)
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Here l is the length of the shortest path between topic t1 and t2 in the graph
spanned by the SubTopic relation. h is the level in the tree of the direct common
subsumer from t1 and t2.

α ≥ 0 and β ≥ 0 are parameters scaling the contribution of shortest path length
l and depth h, respectively. Based on their benchmark data set, the optimal values
are: α = 0.2, β = 0.6. Using the shortest path between two topics is a measure
for similarity because Rada et al [7] have proven that the minimum number of edges
separating topics t1 and t2 is a metric for measuring the conceptual distance of t1 and
t2. The intuition behind using the depth of the direct common subsumer in the cal-
culation is that topics at upper layers of hierarchical semantic nets are more general
and are semantically less similar than topics at lower levels.

Now that we have a function for calculating the similarity between two individual
topics, we define SF as:

SF (s, e) =
1

|s|

∑

ti∈s

max
tj∈e

S(ti, tj) (6.2)

With this function we iterate over all topics of the subject and average their similari-
ties with the most similar topic of the expertise.

Peer Selection Algorithm

The peer selection algorithm ranks the known peers according to the similarity func-
tion described above. Therefore, peers that have an expertise more similar to that of
the subject of the query will have a higher rank. From the set of ranked peers, we
now only consider a selection algorithm that selects the best n peers.

6.5 Results of Simulation Experiments

In this section we describe the simulation of the scenario presented in section 6.4.
With the experiments we try to validate the following hypotheses:

• H1 - Expertise based selection: The proposed approach of expertise based peer
selection yields better results than a naive approach based on random selection.
The higher precision of the expertise based selection results in a higher recall of
peers and documents, while reducing the number of messages per query.

• H2 - Ontology based matching: Using a shared ontology with a metric for se-
mantic similarity improves the recall rate of the system compared with an ap-
proach that relies on exact matches, such as a simple keyword based approach.

• H3 - Semantic Overlay: The performance of the system can be improved fur-
ther, if the SON is built according to the semantic similarity of the expertise
descriptions of the peers. This can be realized, for example, by accepting adver-
tisements that are semantically similar to the own expertise.

• H4 - The “Perfect” SON: Perfect results in terms of precision and recall can be
achieved, if the SON coincides with a distribution of the documents according to
the expertise model.
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Data Set

To obtain a critical mass of bibliographic data, we used the DBLP data set, which
consists of metadata for 380440 publications in the computer science domain.

We have classified the publications of the DBLP data set according to the ACM
topic hierarchy using a simple classification scheme based on lexical analysis: A pub-
lication is said to be about a topic, if the label of the topic occurs in the title of the
publication. For example, a publication with the title “The Capabilities of Relational
Database Management Systems.” is classified into the topic Database Management.
Topics with labels that are not unique (e.g. General is a subtopic of both General
Literature and Hardware) have been excluded from the classification, because typ-
ically these labels are too general and would result in publications classified into
multiple, distant topics in the hierarchy. Obviously, this method of classification is
not as precise as a sophisticated or manual classification. However, a high precision
of the classification is not required for the purpose of our simulations. As a result of
the classification, about one third of the DBLP publications (126247 out of 380440)
have been classified, where 553 out of the 1287 ACM topics actually have classified
publications. The classified DBLP subset has been used for our simulations.

Document Distribution

We have simulated and evaluated the scenario with two different distributions, which
we describe in the following. Note that for the simulation of the scenario we dis-
regard the actual documents and only distribute the bibliographic metadata of the
publications.

Topic Distribution: In the first distribution, the bibliographic metadata are dis-
tributed according to their topic classification. There is one dedicated peer for each
of the 1287 ACM topics. The distribution is directly correlated with the expertise
model, each peer is an expert on exactly one ACM topic and contains all the cor-
responding publications. This also implies that there are peers that do not contain
publications, because not all topics have classified instances.

Proceedings Distribution: In the second distribution, the bibliographic meta-
data are distributed according to conference proceedings and journals in which the
according publications were published. For each of the conference proceedings and
journals covered in DBLP there is a dedicated peer that contains all the associated
publication descriptions (in the case of the 328 journals) or inproceedings (in the
case of the 2006 conference proceedings). Publications that are published neither in
a journal nor in conference proceedings are contained by one separate peer. The total
number of peers therefore is 2335 (=328+2006+1). With this distribution one peer
can be an expert on multiple topics, as a journal or conference typically covers mut-
liple ACM topics. Note that there is still a correlation between the distribution and
the expertise, as a conference or journal typically covers a coherent set of topics.
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Simulation Environment

To simulate the scenario we have developed and used a controlled, configurable Peer-
to-Peer simulation environment. A single simulation experiment consists of the fol-
lowing sequence of operations:

1. Setup network topology: In the first step we create the peers with their knowl-
edge bases according to the document distribution and arrange them in a random
network topology, where every peer knows 10 random peers. We do not make
any further assumptions about the network topology.

2. Advertising Knowledge: In the second step, the SON is created. Every peer sends
an advertisement of its expertise to all other remote peers it knows based on the
network topology. When a peer receives an advertisement, it may decide to store
all or selected advertisements, e.g. if the advertised expertise is semantically
similar to its own expertise. After this step the SON is static and will not change
anymore.

3. Query Processing: The peers randomly initiate queries from a set of randomly
created 12870 queries, 10 for each of the 1287 ACM topic. The peers first eval-
uate the queries against their local knowledge base and then propagate the query
according to their peer selection algorithms described below.

Experimental Settings

In our experiments we have systematically simulated various settings with different
values of input variables. In the following we will describe an interesting selected
subset of the settings to prove the validity of our hypotheses.

Setting 1

In the first setting we use a naive peer selection algorithm, which selects n random
peers from the set of peers that are known from advertisements received, but disre-
garding the content of the advertisement. In the experiments, we have used n=2 in
every setting, as a rather arbitrary choice.

Setting 2

In the second setting we apply the expertise based selection algorithm. The best
n (n=2) peers are selected for query forwarding. Here the peer selection algorithm
only considers exact matches of topics.

Setting 3

In the third setting we modify the peer selection algorithm to use the ontology based
similarity measure, instead of only exact matches. The peer selection only selects
peers whose expertise is equally or more similar to the subject of the query than the
expertise of the forwarding peer.
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Fig. 6.2. PrecisionPeers

Setting 4

In the fourth setting we modify the peer to only accept advertisements that are se-
mantically similar to its own expertise. The threshold for accepting advertisements
was set to accept on average half of the incoming advertisements.

Setting 5

In this setting we assume global knowledge to impose a perfect topology on the peer
network. In this perfect topology the knows relation conincides with the ACM topic
hierarchy: Every peer knows exactly those peers that are experts on the neighboring
topics of its own expertise. This setting is only applicable for the distribution of the
publications according to their topics, as this model assumes exactly one expert per
topic.

The following table summarizes the instantiations of the input variables for the
described settings:
Setting # Peer Selection Advertisements Topology
Setting 1 random accept all random
Setting 2 exact match accept all random
Setting 3 ontology based match accept all random
Setting 4 ontology based match accept similar random
Setting 5 ontology based match accept similar perfect

Simulation Results

Figures 6.2 through 6.5 show the results for the different settings and distributions.
The simulations have been run with a varying number of allowed hops. In the results
we show the performance for a maximum of up to eight hops. Zero hops means
that the query is processed locally and not forwarded. Please note that the diagrams
for the number of messages per query and recall (i.e. Figures 6.5, 6.3, 6.4) present
cumulative values, i.e. they include the sum of the results for up to n hops. The
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for the proceedings distribution. This results in a fairly low recall of peers and docu-
ments despite a high number of messages, as shown in Figures 6.3, 6.5, 6.4, respec-
tively. With the expertise based selection, either exact or similarity based matching,
the precision can be improved considerably by about one order of magnitude. For
example, with the expertise based selection in Setting 3, the precision of the peer se-
lection (Figure 6.2) can be improved from 0.03% to 0.15% for the topic distribution
and from 1.3% to 15% for the proceedings distribution. With the precision, also the
recall of peers and documents rises (Figures 6.3, 6.5). At the same time, the number
of messages per query can be reduced. The number of messages sent is influenced
by two effects. The first effect is message redundancy: The more precise the peer
selection, the higher is the chance of a peer receiving a query multiple times on dif-
ferent routes. This redundancy is detected by the receiving peer, which will forward
the query only once, thus resulting in a decreasing number of queries sent across the
network. The other effect is caused by the selectivity of the peer selection: It only
forwards the query to peers whose expertise is semantically more or equally similar
to the query than that of the own expertise. With an increasing number of hops, as the
semantic similarity of the expertise of the peer and the query increases, the chance
of knowing a qualifying peer decreases, which results in a decrease of messages.

R2 - Ontology based matching

The result of Figure 6.2, Setting 2, shows that the exact match approach results in a
maximum precision already after one hop, which is obvious because it only selects
peers that match exactly with the query’s subject. However, Figure 6.3 shows that
the recall in this case is very low in the case of the topic distribution. This can be
explained as follows: For every query subject, there is only one peer that exactly
matches in the entire network. In a sparse topology, the chance of knowing that rel-
evant peer is very low. Thus the query cannot spread effectively across the network,
resulting in a document recall of only 1%. In contrary, Setting 3 shows that when se-
mantically similar peers are selected, it is possible to improve the recall of peers and
documents, to 62% after eight hops. Also in the case of the proceedings distribution,
where multiple exact matches are possible, we see an improvement from 49% in the
case of exact matches (Setting 2), to 54% in the case of ontology based matches
(Setting 3). Naturally, this approach requires to send more messages per query and
also results in a lower precision.

R3 - Semantic Overlay Network

In Setting 4 the peers only accept semantically similar advertisements. This has
proven to be a simple, but effective way for creating the SON that correlates with
the expertise of the peers. This allows to forward queries along the gradient of in-
creasing semantic similarity. When we compare this approach with that of Setting
3, the precision of the peer selection can be improved from 0.15% to 0.4% for the
topic distribution and from 14% to 20% for the proceedings distribution. The recall
of documents can thus be improved from 62% to 83% for the topic distribution and
from 54% to 72% for the proceedings distribution.
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It is also interesting to note that the precision of the peer selection for the sim-
ilarity based matching decreases slightly after seven hops (Figure 6.2). The reason
is that after seven hops the majority of the relevant peers has already been reached.
Thus the chance of finding relevant peers decreases, resulting in a lower precision of
the peer selection.

R4 - The “Perfect” SON

The results for Setting 5 show how one could obtain the maximum recall and pre-
cision, if it were possible to impose an ideal SON. All relevant peers and thus all
bibliographic descriptions can be found in a deterministic manner, as the query is
simply routed along the route which corresponds to the shortest path in the ACM
topic hierarchy. At each hop the query is forwarded to exactly one peer until the rel-
evant peer is reached. The number of messages required per query is therefore the
length of the shortest path from the topic of expertise of the originating peer to that
of the topic of the query subject. The precision of the peer selection increases to the
maximum when arriving at the eight hop, which is the maximum possible length of
a shortest path in the ACM topic hierarchy. Accordingly, the maximum number of
messages (Figure 6.4) required is also eight.

6.6 Results of Field Study

In the Bibster system (c.f. Chapter 18) we implemented two different query forward-
ing strategies that ran at the same time, namely our expertise-based method and a
random query forwarding algorithm. In this way we are able to see how our approach
performs in real life. The Bibster system was made publicly available and advertised
to researchers in the Computer Science domain. The evaluation was based on the
analysis of system activity that was automatically logged to log files on the individ-
ual Bibster clients. We have analyzed the results for a period of three months (June -
August 2004). With respect to query routing and the use of the expertise based peer
selection, we were able to reduce the number of query messages by more than 50
percent, while retaining the same recall of documents compared with a naive broad-
casting approach. Figure 6.6 shows the precision of the peer selection (the percentage
of the reached peers that actually provided answers to a given query): While the ex-
pertise based peer selection results in an almost constant high precision of 28%, the
naive algorithm results in a lower precision decreasing from 22% after 1 hop to 14%
after 4 hops1.

Figure 6.7 shows the number of forwarded query messages sent per query. It can
be seen that with an increasing number of hops, the number of messages sent with the
expertise based peer selection is considerably lower than with the naive algorithm.
Although we have shown an improvement in the performance, the results also show
that with a network of the size as in the field experiment, a naive approach is also
1 The decrease is due the redundancy of relevant peers found on different message paths:

Only distinct relevant peers are considered.
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acceptable. On the other hand, with a growing number of peers, query routing and
peer selection becomes critical. In the previous discussed simulation experiments,
networks with thousands of peers improve in the order of one magnitude in terms of
recall of documents and relevant peers.
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6.7 Comparison with Results from Simulation Experiments

Overall, the results of the simulation experiments have been validated: We were able
to improve the precision of the peer selection and thus reduce the number of sent
messages. However, the performance gain by using the expertise based peer selection
was not as significant as in the simulation experiments2.
2 In terms of recall, there were no improvements at all, as even the naive algorithm generally

was able to reach all relevant peers.
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This is mainly due to the following reasons:

• Size of the network The size of the network in the field experiment was con-
siderably smaller than in the simulation experiments. While the total number of
participating peers was already fairly large (398), the number of peers online at
a certain point in time was fairly small (order of tens).

• Network topology In the field experiment we built the SON on-top of the JXTA
network topology. Again, related to the small size of the network, the JXTA
topology degenerates to a fully connected graph in most cases. Obviously, for
these topologies, a naive algorithm yields acceptable results.

• Distribution of the content In the simulation experiments, we distributed the
shared content according to certain assumptions (based on topics, conferences,
journals). In real world experiments, the distribution is much more heteroge-
neous, both in terms of the expertise of the peers and the amount of shared con-
tent.

6.8 Conclusion

In this paper we have presented a model for expertise-based peer selection, in which
a SON among the peers is created by advertising the expertise of the peers. We
have shown how the model can be applied in a bibliographic scenario. Simulation
experiments that we performed with this bibliographic scenario show the following
results:

• Using expertise-based peer selection can increase the performance of the peer
selection by an order of magnitude (result R1).

• However, if expertise-based peer selection uses simple exact matching, the recall
drops to unacceptable levels. It is necessary to use an ontology-based similarity
measure as the basis for expertise-based matching (result R2).

• An advertising strategy where peers only accept advertisements that are seman-
tically close to their own profile (i.e. that are in their semantic neighborhood) is
a simple and effective way of creating a SON. This semantic topology allows to
forward queries along the gradient of increasing semantic similarity (result R3).

• The above results depend on how closely the SON mirrors the structure of the
ontology. All relevant performance measure reach their optimal value when the
network is organized exactly according to the structure of the ontology (result
R4). Although this situation is idealized and in will in practice not be achievable,
the experiment serves to confirm our intuitions on this.

Also, the field experiment showed that we were able to improve the precision of
the peer selection and thus reduce the number of sent messages. However, the per-
formance gained by using the expertise based peer selection was not as significant
as in the simulation experiments. Summarizing, in both the simulation experiments
and the field experiments, we have shown that expertise-based peer selection com-
bined with ontology-based matching outperforms both random peer selection and
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selection based on exact matches, and that this performance increase grows when
the SON more closely mirrors the domain ontology.
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