
Mind the Data Skew: Distributed Inferencing by
Speeddating in Elastic Regions

Spyros Kotoulas
kot@few.vu.nl

Eyal Oren
eyal@cs.vu.nl

Frank van Harmelen
Frank.van.Harmelen@cs.vu.nl

Department of Computer Science
VU University Amsterdam

ABSTRACT
Semantic Web data exhibits very skewed frequency distri-
butions among terms. Efficient large-scale distributed rea-
soning methods should maintain load-balance in the face of
such highly skewed distribution of input data. We show that
term-based partitioning, used by most distributed reason-
ing approaches, has limited scalability due to load-balancing
problems.

We address this problem with a method for data distri-
bution based on clustering in elastic regions. Instead of as-
signing data to fixed peers, data flows semi-randomly in the
network. Data items “speed-date” while being temporarily
collocated in the same peer. We introduce a bias in the rout-
ing to allow semantically clustered neighborhoods to emerge.
Our approach is self-organising, efficient and does not re-
quire any central coordination.

We have implemented this method on the MaRVIN plat-
form and have performed experiments on large real-world
datasets, using a cluster of up to 64 nodes. We compute
the RDFS closure over different datasets and show that our
clustering algorithm drastically reduces computation time,
calculating the RDFS closure of 200 million triples in 7.2
minutes.

Categories and Subject Descriptors
I.2.3 [Deduction and Theorem Proving]: Inference En-
gines; E.1 [Data Structures]: Distributed data structures;
C.2.4 [Distributed Systems]: Distributed applications

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Peer-to-peer, Distributed, Reasoning, Self-organisation

1. INTRODUCTION
This paper deals with distributed reasoning over large-

scale RDF datasets. Several approaches have been pro-
posed for distributed reasoning, based for example on graph
partitioning [12], peer-to-peer networks such as distributed
hashtables (DHTs) [2, 3] or task-farming frameworks such
as MapReduce [18].

Copyright is held by the International World Wide Web Conference Com-
mittee (IW3C2). Distribution of these papers is limited to classroom use,
and personal use by others.
WWW 2010, April 26–30, 2010, Raleigh, North Carolina, USA.
ACM 978-1-60558-799-8/10/04.

These approaches distribute the reasoning load over sev-
eral compute nodes (“peers”) by partitioning the data across
those peers; the partitioning is typically based on fixed map-
pings from triple terms to peers (term-based partitioning),
sending all triples with some term to the same peer. Term-
based partitioning seems appropriate since the RDFS/OWL-
Horst rules [8, 17] require joins on at least one common term:
locating all triples that share a term on the same peer allows
the peer to perform the join.

However, as we will show in Section 3, the frequency dis-
tribution of terms in RDF data is highly skewed: some terms
occur much more often than others. As we discuss in Sec-
tion 4, this skewed term distribution prevents scalability for
any algorithm that uses term-based partitioning, since some
“unlucky” peers will receive all triples corresponding to a
popular term.

In this paper, we propose a solution based on speeddating
in elastic regions, that is robust against such highly skewed
data-distributions. In short, data is not deterministically
routed to one fixed peer, but instead is attracted to a region
of peers; the regions for each term stretch dynamically based
on the population density: if more triples arrive, more peers
are recruited and the region is stretched; once triples ar-
rive at a region, they “speeddate” with other triples to infer
conclusions. This algorithm is explained in Section 5.

The key points of our solution are:

• no (central) coordination is needed to construct and
maintain the regions: the regions emerge dynamically.

• the stretching of regions is dynamic, without requiring
upfront data analysis to determine and assign parti-
tions;

• the probability of triples meeting each other remains
high, even though triples are not assigned to one spe-
cific peer;

After discussing related work in Section 2, we will anal-
yse some realistic RDF datasets in Section 3 and show that
they are indeed highly skewed. In Section 4 we analyse
the problems this causes for deterministic term-based data-
partitioning, including both a theoretical scalability upper-
bound, and an analysis of how this upperbound works out
on some realistic RDF datasets. In Section 5 we present our
solution to these problems: speeddating in elastic regions,
and we present simulated results on the behaviour of this
approach. In Section 6 we run experiments using realistic
datasets. We compare our speeddating approach to random
exchanges, which are relatively inefficient but do not suffer

from skewed data distributions, and to deterministic term-
based partitioning, which is efficient but cannot scale in the
face of skewed distributions. We evaluate performance by
calculating the RDFS closure of large real-world datasets
(of up to 200M triples) on a cluster of up to 64 compute
nodes. These experiments show that the speeddating al-
gorithm results in competitive performance while maintain-
ing near perfect load-balancing. Furthermore, our approach
scales well with increasing numbers of compute nodes. To
our knowledge, these results are the largest reported deploy-
ment of P2P reasoning, in terms of data size.

2. RELATED WORK
Several techniques have been proposed for RDFS reason-

ing using distributed hashtables [2, 3, 5, 10, 1]. These ap-
proaches distribute the data across peers using term-based
partitioning, sending all triples with some term to the same
peer. These approaches seem to neglect the highly skewed
data distribution in real-world RDF datasets. We will dis-
cuss this issue in detail in Section 4.

MacCartney et al [12] show that graph-partitioning tech-
niques improve reasoning over first-order logic knowledge
bases, but do not apply this in a distributed or large-scale
context. Some et al [16] present a technique for parallel
OWL inferencing through partitioning, inspired by similar
techniques for Datalog [6]. They experiment with both data
partitioning (each peer gets a different chunk of data and
applies all rules) and rule partitioning (each peer gets all
data but applies only some rules), using different partition-
ing techniques. Experimental results show good speedup
(both sub- and super-linear, depending on the dataset) but
on relatively small datasets (1M triples); runtime is not re-
ported, nor scalability over larger datasets. In contrast, our
approach is scalable and does not require the expensive up-
front partitioning of the data: our partitions emerge dy-
namically, making our approach usable with node churn and
changing datasets.

Weaver and Hendler [19] present straightforward paral-
lel RDFS reasoning on a supercomputer. Their approach
replicates all schema triples to all processing nodes and dis-
tributes instance triples randomly. Each node calculates
the closure using a conventional reasoner and the results
are merged. In contrast to our approach, it does not com-
pute the complete RDFS closure, since triples extending the
RDFS schema are ignored. They evaluate their system us-
ing the LUBM benchmark and report calculating the closure
of 172M triples on 64 nodes in 262 seconds if I/O time is
not included and 466 seconds if I/O time is included. This
amounts for a throughput of 656Ktps (thousand triples per
second) with I/O time excluded and 369Ktps with I/O time
included.

Urbani et al [18] show a parallel implementation for RDFS
reasoning using the MapReduce programming paradigm. For
the DBpedia dataset (150M triples) on 64 nodes, they report
a runtime of 156 seconds. This amounts for a throughput
of 961Ktps. In this system, terms are rewritten using a dic-
tionary encoding. The time required for this was not taken
into consideration for calculating the throughput. As an in-
dication, dictionary encoding 850M triples on 32 nodes took
one hour.

As we will report in Section 6.3.4, the throughput of our
system is 450Ktps. Our system outperforms all RDF stores

mentioned in 1. Nevertheless, a direct comparison is not
meaningful since these stores do more than materialization;
namely, they index triples to resolve queries.

System Size Throughput
Our approach 195M 451Ktps
Weaver et al. 172M 369Ktps
Urbani et al. 150M 961Ktps

Table 1: Comparison of triple throughput on 64
nodes

A more direct comparison can be done with the systems
by Urbani et al [18] and Weaver and Hendler [19], since
they both do RDF materialisation. Table 1 shows the triple
throughput of each system for their best performing dataset
and comparable input size. In terms of triple throughput,
our system is in league with the competition. In addition,
our approach has some critical advantages:

• The approaches by Weaver et al. and Urbani et al. are
optimized for RDFS reasoning. Specifically, the work
by Urbani et al. circumvents load-balancing problems
by exploiting properties of large RDF datasets (e.g.
the schema is much smaller than instance data). Our
approach is generic and can be applied to any mono-
tonic logic.

• Our approach does not have a central coordination
component, which could become a bottleneck and a
single point of failure.

• In our approach, the input is constantly evaluated.
Thus, adding data while the system is running is pos-
sible.

In this paper, we focus on P2P data partitioning and rout-
ing strategies to maximise the number of triple joins (“meet-
ings”) on each peer, while maintaining load-balance in terms
of storage. This is independent from the particular reasoners
that are deployed on the nodes.

3. TERM DISTRIBUTIONS IN RDF DATA
ARE HIGHLY SKEWED

It is well-known that the frequency distribution of terms
in RDF data is highly skewed: some terms occur much more
often than others. In typical datasets, term occurrence and
other related frequencies seem to follow a power-law [13, 4].

To confirm this common knowledge, we have counted term
frequency in three large datasets used in the 2008 Billion

1http://esw.w3.org/topic/LargeTripleStores

dataset size ftopterm top term
SwetoDBLP 14.9M 17% rdf:type

Geonames 69.8M 9% geo:lat

DBpedia 110.2M 55% dbpedia:wikilink

combined 194.9M 31% dbpedia:wikilink

all 864.8M 14% "0"^^xsd:integer

Table 2: Datasets, with size (in nr. of triples) and
fraction of most popular term

 0%

 10%

 20%

 30%

 40%

 50%

 60%

d
b

:w
ik

il
in

k

sk
o

s:
su

b
je

ct

rd
fs

:l
ab

el

d
b

:r
ef

er
en

ce

d
b

:t
em

p
la

te

d
b

:r
ed

ir
ec

t

fo
af

:p
ag

e

d
b

:p
h

o
to

d
b

:a
b

st
ra

ct

rd
fs

:c
o

m
m

en
t

re
la

ti
v

e
fr

eq
u

en
cy

term

(a)

 0%

 2%

 4%

 6%

 8%

 10%

 12%

 14%

 16%

 18%

rd
f:

ty
p

e

rd
fs

:l
ab

el

d
b

lp
:y

ea
r

d
b

lp
:l

m
d

d
c:

re
la

ti
o

n

rd
f:

S
eq

rd
f:

_1

d
b

lp
:a

u
th

o
r

d
b

lp
:p

ag
es

rd
f:

_2

re
la

ti
v

e
fr

eq
u

en
cy

term

(b)

Figure 1: Top-10 terms in DBpedia and SwetoDBLP

Triple challenge2, namely the DBpedia, Geonames, and Swe-
toDBLP datasets. We have also aggregated these three
datasets for later experiments; finally, we also counted term
frequency in all Billion Triple datasets combined, consist-
ing of 865M triples in total. Table 2 and Figure 1 give an
overview of these datasets and the fraction of triples that
contain the most-popular term.

Most popular terms are URIs. In the DBpedia dataset,
the most common term is dbpedia:wikilink, appearing in
55% of the triples; in Geonames it is geo:lat, appearing
in 9% of triples, in SwetoDBLP it is rdf:type, appearing
in 17% of the triples. In all datasets combined (including
data from Web crawls, US census, Freebase, etc.) the most
frequent term was the literal “0”, which occurred in 14%
of the dataset (123M triples); next was rdf:value in 7%
(63M triples), dbpedia:wikilink in 7%, rdf:type in 5%,
and dc:title in 4% of the triples.

As we will explain in Section 4.3, these numbers are bad
news indeed for any deterministic term-based partitioning
strategy. The single peer responsible for the most popular
term would by itself be responsible for anywhere between
9–55% of the entire dataset, irrespective of how many other
peers are available for the other terms. We will also show
that load-balancing techniques for DHTs do not help either.

4. LIMITATIONS OF TERM-BASED PAR-
TITIONING

A distributed reasoner scales by distributing the compu-
tation. To distribute the computation, the data must be
partitioned over the peers. However, to produce a logical
conclusion, triples involved in the premisses must be located
at the same peer.

Most approaches for data partitioning described in the
literature apply term-based partitioning, grouping triples
based on (a combination of) their terms. Term-based par-
titioning is analogous to the database indices maintained
by typical RDF stores, which group triples on terms and
combinations of terms (compound keys). Given the skewed
distributions of data (shown in section 3), these groups will
be of very uneven size. In a centralised setting, term-based
partitions are not a problem since all groups share the same
storage space. However, as we will see, in a distributed set-

2http://www.cs.vu.nl/~pmika/swc/btc.html

ting, term-based partitioning leads to load-balancing prob-
lems.

Most distributed reasoning approaches also use term-based
partitioning, assigning all data in a partition to some specific
peer. This peer is either chosen in a centralised manner (par-
allel computing) or decentralised (DHT). Most approaches
for distributed RDFS/OWL reasoning use term-based par-
titioning on top of DHTs. We focus on the partitioning
strategy, irrespective of the underlying network overlay. We
will show that term-based partitioning leads to severe stor-
age load-balancing problems and does not scale for Semantic
Web data.

4.1 Reasoning with term-based partitioning
Distributed hashtables can be used to partition triples in

a distributed manner, using the terms (subject, predicate or
object) of the triples as keys for the DHT. In this way, all
triples with a given term will be located in the same peer,
and that peer can draw all conclusions that can be derived
from those triples [5, 10, 1].

When using term-based partitioning, RDFS reasoning is
straightforward. As shown in Table 3, all RDFS rules have
either one or two antecedents. For rules with only one an-
tecedent no join is needed, and each peer that hosts that
triple can infer the consequent. For rules with two an-
tecedents, the antecedents always share one or more terms;
the triples will therefore be co-located on the peer responsi-
ble for that shared term.

The basic algorithm for forward-chaining RDFS reasoning
with term-based partitioning is thus: (a) each triple is in-
serted three times on the DHT, using each of its terms as a
key, (b) peers apply all RDFS rules locally, on their data, (c)
inferred triples are also inserted (three times) in the DHT;
these steps are repeated until a fixpoint is reached and no
new triples are inferred. A similar algorithm can be used for
OWL reasoning, as demonstrated by Fang et al [5].

4.2 Where does it go wrong?
In principle, forward-chaining based on term-based parti-

tioning works. However, as explained, triple terms follow a
highly skewed distribution. In fact, we can expect the most
popular term to appear in around 10–20% of all triples (see
Table 2). Using term-based partitioning, a single peer will
be responsible to store all triples with this term. This will

1: s p o (if o is a literal) ⇒ :n rdf:type rdfs:Literal
2: p rdfs:domain x & s p o ⇒ s rdf:type x
3: p rdfs:range x & s p o ⇒ o rdf:type x

4a: s p o ⇒ s rdf:type rdfs:Resource
4b: s p o ⇒ o rdf:type rdfs:Resource
5: p rdfs:subPropertyOf q & q rdfs:subPropertyOf r ⇒ p rdfs:subPropertyOf r
6: p rdf:type rdf:Property ⇒ p rdfs:subPropertyOf p
7: s p o & p rdfs:subPropertyOf q ⇒ s q o
8: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf rdfs:Resource
9: s rdf:type x & x rdfs:subClassOf y ⇒ s rdf:type y

10: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf s
11: x rdfs:subClassOf y & y rdfs:subClassof z ⇒ x rdfs:subClassOf z
12: p rdf:type rdfs:ContainerMembershipProperty ⇒ p rdfs:subPropertyOf rdfs:member
13: o rdf:type rdfs:Datatype ⇒ o rdfs:subClassOf rdfs:Literal

Table 3: RDFS rules [8]

create a significant data load imbalance that will inhibit the
scalability of the system. In general, the peers responsible
for popular terms will become “hotspots”: they will have to
store a large portion of the complete dataset and their data
will be requested very frequently.

In the ideal situation, a single peer will have to store only
all triples with one term (typically though, each peer will
store triples for many keys). Even then, the maximum ca-
pacity of the system will be limited by the maximum ca-
pacity of a single peer, namely the peer storing the most
popular term. This observation holds for any system that
partitions data using fixed keys:

Proposition 1 (Limited scalability). Assume a dis-
tributed system storing key/value pairs. Data must be dis-
tributed over the peers such that all items with the same key
reside on the same peer. Let each peer have some fixed ca-
pacity for storing data. Let ftopterm denote the frequency of
the most popular key in the system. Any distributed system
that deterministically partitions data on keys will be able to
handle at most 1/ftopterm more data than the corresponding
centralised approach, regardless of the number of peers.

Proof. Let us assume that each peer can handle a maxi-
mum of c data. Hence, the centralised system (i.e. a system
with one peer) will be able to handle at most c data. We will
assume an ideal distributed system with complete knowledge
of the key distribution. Such a system will assign the com-
plete capacity of one peer to the most frequent key. It is not
possible to assign several peers because that would break the
premise that all items with the same key should be located
at the same peer. Let us call the total amount of data in
the distributed system N . By definition, we have that the
frequency of the most common term would be the number
of its occurrences in the dataset divided by the size of the
dataset (ftopterm = N(topterm)/N). Since all items with
the most popular key will need to be stored at the same peer,
we also have that N(topterm) ≤ c. Thus ftopterm · N ≤ c,
thus N ≤ c · 1/ftopterm.

This “hotspot” problem was identified by Cai [2], but only
in the context of query answering. Their solution (ignore
popular keys and ignore queries over those keys) does not
work for the reasoning scenario, since popular terms are
used for reasoning (e.g. consider RDFS rule 2 or 3 and
db:wikilink as p).

dataset triples ftopterm max. triples
SwetoDBLP 14.9M 17% 7.1M
Geonames 69.8M 9% 13.3M
DBpedia 110.2M 55% 2.1M
combined 194.9M 31% 3.9M
all 864.8M 14% 8.6M

Table 4: Maximum triple capacity for systems doing
deterministic term partitioning

4.3 Effect on distributed reasoning
We will now show the consequences of this theoretical

analysis on realistic RDF datasets. The compute nodes used
in our experiments (see Section 6) have a reasoner capacity
of 100.000 triples. Furthermore, they are able to store up
to 1.100.000 triples in in-memory buffers. Any additional
triples have to be swapped to disk in a random manner (for
performance, we do not maintain a disk index). Thus, we
will assume a capacity c = 1.200.000 triples for the deter-
ministic system. According to Proposition 1, the maximum
size of the system is inversely proportional to the relative
frequency of the most popular term. Table 4 shows the re-
sulting maximum attainable size for a system with determin-
istic term-based partitioning, based on the observed term
distributions. It is obvious that such systems cannot handle
web-scale datasets such as the ones mentioned in Table 4.
Note that these numbers even ignore the derived triples.

Since we can expect the most-frequent term to occur in
10–20% of the triples, we can conclude from Proposition 1
that regardless of the number of peers, a distributed system
with term-based partitioning cannot cope with more than
5–10x the triples of a centralised approach. The effect of
this limitation are:

• adding more peers will not alleviate this problem, since
the triples with the most popular term are still routed
to the same peer.

• standard techniques for load-balancing in DHTs [11]
will not improve the situation: typically, they either
adjust the key range that one peer handles (for which
we have already assumed a perfect mechanism) or make
multiple peers responsible for a key. The latter will
also not help, since then the keys will not be located
in the same peer, which is required for performing the
subsequent inference steps.

• the situation seems almost a Catch-22 [9]: the triples
cannot be at the same peer, because they do not fit
together; if we distribute them over many peers, they
fit, but then they do not meet; if we make them meet
in some peer, they will again not fit.

• subdividing the keys into multiple partitions, and dis-
tributing those partitions across multiple peers, will
not help, since URIs are atomic identifiers: the joins
take place at the level of URIs and we have no mech-
anism to further partition these URIs. Partitioning
on compound keys (sp, po, . . .) instead of single keys
would lead to the same problem.

Ideally, we would like to keep the optimal clustering of
term-based partitioning (triples with shared terms go to one
peer, where they meet), while alleviating the load caused
by popular terms by clustering these over as many peers
as needed. Our solution, presented next, takes exactly this
approach.

5. SOLUTION: SPEEDDATING IN ELASTIC
REGIONS

As described above, any distributed system relying on
term-based partitioning suffers from limited scalability be-
cause a single peer must store all items with the most-
popular key. Nevertheless, in order to make inferences, triples
with the same key should be collocated.

In this section, we present our“speeddate”approach which
introduces a temporal dimension to triple collocation: we re-
quire that triples with the same key are collocated at some
point in time. Instead of deterministically routing data to
a fixed peer, randomised data exchanges are used to even-
tually collocate data with the same key. Furthermore, we
introduce a routing policy that clusters data during these
random exchanges to increase the probability that data with
the same key are collocated.

5.1 Speeddating through constant data
exchanges

In our method, autonomous peers constantly re-partition
the data by randomly exchanging data. Through these data
exchanges, triples that produce inference will be eventually
collocated. In previous work, we have shown that, for a sys-
tem performing random exchanges, this collocation happens
in finite time [14]. Random exchanges are load-balanced
but inefficient; we increase efficiency by clustering data, as
explained in the next subsection.

The “speeddate” approach leads to the memory hierarchy
shown in Figure 2: together, all peers can store billions of
triples, and exchange these over the network. Reasoning
is then performed in-memory on each peer; for this, peers
have a limited capacity of some hundreds of thousands of
triples. The total number of triples that can be kept in-
memory is an order of magnitude higher (because less indices
are needed than for reasoning). Assuming that the total
memory capacity of all peers is less than the space required
to store all triples, some data needs to be paged to disk.
This data is not indexed, since this would incur significant
overhead.

5.2 Clustering in elastic regions

Reasoner

Memory

Disk

Network

10
5
Triples

10
6
Triples

10
7
-10

8
Triples

10
8
-10

9
Triples

Local

Clustering

Random

Distributed

Clustering

Figure 2: Memory hierarchy in the “speeddate” ap-
proach

Despite the guarantee of eventual completeness, completely
random partitioning is inefficient and not scalable: as the
number of peers, triples and keys increases, the chance of
relevant triples being collocated over time decreases asymp-
totically.

We introduce two methods to improve the chance that
triples with the same key are collocated, shown in see Fig-
ure 2. The first performs load-balanced distributed cluster-
ing across the network. The second performs local clustering
by selecting the data that will be loaded to the reasoner from
memory.

5.2.1 Distributed clustering
In this section, we will describe a fully distributed and

load-balanced partitioning method in which triples with a
shared term are likely to end up in the same peer (Algorithm
1).

The main idea is that peers do not exchange random data,
but exchange data which, to their knowledge, is most rele-
vant for the receiver. The peer knowledge is very lightweight,
namely a numeric identifier for each peer, assigned randomly
from a 32-bit space. Similarly, terms get a key in the same
space, using some hash-function on their string representa-
tion. In practice, this means that terms will be “closer” to
the identifiers of some peers. Peers then use the numeric
ordering over term keys and peer identifiers to decide which
triples to exchange.

Algorithm 1 Distributed clustering

Let I be the set of triples in local node, p the set of IDs
of neighboring peers and S the local peer’s ID.
procedure main

while true do
p← select gaussian random(P, S)
e← arg(mine∈I{|key(e)− p|}) . select the triple

. with key closest to

. selected peer’s key
send(e, p)
I ← I − e

end while
end procedure
procedure respond to(p)

e← arg(mine∈I{|key(e)− p|})
send(e, p)
I ← I − e

end procedure

For each triple in the system, we create three replicas.
Each of these replicas is assigned a key using a hash-function
on s, p or o, as in term-based partitioning. A request for
triples includes the identifier of the requesting peer. The
requested peer responds with those triples whose keys are
closest to the identifier of the requesting peer. After send-
ing, the responding peer removes the triples from his own
storage. Exchanges are repeated ad infinitum.

Using this ordering of peers and terms, and the described
response strategy, triples mentioning particular terms will
cluster around particular peers (as shown below). To further
increase clustering, peers also prefer requesting data from
adjacent peers (in the sense of adjacent peer identifiers).

Figure 3(c) shows the data distribution on a simulated run
of our algorithm, compared to random exchanges (3a) and
deterministic term-based partitioning (3b). The horizontal
axis represents the peer identifiers while the vertical axis the
data keys. The intensity of the dots represents the number
of triples with the given key. The keys in the bottom of the
graph are more popular than the keys at the top.

In the random exchange approach (left), we can see that
keys are uniformly distributed across peers, since dots are
more or less of equal intensity. In term-based partitioning
approach (middle), we can see that keys are mapped to a
specific peer. Although ideal for clustering, as triples with
the same key are located on the same peer, this partitioning
is detrimental to load balancing, since peers responsible for
popular items will have to store excessive amounts of data.
For our distributed clustering approach (right), we observe
the following:

• regions emerge: triples with the same key form hori-
zontal lines, which means that they are stored by ad-
jacent peers. The intensity of the dots is much higher
than that of the random approach, but less than that of
the term-based partitioning. Triples will float around
the clustered regions, while “speeddating” with other
triples with the same key.

• regions are elastic: the size of the lines depends on the
frequency of the key: the lines in the top part of the
figure (which refer to infrequent keys) are shorter than
those in the bottom. More peers “help” to maintain
the most frequent keys, which is beneficial for load
balancing. This elastic effect (larger regions for more
popular terms) is not obtained by some a priori or
central allocation strategy, but is an emergent property
of the routing strategy.

The advantages of our approach are the following:

• no upfront data analysis: our approach does not re-
quire any a priori data analysis. It is not required to
know the frequency distribution of keys. Furthermore,
it can support heterogeneous networks where not all
peers have the same processing and data storage ca-
pacity; peers do not even need to be known in advance.

• no central organisation: the network self-organises to
respond to shifts in data distribution and peers leaving
or joining.

• peer load is balanced : as we will show in the results,
our approach is as well load-balanced as the random
approach.

• more clustered than random: as we will show in the
results, our approach clusters data much better than
the random approach, allowing triples to meet (and
thus to infer new triples) with very high frequency.

5.2.2 Local clustering
We expect that loading triples with the same terms/keys

in the reasoner should lead to more derivations. We there-
fore perform local term-based partitioning: we index the
in-memory triples based on s, p and o; when loading triples
into the reasoner, we prefer triples that share terms. Re-
member that although all triples that share a certain term
are likely to end up at the same peer due to our cluster-
ing algorithm discussed above, the converse does not hold:
not all triples at a given peer will share terms, because each
peer will be responsible for many different terms (after all,
the number of terms will be far greater than the number of
peers). Triples stored on disk are not indexed, because of
the associated performance cost.

6. EXPERIMENTS
We have implemented our method on the MaRVIN plat-

form[14, 15]. Although the techniques presented in this pa-
per are peer-to-peer in nature (i.e. all nodes have symmetric
functionality and there is no central control), we have con-
ducted our experiments on a distributed compute cluster.
This means that our system is peer-to-peer, but has not
been evaluated in a wide area network. Thus, our evalua-
tion mainly dealt with computational cost and issues such
as bandwidth, peer failures and network latency have not
been considered. Our implementation is open-source3.

Since our approach deals with routing of triples, and not
with the inference process that happens on the peers once
the triples have been collocated, our approach is indepen-
dent of any particular reasoner or logic (as long as it is
monotonic). Thus, we will abstract from the actual rea-
soning in order to make our evaluation independent of the
logic used. Based on the observation that all RDFS and
most OWL-Horst rules either fire on a single triple or two
triples sharing one or two terms, we will count these encoun-
ters. These encounters are essentially join operations over
the triples.

For our evaluation, we will name unary join a join of two
triples sharing a term and binary join a join of two triples
sharing two terms. To illustrate our case, we note that the
RDFS subclass transitivity rule (rule 11 in Table 3), requires
a binary join: the two triples share two terms: the predicate
subclassOf and the variable y. A unary join refers to rules
such as rule 7, in which the two triples only share the vari-
able x. Despite the name “unary”, even the unary joins are
indeed joins: they require that two triples have one term
in common, and a join must be performed across these two
triples.

To demonstrate the scalability of our system in absolute
terms, we will calculate the closure of some of the Billion
Triple datasets, listed in Table 2. Our routing strategy is
independent of the reasoner used on each node. For the
purposes of our experiments, we have implemented a sim-
ple and fast RDFS reasoner that produces the closure of
the input, but similar results could have been achieved with
an off-the-shelf reasoner such as Sesame, OWLIM or Jena.

3http://svn.larkc.eu/public/marvin

(a) (b) (c)

Figure 3: Simulated data distribution with (a) random exchanges, (b) term-based partitioning and (c) our
distributed clustering algorithm

The system was stopped manually when no new triples were
derived.

6.1 Experimental platform
Our experiments were run on the Distributed ASCI Super-

computer 3 (DAS-3). We have used up to 64 nodes with two
dual-core processors and 4GB of RAM each interconnected
through 10Gbps Myrinet.

Initially, data was placed in a shared file-system and ran-
domly partitioned. Each node read a random partition.

We should note that although the network could sustain
very high transfer rates (some 250MB/s), the bottleneck in
our system, if no reasoning is employed on the peers, is the
CPU throughput for marshalling and unmarshalling data.
When peers apply local reasoning on their data, the reasoner
is typically the scalability bottleneck.

6.2 Evaluation criteria
We will evaluate our approach according to the following

criteria:

• unary and binary joins: as described above, we use
the number of unary and binary joins performed per
second as the criterion on how fast can our system
match rules based on these joins. We believe that this
is a good measure for comparison between different
clustering methods because it applies to any logic with
such rules.

• triples produced : to demonstrate the performance of
our system in absolute terms, we use the number of
triples produced. Note that this is not as general as the
previous measure, since it is dependent on the actual
reasoner deployed on the nodes, but it allows compar-
ison with other systems.

• data transferred : the amount of data processed per
peer is an indication of load-balancing. A skewed load
distribution would mean that some peers are under-
utilised.

• number of nodes: we will show the ability of our system
to perform better given additional compute nodes us-
ing the notions of speedup and speedup efficiency. The

ideal 100% efficiency (n-fold increase of nodes leading
to an n-fold increase in speed), is typically not achieved
due to coordination overhead.

• ruleset : we can distinguish two rule categories in Ta-
ble 3: the ones that have one antecedent (rules 1, 4a,
4b, 6, 7, 8, 10, 12 and 13) and rules that have two an-
tecedents (rules 2, 3, 5, 9 and 11). The former are easy
to implement in a distributed setting: create arbitrary
partitions, and apply each rule to each triple in each
partition. The latter rules are more challenging, since
they require a join over two triples sharing one or two
terms. When performing RDFS reasoning, we focus on
the “hard” rules: those requiring a join over multiple
triples. Although we have validated our results using
the “easy” rules as well we will report only reasoning
results with the “hard” ones.

6.3 Results
In this section, we will present the results of our empirical

evaluation.

6.3.1 Data clustering
To evaluate the performance of our clustering algorithm,

we have performed experiments on the SwetoDBLP dataset
on 32 nodes. Instead of a reasoner, we have used a join
counter for the unary and binary joins of the data loaded.

Figure 4 shows the number of joins performed per peer
per second. Our first observation is that, regardless of the
clustering method, the system can perform a very large num-
ber of joins per second, reaching an aggregate of 8.1 billion
joins per second over 32 nodes (both unary and binary joins
combined). Note that the same join may be counted twice,
since there is no efficient way to store which joins have al-
ready occurred.

We compare four clustering techniques: random uses ran-
dom exchanges and loads random data, local clusters data
locally (i.e. selects data that have some term in common
to load from storage), distributed uses the speeddate algo-
rithm described in section 5.2.1 for exchanges between peers
while loading random data from storage and full combines
the previous two approaches.

binary
unary

 0

 50,000,000

 100,000,000

 150,000,000

 200,000,000

 250,000,000

 300,000,000

random full local distributed compound

jo
in

 t
h

ro
u

g
h

p
u

t
(m

ee
ti

n
g

s/
s)

Figure 4: Join throughput (meetings/s) with various
clustering methods

Our results show that either local or distributed clustering
benefits the join throughput of our system. The combina-
tion of local and distributed clustering yields an additional
benefit, showing an improvement of 71% for unary joins and
159% for binary joins, compared to the random approach.

We should also note that these results do not show the full
benefit of the clustering method. The distributed clustering
algorithm creates a replica for each term in the triple, and
routes them in the network. When a triple is loaded in a
peer, only one of its terms was actually used for clustering:
the one that was used as a key. On the other hand, when we
count the joins, all terms are taken into account. This means
that each triple replica is clustered according to only one of
its terms. Any joins happening with any of the other two
terms will be by “chance”, similar to the random approach.
In practice, the result for the distributed clustering refers to
distributed clustering for one third of the terms, and random
exchanges for two thirds of the terms.

6.3.2 Compound keys
We have also tested a variant of full in which not only the

terms of each triple are used as keys for speeddating, but
also combinations of terms. Namely, besides using s, p and
o as keys, we also use sp, po and so. Such compound keys
are common in the literature on indexing RDF data [7, 20].

This method produces twice the number of replicas for
each triple, but should benefit the binary joins, since triples
sharing two terms would have an additional chance to be
collocated on the same peer, since they share an additional
key.

Our results indicate that this is not the case: the overhead
of maintaining additional triple replicas outweighs the bene-
fits of the additional keys for binary joins. Compared to the
standard approach, we get a decrease in join throughput of
26% for unary joins and 27% for binary joins.

6.3.3 Load Balancing
Figure 5 shows that the performance improvement of our

strategy over randomised allocation of triples to peers does
not go at the cost of load-balancing. Even in the face of
our highly skewed datasets, the load across nodes in the
speeddating approach is almost as balanced as the perfectly
load-balanced uniform random partitioning.

6.3.4 Scalability over peers and data
We also demonstrate the performance of our system on

RDFS reasoning. Figure 6 shows the time needed to com-

nodes runtime (s) speedup efficiency
1 2276 1.00 1.00
2 1213 1.88 0.94
4 598 3.81 0.95
8 330 6.90 0.86

16 197 11.55 0.72
32 179 12.72 0.40
64 88 25.86 0.40

(a)

nodes runtime (s) speedup efficiency
1 15518 1.00 1.00
2 10432 1.49 0.74
4 5541 2.80 0.70
8 2822 5.50 0.69

16 1480 10.49 0.66
32 767 20.23 0.63
64 433 35.84 0.56

(b)

Figure 6: Closure time with increasing nr. of peers,
on (a) SwetoDBLP and (b) combined datasets

pute the complete RDFS closure of the SwetoDBLP and
combined datasets (SwetoDBLP, DBpedia and Geonames),
on increasing number of nodes. Also shown in the tables
is the speedup (how much faster is the system with added
nodes) and the resulting speedup efficiency. The latter is
defined as the speedup divided by the number of nodes.

We can see that the time needed to compute the RDFS
closure of the SwetoDBLP dataset on 64 nodes is 88 sec-
onds. The input data contains some 15M triples, the clo-
sure (we consider only the“hard”rules) contains some 21.5M
triples. Similarly, the time needed to compute the closure
for the combined datasets (SwetoDBLP, DBpedia and Geon-
ames) on 64 nodes is 7.2 minutes. The input data contains
some 195M triples, the “hard” closure contains some 220M
triples. This amounts to an aggregate throughput of 450.000
triples/sec.

We can see that the system scales gracefully with the num-
ber of nodes. For the SwetoDBLP dataset, using additional
nodes becomes increasingly inefficient, since the time to pro-
cess all data is overshadowed by the time to set up the en-
vironment. We can see a similar situation for the combined
dataset, albeit with a less steep curve, since the input is
much larger.

Figure 7 shows the triple production curve for 32 nodes
for the SwetoDBLP and the combined datasets. For com-
parison, the limited scalability of term-based partitioning
approaches is also shown. For SwetoDBLP, given that the
most-popular term in this dataset occurs in 17% of the
triples, and assuming a maximum capacity per peer of 1.2M
triples, term-based partitioning can only handle 7M triples,
which is not even enough to store the input data, let alone
the closure. Similar (but worse) numbers apply for the com-
bined datasets.

6.3.5 Completeness
All clustering techniques produce complete results for the

RDFS rules with multiple antecedents. We have cross-checked
our reasoning results with those presented in [18]. Further-
more, we have verified the correctness of our results for the

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

G
B

 r
e
c
e
iv

e
d

node

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

G
B

 r
e
c
e
iv

e
d

node

(b)

Figure 5: Load-balance across peers in (a) speeddate and (b) random

0

5

10

15

20

25

 0 1 2 3 4 5

tr
ip

le
s

pr
od

uc
ed

 (
x1

M
)

time (min)

SwetoDBLP
DHT limit on 32 nodes

(a)

0

50

100

150

200

250

 0 2 4 6 8 10 12 14

tr
ip

le
s

pr
od

uc
ed

 (
x1

M
)

time (min)

combined datasets
DHT limit on 32 nodes

(b)

Figure 7: Time to compute closure for (a) SwetoDBLP and (b) combined datasets (on 32 nodes)

SwetoDBLP dataset by loading it in on single machine, us-
ing the reasoner we have developed.

In all of this, remember that we are ignoring single-antecedent
rules in our experiments (rules 1, 4a, 4b, 6, 7, 8, 10, 12
and 13). To output the complete closure, the best approach
would be to first make all “difficult”derivations, and then, in
a single pass, apply all the “simple” rules. Note that main-
stream reasoners also typically ignore the trivial rules.

7. CONCLUSION
In this paper we have studied the problem of data skew in

Semantic Web datasets, and how it affects distributed rea-
soners. We established the presence of substantial data skew
in some realistic Semantic Web data. We showed theoreti-
cally that distributed reasoners would suffer from substantial
load balancing problems if they were to use a deterministic
term partitioning strategy (as most current systems do). We
gave a theoretical bound on the performance ceiling of such
systems, and illustrated this bound on realistic datasets.

To alleviate these load-balancing problems, we proposed a
novel P2P technique that relies on constant data exchanges
and clustering, while maintaining efficiency. Instead of de-
terministically routing triples with a shared term to a sin-
gle peer (which causes load-balancing problems for skewed

data), our approach attracts these terms to a region around a
single peer, with the size of these regions“elastically”adjust-
ing their size depending on the density of the triples in the
region. The triples then move around in the self-adjusting
region in order to meet other triples for inferencing (the
“speeddating”). Our approach is fully self-organising, needs
no a priori data analysis and no upfront parameter adjust-
ments, leading to emerging elastic neighbourhoods and self-
adjusting load-balancing.

We evaluated our technique on large scale datasets from
the Web. Our evaluation is based on the number of data-
joins that any reasoning system would have to perform, mak-
ing our results independent of the choice of any particular
reasoner. Our results show that our clustering technique
approach clearly outperforms an approach based on ran-
dom exchanges, and clearly outscales techniques based on
term-partitioning. We computed the RDFS closure of 200M
triples in 7.2 minutes on a 64-node cluster, with an aggregate
throughput of 450.000 triples/sec.

Calculating the RDFS closure is an important building-
block towards scalable reasoning and querying. In this re-
spect, our method can be used to perform fast, parallel for-
ward reasoning on the input of a conventional triple store

such as OWLIM or 4store4. Alternatively, it can be used
for methods that extract subsets of a materialised dataset,
like the one presented in [21]. Finally, our method can be
extended to querying, since matching the antecedents of a
rules is equivalent to querying. Yet, there is a crucial differ-
ence: for reasoning, the main performance goal is to match
as many rules as possible in a given amount of time. For
querying, the response time also plays a very important role.
Investigating the applicability of our method to querying is
future work.

8. ACKNOWLEDGEMENTS
This work was supported by the EU IST project LarKC

(FP7-215535).

9. REFERENCES
[1] D. Battré, A. Höing, F. Heine, and O. Kao. On triple

dissemination, forward-chaining, and load balancing in
DHT based RDF stores. In Proceedings of the VLDB
Workshop on Databases, Information Systems and
Peer-to-Peer Computing (DBISP2P), 2006.

[2] M. Cai and M. Frank. RDFPeers: A scalable
distributed RDF repository based on a structured
peer-to-peer network. In Proceedings of the
International World-Wide Web Conference, pages
650–657, 2004.

[3] M. Cai, M. Frank, B. Yan, and R. Macgregor. A
subscribable peer-to-peer rdf repository for distributed
metadata management. Web Semantics: Science,
Services and Agents on the World Wide Web,
2(2):109–130, December 2004.

[4] L. Ding and T. Finin. Characterizing the Semantic
Web on the web. In Proceedings of the International
Semantic Web Conference (ISWC), pages 242–257,
2006.

[5] Q. Fang, Y. Zhao, G. Yang, and W. Zheng. Scalable
distributed ontology reasoning using DHT-based
partitioning. In Proceedings of the Asian Semantic
Web Conference (ASWC), 2008.

[6] S. Ganguly, A. Silberschatz, and S. Tsur. A framework
for the parallel processing of datalog queries. In
Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages
143–âĂŞ152, 1990.

[7] A. Harth and S. Decker. Optimized index structures
for querying RDF from the web. In Proceedings of the
Latin-American Web Congress (LA-Web), pages
71–80, 2005.

[8] P. Hayes, editor. RDF Semantics. W3C
Recommendation, Feb. 2004.

[9] J. Heller. Catch-22. Simon and Schuster, 1961.

[10] Z. Kaoudi, I. Miliaraki, and M. Koubarakis. RDFS
reasoning and query answering on top of DHTs. In
Proceedings of the International Semantic Web
Conference (ISWC), 2008.

[11] D. R. Karger and M. Ruhl. Simple efficient
load-balancing algorithms for peer-to-peer systems.
Theoretical Comput. Sci., 39(6):787–804, 2006.

[12] B. MacCartney, S. A. McIlraith, E. Amir, and
T. Uribe. Practical partition-based theorem proving

4http://www.4store.org/

for large knowledge bases. In Proceedings of the
International Joint Conference on Artificial
Intelligence (IJCAI), 2003.

[13] E. Oren, R. Delbru, M. Catasta, R. Cyganiak,
H. Stenzhorn, and G. Tummarello. Sindice.com: A
document-oriented lookup index for open linked data.
International Journal of Metadata, Semantics and
Ontologies, 3(1):37–52, 2008.

[14] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes, A. ten
Teije, and F. van Harmelen. Marvin: A platform for
large-scale analysis of Semantic Web data. In
Proceedings of the International Web Science
conference, Mar. 2009.

[15] E. Oren, S. Kotoulas, G. Anadiotis, R. Siebes,
A. Ten Teije, and F. van Harmelen. Marvin:
distributed reasoning over large-scale semantic web
data. Journal of Web Semantics, 2009.

[16] R. Soma and V. Prasanna. Parallel inferencing for
OWL knowledge bases. In International Conference on
Parallel Processing, pages 75–82, 2008.

[17] H. J. ter Horst. Completeness, decidability and
complexity of entailment for RDF schema and a
semantic extension involving the OWL vocabulary.
Journal of Web Semantics, 3(2–3):79–115, 2005.

[18] J. Urbani, S. Kotoulas, E. Oren, and F. van Harmelen.
Scalable distributed reasoning using mapreduce. In
Proceedings of the International Semantic Web
Conference (ISWC), 2009.

[19] J. Weaver and J. Hendler. Parallel materialization of
the finite rdfs closure for hundreds of millions of
triples. In 8th International Semantic Web Conference
(ISWC2009), October 2009.

[20] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
Sextuple indexing for Semantic Web data
management. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages
1008–1019, 2008.

[21] G. T. Williams, J. Weaver, M. Atre, and J. A.
Hendler. Scalable reduction of large datasets to
interesting subsets. In 8th International Semantic Web
Conference (Billion Triples Challenge), 2009.

