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Abstract

In this book we will be concerned with a particular type of architecture for reasoning
systems, known as meta-level architectures.

The book is divided in two parts. The first part discusses general properties of meta-
level systems, whereas the second part concentrates on a particular efficiency problem
associated with meta-level systems.

After presenting the arguments for meta-level systems (chapter 1), we discuss a number
of systems in the literature that provide an explicit meta-level architecture (chapter 2), and
these systems are compared on the basis of a number of distinguishing characteristics. This
leads to a classification of meta-level architectures (chapter 3). Within this classification
we compare the different types of architectures, and argue that one of these types, called
bilingual meta-level inference systems, has a number of advantages over the other types.
We study the general structure of bilingual meta-level inference architectures (chapter 4),
and we discuss the details of a system that we implemented which has this architecture
(chapter 5). One of the problems that this type of system suffers from is the overhead that
is incurred by the meta-level effort. We give a theoretical model of this problem, and we
perform measurements which show that this problem is indeed a significant one (chapter
6). Chapter 7 discusses partial evaluation, the main technique available in the literature to
reduce the meta-level overhead. This technique, although useful, suffers from a number of
serious problems. We propose another technique, that we baptise partial reflection (chapter
8 ), which can be used to reduce the problem of meta-level overhead without suffering from
these problems. Chapter 9 concludes and discusses future research directions.
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Preface

This book is a slightly revised version of the dissertation I submitted for a Ph.D. degree
at the Department of Artificial Intelligence of the University of Edinburgh in 1989.

Parts of the content of this book have been published elsewhere, and, to avoid the
scientific sin of overpublication, the question must be answered what this book contributes
over and above the already published material.

To be precise the following material has been published previously elsewhere:

• an early version of chapter 3 has been published as a journal article under the title
“An overview of meta-level architectures for control in expert systems” in the Journal
of Information Processing and Cybernetics, Vol. 25, No. 1, (January 1989), pp. 21–
36.

• A later version of chapter 3 has appeared as “A classification of meta-level architec-
tures”, in the Proceedings of the meta88 Workshop on Meta-programming in Logic-
programming, University of Bristol, June 1988, pp. 103–122, published by mit Press
in 1989 under the title “Meta-programming in Logic-programming” H. Abramson and
M.H. Rogers (eds.), ISBN 0-262-51047-2.

• Material from chapter 5 has been published as chapter 3 of the book “Logic-based
knowledge representation”, edited by P. Jackson, H. Reichgelt and F. van Harmelen,
mit Press, 1988, and also (in a shorter form) as a journal article entitled “Socrates:
A flexible toolkit for building logic based expert systems” in The Knowledge-Based
Systems Journal, Vol. 1, No. 3, July 1988, pp. 132–142.

• The chapter on partial evaluation, chapter 7, was an invited contribution to the
Proceedings of the 5th imycs, published as “Machines, Languages and Complexity”,
J. Dassow and J. Kelemen (eds), Springer Verlag Lecture Notes in Computer Science
No. 381, pp. 170–187, 1989.

The reasons why I believe that the publication of this book is still warranted are three-
fold. First of all, some material in this book has not been published in any accessible form
before, notably the material in chapters 4, 6, 8 and parts of chapter 5. Secondly, some
material would simply not be publishable in separate papers, but only in the context of
surrounding material. In particular, the attempt at defining some terminology in chapter
1, the literature review in chapter 2 and pointers to future research in chapter 9. Thirdly, I
hope that putting all the material together in one cover will make apparent some interesting
connections that would otherwise not be visible.
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Finally, a remark on the intended readership of this book. As with any research ma-
terial, this is not a book for beginners. The reader is assumed to be familiar with the
fundamental concepts and issues in fields like knowledge representation and (to a minor
extent), logic and logic programming. As a result, the book is primarily directed to fellow
researchers in these fields, although some parts (notably chapters 2, 3 and the first section
of chapter 7) may be of interest to advanced students.
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Chapter 1

Introduction

The goal of this chapter is to introduce the reader to the problems that we will address in
this book, to introduce some essential assumptions and terminology, to make some brief
methodological remarks, and to outline the structure of the book. First of all we will list
the questions that we try to answer in this book. Although each of these questions will be
discussed in more detail in further chapters of the book, their brief mention here will give
the reader a general idea of what our goals and intentions are.

1.1 Goals of this book

Our central interest in this book will be the architecture of reasoning systems. The most
successful type of reasoning systems so far has been the so called knowledge-based systems
(or expert systems), reasoning systems in very constrained and well structured domains.
As a result, we will often look at knowledge-based systems architectures, although these
are not our single concern. One aspect of the architecture of reasoning systems that will
interest us in particular in this book is the control of the reasoning process, and the way in
which the architecture of a system can be adapted to help control the reasoning process. In
particular, the so called meta-level architectures have become very popular for this purpose
in recent years. In this book we are interested in acquiring a better understanding of
the structure of meta-level architectures and investigating some problems associated with
them. More specifically, the questions we will try to answer are:

• Which kinds of meta-level architectures have been proposed in the literature for
controlling the inference process?

• How can these different architectures be compared, and which ones are best suited
for controlling the reasoning process? This will lead us to identify one particular type
of architecture, the so called meta-level inference systems.

• What are the essential components of such meta-level inference systems?

• One important problem associated with meta-level inference systems is often men-
tioned in the literature, namely the problem of meta-level overhead. What are the
contributing factors to this problem, and what is the significance of the problem?
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• Which possible solutions can we find to solve the problem identified above?

The main results achieved in this book are the following:

• We give a classification of existing meta-level architectures. This classification is new
compared to existing classifications in the literature because it concentrates on the
distribution of activity and the communication between the two essential layers in
any meta-level architecture.

• We have constructed a working and realistic implementation of a logic based meta-
level inference system which has been used in practical applications.

• We extend an existing analysis of the components of a meta-level architecture to
apply in more detail to logic based meta-level inference systems.

• We provide both a theoretical model and experimental measurements for estimating
the size of the problem of the overhead of meta-level interpretation.

• We give a number of solutions (and proposals for solutions) to this problem of meta-
level overhead.

1.2 Assumptions and terminology

As with any research we will build on the work of other researchers, and use their results
as our starting points. We will briefly state some conclusions and consensus reached on
certain issues, without arguing these conclusions in detail. We will adopt these results as
assumptions for our own work, and refer to places in the literature where the case for these
assumptions is made. The results concerning the architecture of reasoning systems that
we will adopt as assumptions in the rest of this work are the following:

• a distinction should be made between domain knowledge and control knowledge (the
terms “domain knowledge” and “control knowledge” will be defined below)

• control knowledge should be explicitly represented (we will also discuss the meaning
of the term “explicit representation”)

• meta-level architectures are a good vehicle for such an explicit representation of
control knowledge (we will also discuss the meaning of the term “meta-level”)

• logical languages should be used as the knowledge representation languages of a
reasoning system.

These assumptions, and their essential terminology, will be the main subject of the
remainder of this chapter. After this discussion of assumptions and terminology we will
briefly discuss a methodology for Artificial Intelligence which will make clear the position of
this work in the wider field of ai. We will conclude this chapter by outlining the structure
of the rest of the book.
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1.2.1 Domain knowledge and control knowledge

A practice that has been well established in the last 5 to 10 years of building reasoning
systems is the distinction between two types of knowledge, often called domain knowledge
and control knowledge. We will not argue the virtue of such a distinction here, but instead
refer the reader to the arguments that can be found in a well established body of literature,
e.g. [Davis, 1980, Clancey, 1983a, Erman et al., 1984, Clancey, 1985]. Unfortunately, no
formal and precise definition of this distinction is available, but we will try to clarify this
distinction informally.

The terms “domain knowledge” and “control knowledge” are often used to distinguish
what a system knows from how the system uses what it knows. Domain knowledge is taken
to consist of descriptions of objects in the domain of expertise of the reasoning system,
such as their properties and relations, typical features, known facts etc. Control knowledge
is then taken to refer to strategies for the reasoning process, such as orderings of tasks in
the domain, plans for achieving certain goals, encodings of general problem solving skills
etc.

One problem with this terminology is that it suggests that control knowledge is domain
independent (since it is different from domain knowledge). However, this is not the case,
since control knowledge can be either domain dependent (i.e. specific to one domain), or
domain independent (not specific to one domain)1.

Other terminology has been used to distinguish domain knowledge from control knowl-
edge, notably the terms declarative and procedural, where domain knowledge is declarative,
and control knowledge is procedural in nature. However, this is also rather unfortunate
terminology, since the terms “declarative” and “procedural” refer to the format in which
knowledge has been written down, and not to its contents. Although it is true that certain
formats are more or less suited for different kinds of knowledge, both domain knowledge and
control knowledge can be formulated in either a declarative or a procedural form: domain
knowledge is often written declaratively (e.g. logic), but can also be written procedurally
(e.g. production rules), while control knowledge, although often written procedurally, can
also be formulated declaratively (see the descriptions of teiresias and golux in the next
chapter for examples of procedural and declarative formats for control knowledge).

Confusion between domain knowledge and control knowledge often arises because part
of the domain knowledge is about the order in which certain tasks should be performed to
achieve a particular goal in the domain (e.g. the order in which tests should be performed
on a patient to establish a diagnosis). Such knowledge refers to objects and relations in the
domain of expertise, and should therefore be regarded as domain knowledge. We propose
that the term control knowledge is only used for knowledge which tells the system how to
use the domain knowledge. As a result, control knowledge never refers to objects, relations,
facts, rules, procedures etc. of the domain of expertise (as domain knowledge does), but it
only refers to elements of the domain knowledge (and in particular it is concerned with how
to use the domain knowledge). This distinction can be quite subtle, as the following two
rules illustrate. A rule like “use inexpensive blood-tests before expensive blood-tests” is
part of the domain knowledge, since it refers to elements in the domain of expertise of the

1We use “domain independence” here in the sense of [Clancey, 1983a]: domain independence does not
mean that the knowledge applies to every domain, but just that it is not specific to any one domain.
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reasoning system (e.g. “blood-tests”), but a rule like “use rules that mention inexpensive
blood-tests before rules that mention expensive blood-tests” is part of the control knowl-
edge, since it refers to items of the domain knowledge, and how to use them. A major
advantage of these definitions is that they allow us to make a syntactic distinction between
the two types of knowledge, in other words: we can classify an expression as domain or
control knowledge purely by looking at the things that occur in the expression.

Using the terms domain knowledge and control knowledge in this way, we have to keep
in mind that control knowledge can be either domain dependent or domain independent,
depending on whether it refers to the contents of particular elements of domain knowledge,
as in “use rules that mention cheap blood-tests before rules that mention expensive blood-
tests”, or whether it only refers to the general form of the domain knowledge, without
referring to its domain-specific contents, as in “use cheap rules before expensive rules”.
Notice that again, this definition of domain dependent versus domain independent con-
trol knowledge gives us a syntactic criterion to distinguish between these two types of
knowledge.

1.2.2 The explicit representation of control knowledge

To achieve full advantage of the distinction between control knowledge and domain knowl-
edge discussed in the previous section, it is not only necessary to distinguish between the
two types of knowledge, but also to represent both types explicitly. To explain what we
mean by “explicit representation”, we point out that reasoning architectures are often or-
ganised around some representation language, say LR, plus its corresponding interpreter,
and that this language LR itself is realised in some implementation language, say LI . The
idea is then that LR is more suitable for the purposes of the reasoning system than the
(more primitive) language LI . Expressions in LI , (such as the definition of LR) are fixed in
the system, whereas expressions in LR can be changed to adapt the system to a particular
task. We say that the expressions in LR are explicitly represented (available for inspection
and modification), and that expressions in LI are implicitly represented (not available for
inspection and modification). We stress that by “explicit representation” we do not only
mean that expressions are present in the system (i.e. available for inspection), but also
that they can be changed (i.e. available for modification), and that these changes will
affect the behaviour of the system. For example, in section 2.4.1 we will discuss a Prolog
system where part of the control knowledge (the central interpreter loop) is available for
inspection by users (or their programs), but not available for modification. In such a case
we would not call this control knowledge explicitly represented.

In many systems that offer a representation language LR, the interpretation of expres-
sions in LR (by which we mean the way they are used by the interpreter for LR, in other
words: the control knowledge of the system) is only implicitly represented in the system in
the way the interpreter for LR was defined in terms of LI . In recent years, many workers in
ai have argued in favour of the separate and explicit representation of control knowledge
as defined above. The value of such a separate and explicit representation is one of the
major assumptions underlying this work, and we will refer to some of the arguments made
by other workers in ai in support of this assumption.

A system with an explicit representation of its control knowledge is easier to develop,
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debug and modify, as argued in [Davis and Buchanan, 1979], [Davis, 1980], [Bundy and
Welham, 1981], [Clancey, 1983a] and [Aiello and Levi, 1984]. This explicit representation
enables the independent variation of control knowledge and domain knowledge. One can
adopt a different strategy in dealing with a particular domain with or without changing the
domain knowledge representation, and vice versa. This independence is vital: if a first-shot
implementation of an expert system performs disappointingly (as is usually the case), then
it is important that it is possible to (i) identify where the problem lies in terms of the
architecture of the system, and (ii) make the requisite modification to the right module or
module interface without having to modify other modules.

A second point is made in [Breuker and Wielinga, 1986]. They note that experts are
able to use their domain knowledge for a number of different tasks, e.g. solving problems,
teaching, communicating new insights, planning solutions etc. The explicit representation
of control knowledge would allow the same domain knowledge to be used for a number
of different purposes. Clancey [Clancey, 1985] formulates this as the possibility to write
programs that interpret knowledge bases from multiple perspectives, providing the foun-
dation for explanation, learning and teaching capabilities. A related point is mentioned
in [Clancey, 1983a]. The separation of control knowledge from domain knowledge not only
makes it possible to use the same domain knowledge for different purposes, but the same
control knowledge can also be used in different domains2.

An interesting side-effect of the separation of domain and control knowledge is its use-
fulness in knowledge elicitation. As is clear from the work of Breuker and Wielinga, a sound
epistemological analysis is a prerequisite for successful knowledge elicitation. The distinc-
tion between domain knowledge of experts and the strategies experts use in employing
their domain knowledge is a very useful decomposition in this context.

Fourthly, [Clancey, 1983b], [Clancey and Letsinger, 1981], [Warner Hasling et al., 1984]
and [Warner Hasling, 1983] stress the importance of explicit control knowledge for the
purpose of explanation. By explicitly representing the control knowledge, this part of the
system can also be made subject to the explanation facilities. After all, not only should
a system be able to explain what piece of knowledge was used, but also how this piece of
knowledge was used and why. This enables a much deeper explanation of the behaviour of
the system.

Finally, the separation of control knowledge from domain knowledge allows domain
knowledge to be purely declarative in nature. While formulating domain knowledge we
do not have to worry about efficiency, only about the “representational adequacy” (in the
words of McCarthy). In the control knowledge on the other hand, the efficiency of the
problem solving process is the most prominent aspect (“computational adequacy”).

1.2.3 The use of meta-level architectures

The strong arguments given above in favour of the explicit representation of control knowl-
edge do of course raise the question about the feasibility of this idea. Is it indeed possible
to realise this idea in practical systems? To answer this question, many workers in ai have

2As a proviso to this point, it must be stated that there is hardly ever a full independence between
domain- and control knowledge. In practice there will always be some connection between the contents of
the domain knowledge and the use of (i.e. the control knowledge).
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implemented architectures to support the explicit and separate representation of control
knowledge. One family of architectures that is particularly natural for this purpose, and
that has been particularly successful in these attempts are the so called meta-level archi-
tectures. A significant part of this book is devoted to describing, classifying, comparing
and analysing these meta-level architectures. In this section we will more precisely describe
what me mean by “meta-”.

The original Greek word “µετα” means “beyond”, as in “metaphysics” and “metamath-
ematics”, but has recently come into use as meaning “about” (possibly also as in “meta-
mathematics”). So, meta-knowledge means “knowledge about knowledge”, and “meta-
level” means “a level which is about another level”, and “meta-level inference” means “in-
ference performed at one level which is about another level”. In the words of Giunchiglia
[personal communications], when speaking of meta-level inference, we think of a situation
where there are two theories, one called the object-level theory, which is about a certain
topic, and another theory, called the meta-level theory, which is about the object-level
theory. The goal of object-level inference is to obtain results in the topic of interest. The
goal of meta-level inference is to obtain results about the theory of the topic of interest (i.e.
about the object-level theory), and then to use them to obtain better results about the
topic of interest. “Better results” in this context can mean many things. It can mean “to
solve the problem in less time” in which case the meta-level is used to control or guide the
search at the object-level; it can mean “to get results otherwise unobtainable”, in which
case the meta-level inference is used to extend the solutions obtainable by the object-level;
or it can mean “to describe the object-level”, in which case the meta-level inference is used
to get a better understanding of the object-level, which can be used for further opera-
tions (e.g. accumulating statistics about the use of the object-level knowledge, consistency
and redundancy checks on the object-level knowledge, learning new object-level knowledge
etc.). [Davis, 1978] and [Hayes-Roth et al., 1983] mention many of the possible uses of
meta-level knowledge.

Out of all these possible uses of meta-level knowledge, in this book we will only be
interested in its use as control knowledge. From the definition of control knowledge and
domain knowledge in a previous section, it is clear that control knowledge can be formulated
as meta-level knowledge. There, we said that

“. . . control knowledge never refers to objects, relations, facts, rules, procedures
etc. of the domain of expertise (as domain knowledge does), but it only refers
to elements of the domain knowledge.”

making control knowledge clearly meta-level knowledge, i.e. knowledge about domain
knowledge (which takes the place of object-level knowledge). As we will see later in this
book, control knowledge can be usefully formulated as meta-level knowledge, resulting in
a meta-level theory that can be used to guide and control the inference in the object-level
theory. Therefore, although meta-level knowledge should not just be equated with control
knowledge (pace [Davis and Buchanan, 1979]), the discussion will focus on meta-level
knowledge as control knowledge.

Thus, meta-level architectures are architectures with an explicit representation of con-
trol information. In the previous section, “explicit representation” was defined as both
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inspectable and modifiable. A consequence of this definition is that whether or not a par-
ticular architecture is a meta-level architecture is dependent on the intended use of the
system. In particular, the required possibility for modification depends on this intended
use. For example, consider a Prolog interpreter written in C, which is itself executed by a
C interpreter. For a Prolog programmer, the C program that implements the Prolog in-
terpreter is not a meta-level interpreter for the Prolog code, since the control information
encoded in the C program is neither inspectable nor modifiable. However, to a Prolog
system implementer, the C program is a meta-level interpreter containing an explicit (in-
spectable and modifiable) representation of the procedural interpretation of an object-level
program (namely a Prolog program). Thus, whenever we talk about a system being a meta-
level architecture, this is always with respect to some intended use of the system, although
this intended use will often be only implicitly assumed rather than actually stated.

1.2.4 Logic as a knowledge representation language

Most reasoning systems make what Smith [Smith, 1985] calls the “knowledge representation
hypothesis”, which says that we can construct a language for representing the knowledge
embodied in the system. Many different representation languages have been used for
this purpose, and in this book we will concentrate on systems that use logical languages.
This choice of logic as the main formalism implies that logical languages will serve as the
representational scheme, while logical deduction will be the paradigm for the inference
engine. The case for logic as a representation formalism has been adequately made in
other places (e.g. [Hayes, 1977], [Kowalski, 1979], and more recently [Moore, 1984]), but
we will repeat the major arguments here.

First of all, unlike most other knowledge representation formalisms, logics come with a
formal semantics, giving a precise description of the meaning of expressions in the formal-
ism. Because this precise semantics allows the comparison of different logical languages,
it is possible (as argued in [Reichgelt and van Harmelen, 1985, Reichgelt and van Harme-
len, 1986]) to construct a set of guidelines that correlate characteristics of particular do-
mains and tasks with appropriate logic based representational and inferential mechanisms,
thereby making possible an informed choice for a representation formalism.

Secondly, again unlike many other knowledge representation formalisms, logics have
well understood properties as regards their completeness, soundness, and decidability. For
any reasonable logic it is possible to prove that the proof theory is sound. Furthermore, it
is possible to establish via formal methods whether a particular logic is complete or not.
Finally, it is known whether provability in a logic is decidable or not: for any reasonably
powerful logic, provability is at best a semi-decidable property. Although these results in
themselves are sometimes negative (e.g. incompleteness, semi-decidability), the important
point is that these properties are known at all. For many other knowledge representation
formalisms no such results have been obtained.

The final, but certainly not the least, advantage in favour of logic is its expressive
power. Two aspects of this must be mentioned. Firstly, the language of logic is not
restricted to that of standard two-valued, truth functional, first order predicate calculus.
Many other logics have been proposed, offering a wide range of expressional and inferential
power. A few examples of these are intuitionistic logics, many-valued logics, modal logics,
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epistemic logics and tense logics. The second important aspect of the expressive power of
logic is its ability to express what might be called incomplete knowledge, or information
about incompletely known situations [Moore, 1982]. As Levesque and Brachman [Levesque,
1984] put it: the expressive power of logic “determines not so much what can be said, but
what can be left unsaid”. As a result, one is not forced to represent details that are
not (yet) known. A few examples may clarify this point. Even restricting ourselves to
a comparatively restrictive logic, such as classical predicate calculus, we can express the
knowledge that an object x has a given property P without knowing its identity: ∃xP (x).
We can also express disjunctive knowledge, such as P ∨Q without stating which disjunct
is true. Finally, we can draw a distinction between something not being known, i.e. P not
appearing in the set of axioms, and something being known to be false, i.e. ¬P appearing
in the set of axioms.

1.3 Methodology

Being the relatively young science it is, ai has not yet arrived at a firm and widely accepted
methodological basis. Because of this, we feel it is important to be explicit about the
methodological views that underly this work, and about the role that we think this work
plays in ai.

In this section we will summarise a sketch of a methodological analysis of ai as given
in [Bundy, 1987], and we will then place the work done in this book in the context of that
analysis, giving it a place in the broader context of ai.

Bundy distinguishes three types of ai:

• applied ai which is concerned with the use of existing ai techniques to build com-
mercial, educational, military or industrial applications,

• cognitive science (also sometimes called computational psychology), which aims at the
understanding and modelling of human intelligence using ai techniques, and

• basic ai whose goal it is to explore computational techniques which have the po-
tential for simulating intelligent behaviour. These computational techniques can be
algorithms, representation techniques or architectures.

It is in this third category that we consider this work to belong. In basic ai, researchers
develop new techniques, test them and find out their interrelationships. These techniques
can then be used in applied ai or in cognitive science. Part of this study is the building
of computer programs embodying these techniques in order to discover them, extend them
and explore their properties. Given that basic ai consists of the invention and development
of techniques, Bundy identifies a number of ways by which basic ai can be progressed:

• Inventing a new technique

• Improving an existing technique

• Discovering new properties of or relations between techniques, e.g.:
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– proving a technique correct or sound

– discovering the complexity of a technique

– showing that one technique is a special case of another

– showing that one technique actually consists of a number of different ones.

– showing that a number of techniques are actually the same.

– demonstrating that a technique applies to a new domain.

– exploring the behaviour of a technique on a range of standard examples.

On the basis of a number of criteria by which basic ai techniques should be judged
(clarity, power, parsimony, correctness and completeness), Bundy distinguishes a four step
methodology for basic ai:

1. Exploratory programming to construct a program that performs a particular task.

2. Analysis of this program to extract the essential technique(s).

3. Generalise and rationally reconstruct the technique to improve it.

4. Identify shortcomings, and try to overcome these using [1] (and so the methodology
loops).

It should be clear from the above description that the work that we set out to do
in this book is in the category of basic ai: the particular computational technique that
we are interested in is the use of meta-level architectures for controlling inference. We
are trying to advance basic ai by trying to understand this existing technique in a new
way, by identifying certain problems with it, and by trying to improve it by solving these
problems. Chapters 2, 3 and 4 all fall within the second methodological step (analysis of
existing programs to extract the essential techniques), while chapters 5, 6, 7 and 8 fall
within step [4] (identification and repair of shortcomings).

1.4 Structure of this book

As a final part of this introductory chapter, we will describe the structure of the rest of
the book, thereby laying out a “path through the book” for the reader, describing the goal
of each of the chapters and the way they fit together.

The book is divided in two parts. The first part discusses general properties of meta-
level systems, whereas the second part concentrates on a particular efficiency problem
associated with meta-level systems.

The next chapter, chapter 2, provides a guided tour among some of the important meta-
level architectures in the ai literature. Each of the systems in this chapter is described
“as is”, without much further analysis. This analysis is the task of chapter 3. There
we classify the systems described in chapter 2 on the basis of characteristic features of
their architectures. This classification enables us to compare the different approaches,
which leads us to argue that one particular type of architecture, the so called bilingual,
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meta-level inference systems, are the most attractive. In chapter 4 this type of system is
subjected to a closer analysis, and a number of essential components are identified. Chapter
5 presents a particular case study of a meta-level inference system that has been built and
used and discusses some of the choices and trade-offs in such a design. Notwithstanding
the advantages of meta-level systems, chapter 6 identifies one particular problem that these
meta-level inference systems suffer from, namely the problem of meta-level overhead. The
extra layer of computation imposed on the architecture by the meta-level interpreter can
be very expensive, and can sometimes even cancel out the efficiency improvements gained
by the explicit representation of the control knowledge. We investigate the size of this
problem of meta-level overhead, and conclude that this overhead is indeed significant, and
often larger than acknowledged in the literature. Chapters 7, and 8 discuss a number of
techniques that can be used to alleviate the problem of meta-level overhead. Chapter 9
concludes and discusses remaining open problems.
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Part I

Properties of architectures for
meta-level inference
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Chapter 2

Meta-level systems in the literature

In this chapter we discuss a number of systems from the literature that provide explicit
mechanisms for controlling the inference process. This chapter is not an exhaustive survey,
but is intended to contain a cross-section of the literature, presenting important representa-
tives of a number of different approaches. The systems described below are of a very diverse
nature: some are expert system shells, some are programming languages, some are expert
systems applications and some are theorem provers. However, they all represent different
approaches to the use of some form of meta-level reasoning for the purpose of control. The
systems are all described in their own terms, using their own concepts and vocabulary. This
will initially introduce a large array of apparently disconnected terminology. In the next
chapter, chapter 3, we will clean up this confusion, and give a classification of meta-level
systems which will enable us to compare and evaluate the different approaches.

2.1 Knowledge representation languages

In this section we describe a number of knowledge representation languages that allow the
explicit representation of control knowledge as meta-level knowledge. These systems are
not particular reasoning systems that solve a particular problem, but are generic systems
that can be (and have been) used to build particular systems for particular applications.
The first system we describe, teiresias, was one of the first systems to propose an explicit
representation of control knowledge and has a rather simple meta-level architecture. The
second system in this section, s1, is of a later generation, and has a much richer and diverse
representation formalism. The final three systems, bb1, mla and krs, are from roughly
the same period as s1, but rather than providing a diverse representation scheme, they aim
for a single formalism that is used to represent both the domain knowledge and the control
knowledge: bb1 uses a blackboard architecture for this purpose, mla uses logic and krs
uses an object-oriented architecture.

2.1.1 TEIRESIAS

teiresias [Davis, 1980, Davis, 1982] (named after a blind seer in ancient Greece) is a
system for representing knowledge in the well known production rule format. Production
rules contain patterns in their left-hand side, and actions in their right-hand side. If the
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patterns of a rule match against the contents of a global working memory, the rule can
be fired, and the action in the right-hand side of the rule executed, possibly changing the
contents of the working memory. Potentially, the left-hand side of more than one rule can be
successfully matched against the working memory, creating a control problem: which of the
applicable rules should be fired? This type of control problem is called conflict resolution,
and the set of applicable rules is called the conflict resolution set. Many production rule
systems have a hardwired, implicit conflict resolution strategy (e.g. always pick the first
rule in the rule-base), or offer a limited set of built-in strategies, as in ops5 [Waltzman,
1983], which offers a choice between a “most recent” strategy, favouring rules that match
against recently added elements in the working memory, or a “most specific” strategy,
preferring rules with the least number of uninstantiated variables left after the matching
process.

teiresias was one of the first systems that allowed the explicit representation of the
conflict resolution strategy. The choice between applicable object-level production rules is
made in teiresias using meta-level production rules. Given a set of applicable object-
level rules, the meta-level rules make decisions about the pruning and ordering of this set,
and determine which object-level rule will be applied. This meta-level computation about
the conflict resolution is done at every cycle of the object-level production rule system,
that is: every time before an object-level rule is fired. Meta-rules have a limited format
as illustrated in figure 2.1. Because the meta-level rules are themselves again production
rules, they too potentially generate a conflict resolution problem. An interesting feature
of Davis’ system is that it is possible to build an arbitrarily long tower of meta-levels,
where each of the levels turns to its meta-level for conflict resolution problems, until there
is either no conflict resolution problem left (i.e. only one clause applies), or until there is
no meta-level available any more. However, the system requires that the interpreters that
are used for the various levels are the same.

2.1.2 S.1

s1 is a knowledge representation system typical of the generation of systems built after
teiresias. These later systems are typically much richer in their representation formal-
ism, offering not just one but many languages for knowledge representation within a single
system. As a result they have quite different ways of dealing with their control prob-
lem. s1, developed at Teknowledge, and described in [Erman et al., 1984] is based on
an epistemological analysis described in [Clancey, 1983b]. A distinction is made between
structural knowledge, judgemental knowledge and control knowledge. Structural knowl-
edge consists of a taxonomical analysis of the domain. It describes which basic objects
exist in the domain, and how these objects relate to each other. This type of knowledge is
often hierarchical in nature. Judgemental knowledge consists of a description of relations
and properties of entities in the domain, including causal effects, known symptoms and
phenomena, typical features and the like. The control knowledge is as described in section
1.2.1. The separation of the different types of knowledge in s1 is obtained by employing
different representations for each type. The structural knowledge is stored in an object-
oriented way. Classes are defined, and specific objects correspond to instantiations of a
particular class. Information on a particular class is stored in attributes attached to the
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PRUNING-META-RULE:

under conditions <A> and <B>,

rules which <do/do-not> mention <property-X>

<at-all/

in-their-premise/

in-their-action>

will <definitely-be-useless/

probably-be-useless/

....

probably-be-useful/

definitely-be-useful>

ORDERING-META-RULE:

under conditions <A> and <B>,

rules which <do/do-not> mention <property-X>

<at-all/

in-their-premise/

in-their-action>

should <definitely/

probably/

....

possibly>

be used <first/

last/

before/

after>

rules which <do-not/do> mention <property-X>

<at-all/

in-their-premise/

in-their-action>

Figure 2.1: format of meta-rules in teiresias

class. Judgemental knowledge is stored in standard production rule format. The control
knowledge is stored in so-called control blocks. Since it is the control knowledge that has
our particular interest, we will describe it in some more detail. The control blocks for
expressing the control knowledge contain statements in a specialised language, containing
the following primitive actions:

• Create a new object.

• Seek the value of an attribute for an object by querying the user.

• Seek the value of an attribute for an object by applying rules.
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• Determine the value of an attribute for an object by using all possible means.

• Invoke another control block.

• Display text to the user.

These primitive actions can be composed using constructs such as sequencing, condi-
tional, iterative and case statements, similar to those in conventional procedural program-
ming languages. Within this analogy, control blocks are similar to conventional subroutines.
One particular control block in an s1 knowledge base is designated the top level control
block. A consultation consists of invoking this control block and performing the sequence
of actions it specifies. The separation between control and judgemental knowledge is strict:
no statement within a control block can directly seek the value of an attribute. Such an
action can be done only by the application of rules or by querying the user, which can
only be accomplished in a control block by a request for rule application or user querying.
Thus, the different types of knowledge are kept separate. Notice that in this architecture,
the control-blocks are “on top of” the reasoning process; they initiate subtasks such as
creating a new object or determining the value of an attribute via rule-application, but
they have no control over the reasoning process inside the subtask once it is initiated.

As stated above, s1 is typical of one type of knowledge representation system developed
in the ’80s, based on a multitude of different representation languages for different types
of knowledge. Other systems of the same period have moved the opposite way, and have
tried to find a single, uniform representation mechanism for both meta-level knowledge
and for the different types of object-level knowledge. The final three systems discussed in
this section, bb1, mla and krs, are all such uniform systems, although they have made
different choices for their knowledge representation formalism.

2.1.3 BB1

In the blackboard architecture tradition various systems have been built to provide mech-
anisms for explicit reasoning about and representations of control problems. A system
with a blackboard architecture is organised around a central data-structure, called the
blackboard. Around this blackboard the system has a number of so called knowledge
sources. Each of these knowledge sources contains a specialised portion of knowledge that
is relevant to the overall problem the system is trying to solve. Each knowledge source is
equipped with an input pattern, specifying the kind of problem it can solve. The central
blackboard serves as a communication device between all the different knowledge sources
in the following way: problem descriptions are written to the blackboard, and knowledge
sources try to match their input patterns with items on the blackboard. Once a knowledge
source can match its input pattern against an item on the blackboard, it becomes active.
One of the active knowledge sources is then chosen for execution. This execution will lead
to further information being written to the blackboard, activating or de-activating other
knowledge sources, until a solution to the original problem appears on the blackboard.
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Field name Field meaning
Problem Problem the system has decided to solve
Strategy General sequential plan for solving the problem
Focus Local (temporary) problem solving heuristics
Policy Global (permanent) problem solving heuristics
To-Do-Set Pending problem-solving activities
Chosen-Action Problem-solving activities scheduled to execute

Figure 2.2: slots on a bb1 control blackboard

Attribute name Attribute meaning
Description Description of the heuristic
Goal Predicate or function to rate potential actions desirability (0–

100)
Criterion Predicate to test for the occurrence of Goal expiration condition
Rationale Reason for goal, e.g.: “Develop a comprehensive set of partial

solutions”
Weight Goal importance 0–1
Status Function in control plan
Creator Action that created this decision
Source Information that triggered the creator
First-Cycle Number of cycle where this heuristic was first operative
Last-Cycle Number of cycle where this heuristic was last operative

Figure 2.3: a bb1 control heuristic

Blackboard systems can be seen as a generalisation of production rule systems, with the
knowledge sources being generalisations of the production rules and the blackboard being
a generalised version of the working memory. Clearly, a similar control problem arises in
the blackboard system as in the production rule systems: which of the (possibly many)
active knowledge sources should be chosen?

A system that tackles this problem is bb1 (BlackBoard 1) [Hayes-Roth, 1984, Hayes-
Roth, 1985]. bb1 has a dual architecture where separate blackboards and knowledge sources
are available for domain reasoning and for control reasoning. bb1 expands on hearsay-
iii [Erman et al., 1981]: hearsay-iii also provides a uniform blackboard architecture with
separate, user-defined domain and control blackboards.

A simple basic control loop considers the executable knowledge sources on the domain
blackboard, and schedules some of them for execution, according to the control heuristics
that are recorded on the control blackboard. If the user overrides such a control decision,
special control knowledge sources are triggered that engage in a dialogue with the user.
This dialogue can lead to the formulation of a new strategy that will be incorporated in
future actions of the system. To enable this behaviour, bb1 provides sophisticated data
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structures to reason about control issues. On the control blackboard different slots for
representing control decisions are available (see figure 2.2). Each of the slots on the control
blackboard contains compound objects, with numerous attributes, that provide a language
for control decisions. To illustrate this, figure 2.3 shows the focus slot (mentioned in figure
2.2), which contains the control heuristic currently in use. The formalism that bb1 offers
to express control knowledge is much more powerful than the simple meta-level production
rules of teiresias, and allows for much more elaborate control strategies, but the essential
control loops of the two systems are the same.

2.1.4 MRS/MLA

A second knowledge representation system based on a uniform representation scheme is
mrs (Meta-level Reasoning System) [Genesereth et al., 1980] which uses (approximately)
first order predicate calculus as its representation language. An important feature of mrs
is that it allows the user to annotate object-level expressions in order to specify which
meta-level procedures the system should use to assert, retract or deduce that expression.
For example, the statement

(toassert (p $x 1) fc)

states that to assert any statement that matches (p $x 1), the system is to call the proce-
dure fc. This obviously gives powerful control over the behaviour of the system. However,
the weakness of the system is that the actual procedures that are used for assertion, de-
duction and the like (in the example above: the meaning of the procedure fc) are stated
in implementation code (lisp), instead of in representation terms (predicate calculus). A
quote from the mrs manual illustrates this:

“. . . , a unique feature of mrs is that it is intended to be completely modifi-
able. The representation of procedures as lisp subroutines is the key to mrs’s
guarantee of complete modifiability. . . ”

This quote shows a confusion about the meaning of modifiability. Of course any system
is completely modifiable if the user is allowed access to the implementation of the system.
However, this sort of modifiability is not what we described in the introduction, section
1.2.2. There we explained that what is required is modifiability in terms of the represen-
tation language of the system, not in terms of its implementation language. Because of
all this, the best use of mrs is perhaps not as a knowledge representation system, but as
an environment for the implementation of other knowledge representation systems. One
such system that is implemented in mrs is mla (Meta-Level Architecture) [Genesereth
and Smith, 1982, Genesereth and Smith, 1983]. The central idea of mla is the use of a
declarative language for describing behaviour. In this language, one can write sentences
about the state of the object-level interpreter, its actions and its goals. The meta-level
interpreter can reason with these sentences in deciding the ideal action for the object-level
interpreter.

A key feature of the control language is that it allows partial specifications of behaviour.
Presumably, when the system’s behaviour is only partially specified, it relies on some
hardwired control strategy for execution of the unspecified parts of the control strategy,
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B1: APPLICABLE(k) &

NOT((Ex) APPLICABLE(x) & PREFERRED(x, k))

-> RECOMMENDED(k)

B2: OPR(k1) = ADDGOAL & OPR(k2) = ASK

-> PREFERRED(k1, k2)

B3: OPR(k1) = ADDGOAL & OPR(k2) = ADDGOAL &

CF(IN(3, k1)) > CF(IN(3, k2))

-> PREFERRED(k1, k2)

B4: OPR(k1) = ADDGOAL &

NUMOFSOLNS(IN(1, k1)) < NUMOFSOLNS(IN(1, k2))

-> PREFERRED(k1, k2)

B5: DESIRE(g) -> DEPTH(g) = 0

B6: SUBGOAL(g1, g2, e, j) & DEPTH(g2) = n

-> DEPTH(g1) = n+1

B7: DEPTH(IN(1, k1)) > DEPTH(IN(1, k2))

-> PREFERRED(k1, k2)

B8: DEPTH(IN(1, k1)) > DEPTH(IN(1, k2))

-> PREFERRED(k2, k1)

Figure 2.4: specification of search in mla

although the authors do not explicitly say this anywhere. The language incorporates the
idea of a task, which constitutes an action to be taken by the object-level interpreter. The
language is that of first order logic, with the following primitive predicates:

OPR(<k>) designates the operation of which the task <k> is an instance.

IN(<i>, <k>) designates the <i>th input to the task <k>.

OUT(<i>, <k>) designates the <i>th output of the task <k>.

BEG(<k>) designates the start time of the task <k>.

END(<k>) designates the stop time of the task <k>.

TIME(<t>) states that <t> is the current time.

EXECUTED(<k>) states that the task <k> has taken place or definitely will take place.
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RECOMMENDED(<k>) states that task <k> is the recommended action for a program to take.

The meta-level interpreter (i.e. the interpreter that reasons with statements in the meta-
language) is programmed in lisp, and set up to reach a conclusion about RECOMMENDED(x).
This can be regarded as the “top level goal” of the meta-level interpreter. After a value for
x has been found, the meta-interpreter has x executed by the object-level. The example in
figure 2.4 shows how various types of search control can be specified. Axiom B1 shows how
ordering axioms can be used in determining which applicable task is recommended. The
other axioms are examples of how this capability might be used. B2 constrains a program
to do all backward chaining before asking its user any questions, B3 states that a program
should use rules of greater certainty before rules of lesser certainty, B4 states that, whenever
a program has a choice of backchaining tasks to do, it should work on the one with fewer
solutions. Axioms B5 and B6 define the depth of a goal in terms of its distance from an
initial goal. Axioms B7 and B8 specify depth-first and breadth-first search respectively.

2.1.5 KRS

The final knowledge representation based on a uniform representation that we will discuss is
krs (Knowledge Representation System) [Steels, 1985], [Maes, 1986b,Maes, 1986a], which
uses an object-oriented representation language. Knowledge is represented in objects (or
concepts, as they are called in krs). These concepts consist, as usual in object-oriented
systems, of sets of slot-value pairs. The value of a slot can be interrogated or changed
by sending a message to a concept. The control knowledge of an object-oriented system
consists of how an object/concept is to react when it receives a message. In krs this control
knowledge is made explicit by associating a meta-concept with a concept, which specifies
how the concept has to react to particular messages. Every concept in krs has such an
associated meta-concept which specifies how the object-level concept should behave. It
contains the methods to make an instance of a concept, to print a concept, to inherit
information in the concept, to let the concept handle messages etc. This association of
meta-concepts is not restricted to one level. A meta-concept can have a meta-meta-concept
and so on. Whenever something happens with a concept, the computation is handled by
the meta-concept of the concept. In the example shown in figure 2.5, if the message
make-instance is sent to concept foo:

(send foo make-instance)

this will result in the sending of the following message:

(send meta-of-foo-concept

(how-to-respond-to-message make-instance))

The meta-of-foo-concept will compute how the concept foo will handle this message.
When the definition of a concept does not specify what sort of meta-concept should be
constructed, the concept is given a default meta-concept. Since the meta-of-foo-concept
has no special meta-meta-of-foo-concept, this procedure will be executed by the default
meta-concept. This default meta-concept is expressed in the implementation language of
the system (lisp), and this way an infinite regress of meta-levels is stopped. Often a
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concept default-meta-concept
how-to-make-instances:

a procedure to make an instance of the concept
how-to-print:

a procedure to print the concept
how-to-respond-to-message(x):

a procedure to let the concept respond to a message x
how-to-inherit-information(x):

a procedure that delegates the message x to
the type of the concept

. . .

concept meta-of-foo-concept
type:

default-meta-concept
my-concept:

foo
number-of-instances-of-me:

an integer
how-to-make-instances:

a procedure that makes an instance of the
concept foo and increments the variable
number-of-instances-of-me with one

concept foo
meta:

meta-of-foo-concept

Figure 2.5: concepts and meta-concepts in krs

specific meta-concept is defined as a specialisation of the default meta-concept, as also
illustrated in figure 2.5. The meta-concept of foo is a specialisation of the default meta-
concept, because it also maintains how many instances of foo are constructed. Using
this architecture, we can change almost any aspect of the object-level computations by
redefining that particular aspect in a meta-concept, so that the meta-concept will perform
the appropriate computation when some object-level action is required

2.2 Knowledge-based systems

Rather than the general representation systems of the previous section, this section will dis-
cuss a number of specific application systems that use an explicit representation of control
knowledge. The systems described in this section are of quite a diverse nature: neomycin
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is a medical expert system; press is an algebraic problem solver; golux is a theorem
prover; and pdp-0 models human problem solving behaviour. This diversity illustrates
the validity of the assumptions discussed in the previous chapter 1 (separation of domain
knowledge from control knowledge, explicit representation of control knowledge, and the
use of a meta-level architecture for this purpose) across a wide spectrum of applications.

Task Interpreter

interprets

Meta-Rules

consists

of

IF condition

possible

conditions

Interrogate task history

Interrogate previously

deduced domain conclusions

Interrogate domain rules

and relations

THEN action

possible

actions

Apply a domain rule

Request data

Invoke a new task

MYCIN DOMAIN INFERENCE

calls

1

Figure 2.6: neomycin architecture

2.2.1 NEOMYCIN

neomycin, [Clancey and Bock, 1982], [Clancey and Letsinger, 1981], [Clancey, 1983b] is
an expert system that diagnoses blood infection. It was created by making changes and
additions to mycin [Shortliffe, 1976] to achieve an explicit representation of the control
knowledge that was implicitly embedded in mycin. It implements a so called task inter-
preter on top of the mycin domain inference system to explicitly reason about the control
of a session.

The architecture of neomycin is shown in figure 2.6. The main loop of neomycin is
the task interpreter, which executes tasks. A task is a sequence of meta-rules describing
how to achieve a particular task in the domain. During a task the meta-rules in that
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task will be executed. From the current state of the session and based on the presence of
particular domain rules the task interpreter decides whether to apply a domain rule, to
request data or to call another task. Tasks are like conventional subroutines in that they
can call each other, resulting in a stack-based scheduling of tasks. The basic elements of a
neomycin task are:

• The focus: this is the argument with which the task is called. This often represents
the object to which the task is applied (e.g. the focus of a task that identifies the
nature of a biological culture would be the value of the variable current-culture).

• Three sets of meta-rules: the dobefore, doduring and doafter rules that rep-
resent the prologue of the task, the main body and the epilogue respectively.

• The goal that is recorded to show that the task has been accomplished. This can be
seen as the result of the task if it exits successfully.

• The end-condition that may abort the task when it becomes true. Whether the task
is aborted or not depends on the task-type.

• The task-type, which specifies how the doduring rules are to be applied. There are
two dimensions to the task type: simple vs. iterative, and try-all vs. not-try-all. The
combinations give four ways of applying the doduring rules:

1. Simple, try-all: The rules are applied once each, in order. Each time a metarule
succeeds, the end condition is tested.

2. Simple, not-try-all: The rules are applied in sequence until one succeeds, then
the process stops.

3. Iterative, try-all: All the rules are applied in sequence. If there are one or more
successes, the process is started over. The process stops when all the rules in
the sequence fail. Each time a metarule succeeds, the end condition is tested.

4. Iterative, not-try-all: Same as for iterative try-all, except that the process is
restarted after a single metarule succeeds.

The task concept of neomycin is very similar to the control blocks in s1. The represen-
tation language for tasks is rather different from the language for control blocks, but both
control blocks and task implement a form of top-down control, where the domain task is
(possibly recursively) divided into smaller sub-tasks by the control mechanism. However,
once the sub-tasks request the solution of a particular domain problem, there is no longer
any explicit control, until a solution is returned, after which the control layer takes over
again.

2.2.2 PRESS

press (PRolog Equation Solving System) [Bundy and Welham, 1981], [Sterling et al.,
1982], [Silver, 1986] and [Bundy and Sterling, 1988] is a system for solving algebraic prob-
lems, and manages to do so up to A-level1. One of the main features of press is that the

1The exams qualifying for University taken by 18 year olds in England and Wales.
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system proceeds in its problem solving process by trying to prove theorems at the meta-
level, producing object-level proofs (i.e. solution of algebraic problems) as a side effect.
The key idea of this methodology, called meta-level inference as described in [Sterling,
1984], is that strategies are considered to be at the meta-level of the domain. That is,
the strategies are axioms of a meta-theory. This is of course entirely consistent with our
definition of control knowledge as meta-knowledge in section 1.2.3. For example, consider
the following meta-level axiom from press:

singleocc(X, L=R) &

position(X, L, P) &

isolate(P, L=R, Ans)

-> solve(L=R, X, Ans).

The declarative meaning of this meta-level axiom is:

“If an object-level problem L=R contains exactly one occurrence of X, and the
position of this occurrence in L is P, and if the result of isolating X in L=R is
Ans, then Ans is a solution in X to the equation L=R, with X as the unknown.”

However, it also has a procedural meaning:

“In order to solve an equation L=R in X, check that X occurs exactly once in
L=R, determine the position P of X in L=R, and isolate X in L=R, resulting in the
answer Ans.”

Note that this description refers to properties such as position and number of occurrences
of X. These are meta-theoretic syntactic features. A meta-level axiom as the above would
get used by a typical call to the solve-procedure of press, as in for example:

?- solve(log(e, x+a)+log(e, x-a), x, Ans).

The inference of press occurs at the meta-level. Some of the meta-level predicates (as
indeed the example above) are of the form

New is the result of applying Rule to Old.

To satisfy such a predicate, the rule Rule is applied to the expression Old to produce
New. As a result of executing such a meta-level predicate, an algebraic transformation has
occurred at the object-level: the expression Old has been transformed into New. Thus, the
object-level transformations are executed by performing inferences in the meta-theory. In
fact, in press the object-level theory (i.e. a theory of algebraic rewrite rules) does not
have a separate existence. Rather, they are encoded within the meta-level theory as rule
schemata such as:

isolation_rule(V, log(U,V)=W => V=U**W).

which would be used by the isolation procedure. press achieves control of the object-level
problem solving by simulating this problem-solving through the execution of the meta-level
code. In other words, search at the object-level is replaced by search at the meta-level.
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This works well because, as described in [Silver, 1986], the meta-level search space is much
better behaved than the object-level space. In particular, the branching rate of the meta-
level space is much lower, and most wrong choices lead to dead ends rapidly. The use of
meta-level inference moves the search process from the object-level to the meta-level, and
thereby transforms an ill-behaved search space to a better behaved one. If the meta-level
space is still too complex, it is in principle possible to axiomatise the control of this level,
i.e. to produce a meta-meta-level. This process can in theory be continued until the control
process of the highest level becomes trivial. This usually happens very early. Only two
levels are needed in the case of press.

Related systems that have been constructed using a methodology similar to press are
mecho [Bundy et al., 1979], impress [Sterling, 1982] and lp [Silver, 1986].

The problem of choosing between the various strategies that are axiomatised at the
meta-level and that are applicable at any point in the problem solving process now depends
on the proof procedure that is used for the meta-level interpreter. press relies on the fixed
behaviour of an implicit interpreter for the meta-level (i.e. the meta-meta-level interpreter)
called the heuristic waterfall, which tries all meta-level strategies in a fixed order, applies
the first strategy that is applicable, and starts again at the top of the list. The system
described in [Takewaki et al., 1985] is a re-implementation of press. It does allow reasoning
about the selection of strategies (and thus provides a meta-meta-interpreter), rather than
using a hardwired interpreter at the meta-level.

2.2.3 PDP-0

pdp-0 [Jansweijer et al., 1986] is designed to be a cognitive model of human problem solv-
ing behaviour, rather than just a high performance reasoning system, such as neomycin
or press, which don’t claim any psychological validity. It models the behaviour of inex-
perienced human problem solvers in the domain of thermodynamics. Not only does the
program model the domain reasoning done by a novice problem solver, but it also models
the reasoning strategies employed by human problem solvers. For this purpose, the program
contains explicit knowledge of problem solving strategies, and an explicit representation of
its own behaviour. Furthermore, whenever difficulties arise in the object-level reasoning,
it can make its own behaviour the subject of a diagnose-repair process that analyses the
reasons for the problem that occurred in the object-level reasoning, and suggests a possible
repair for the impasse, using strategical knowledge about problem solving techniques. The
program’s problem solving behaviour is driven by knowledge about the domain, consisting
of knowledge about domain objects and the relations between them, and knowledge about
domain independent problem solving strategies, in the form of production rules. Using a
goal-driven approach, the system selects a problem-solving strategy from a library of gen-
eral strategies. This choice is determined by properties of the current goal. The application
of strategies on goals generates a goal-tree, which is explicitly represented, annotated by a
trace of problem solving actions.

When the program comes to a dead end, for example because none of the known
strategies is applicable, or because of the unexpected failure of an applied strategy, this
will be noticed by a supervising component. The supervisor will then ask a meta-problem
solver to propose an adjustment of the current goal-tree, in order to solve the impasse.
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The meta-problem solver tries to solve the difficulties of the object-level problem solver in
a three step process. First the difficulty is categorised into one of a few types of impasses.
After this it uses general heuristics to propose repairs for each class of impasse. The final
step is the specification of the general repair plan into a concrete new or adjusted goal-tree.

This approach is similar to that taken in vmt [Hudlicka and Lesser, 1984], where
the meta-level part of the expert system monitors the object-level of the system. If the
latter performs badly, according to some explicitly stated criterion, the former applies fault
finding techniques to “diagnose” the object-level. This diagnosis is then applied to adjust
the techniques used by the object-level.

2.3 Theorem provers

The systems described in the previous section were built to apply meta-level inference
techniques to knowledge-based systems. The systems that we will describe in this section
are not knowledge-based systems, but rather general purpose theorem provers which per-
form general, domain independent logical reasoning. Again, the property that all these
systems have in common is the explicit representation of control knowledge, and the use
of a meta-level architecture for this purpose.

2.3.1 GOLUX

golux is a theorem prover written in the early ’70s [Hayes, 1973], [Hayes, 1974]. Theorem
provers obviously suffer from the problem of controlling their inference process, since at
any time in a proof, many possible inference rules can be applied (as in a natural deduction
system), or one inference rule can be applied to many different formulae (as in a resolution
system). The use of an explicit meta-level to program a specialised search strategy is a
central theme in golux. In golux, control over the inference process is obtained by
describing the desired behaviour of the system, i.e. by making assertions about the desired
behaviour. When the system is given such an assertion, it must “obey” it (if possible), i.e.,
behave in such a way that the assertion is made true. The behaviour of the system must
always be consistent with the control assertions in force at a given moment. In general, a
control assertion is of the form:

(Q1 S Q2 P )[p(P, S)]

where Q1 and Q2 are quantifiers, P ranges over possible proofs, S ranges over possible
states of the theorem prover, and p is a predicate on the syntactic form of proofs. An
example is:

(∀S)[¬(∃P1, P2)[r(P1, P2, S) ∧ P1 6= P2]]
2

If the predicate r(P1, P2, S) says that in state S the subproofs P1 and P2 descend from
a common parent, the above assertion can be used to insist that a proof has at most one
descendant. This would make the computation deterministic.

2Although Hayes gives this formula as an example of a control assertion, it does not actually reflect
the general form of a control assertion as specified by him. However, it can be easily reformulated in the
required form by putting it into prenex normal form.
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To allow the formulation of the above expression we need to be able to talk about proofs
and states. Hayes defines states to consist (conceptually) of a set of active assertions
(in both object- and meta-language), and a set of (partially completed) proofs. Proofs
are uniformly represented as trees of formulae. The control language offers a quoting
mechanism to allow the formulation of predicates on the syntactic form of object-level
formulae. Finally, the inference rules that the system uses, are explicitly represented as
operators. This allows expressions like

R1(S1, next(S1))

which says that operator R1 can be applied in state S1 to obtain the successor state of S1,
denoted by next(S1).

Problems arise of course with the mechanism that should enforce these control assertions
on the theorem-prover. One of these is that the collection of control assertions active at
a given moment does not completely define the behaviour of the interpreter. golux
programs are thus non-deterministic, and Hayes does not specify what golux does when
its behaviour is underspecified. Unfortunately, the implementational details of how the
control assertions of golux influence the behaviour of the theorem prover were never
published.3

2.3.2 NuPRL

The nuprl system [Constable et al., 1986] was developed at Cornell University as an inter-
active environment for creating proofs in a formal theory of constructive mathematics. The
object-level language which represents these formal theories is Martin-Löf’s Intuitionistic
Type Theory [Martin-Löf, 1973,Martin-Löf, 1982]. An interesting feature of the nuprl sys-
tem is that the logic takes account of the computational meaning of proofs. For instance,
given a constructive existence proof, the system can use the computational information
in the proof to build a representation of the object which demonstrated the truth of the
existential assertion. As an example, consider the formula:

∀ l:int list ∃ l’:int list [∀ x:int [member(x, l) ↔ member(x, l’)] ∧ sorted(l’)]

which states that for every list of integers l there is another list of integers l′ with the same
members as l such that l′ is sorted. A proof of this formula will give rise to an algorithm
for actually sorting a given list l0 into a sorted list l′0. Using this feature, the nuprl system
can be used for the generation of programs from specifications.

The nuprl system is interactive, and requires the user to specify which object-level
rules of inference should be used at any point in a proof. However, the system provides a
functional language for combining elementary rules of inference into tactics: combinations
of a (possibly large) number of rules of inference into a single step. The steps can be
combined using a number of operators called tacticals, as listed in figure 2.7. More pre-
cisely, these tacticals do not combine rules of inference, but they combine tactics, so that

3Personal communications revealed that GOLUX was implemented using a generate-and-test cycle:
it first generated all possible inferences from a given formula and then proceeded to remove all those
inferences that violated any of the control assertions. The behaviour of GOLUX with underspecified
control assertions remains unclear.
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Tactic Description
R1 then R2 apply R1 to the current goal, and, if successful,

apply R2 to all the resulting subgoals.
R1 or R2 apply R1, or, if R1 failed to apply, apply R2 to the

current goal.
repeat R apply R to the current goal, and recursively apply

repeat R to the resulting subgoals until R no longer
applies.

try R apply R to the current goal if possible, but do not
fail if R is not applicable

complete R apply R to the current goal but only succeed if no
subgoals remain.

Figure 2.7: some nuprl tacticals

Function Type Description
destruct-conj term→term × term destructs a conjunction into two conjuncts
term-kind term→token reports the kind of a logical term (such

asatom, predicate, conjunction, etc.)
goal term returns the current goal
hyp int→term returns the n-th hypothesis in the current

proof
hypotheses term list returns the list of all hypotheses in the current

proof

Figure 2.8: some nuprl-ml functions

nested expressions such as (repeat T1) then (try (T2 or T3)) are possible. To allow
elementary rules of inference to be used, the system provides for every rule of inference R
a corresponding tactic TR which only applies that particular inference rule.

Not only can the user combine tactics using tacticals, but nuprl also offers a general
purpose programming language, ml [Gordon et al., 1979], in which arbitrary computations
can be performed before deciding which tactic to apply to a goal. For this purpose, ml is
extended with a large number of extra functions that can be used to inspect the formulae
occurring in the current proof. Figure 2.8 lists some of these functions as examples. The
notions of tactics and tacticals, and the use of ml as a meta-level language was inherited
from the Edinburgh lcf system [Gordon et al., 1979] on which nuprl is based.

Because it is possible to write arbitrarily complex ml programs that can inspect the
current proof and then decide which rules of inference (or more precisely, which tactics)
to apply, these tactics can be seen as meta-level programs which reason about the control
of the object-level inference rules. A feature worth mentioning is the way in which the
system ensures the soundness of any tactics written by the user. All functions in ml
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(either built-in or user-defined) are typed: the types of their arguments and their value is
either declared or can be inferred from other declarations. The version of ml used in nuprl
(again based on ideas from the Edinburgh lcf system) has a special type called proof, and
all built-in ml tactics (known to be correct) are of type proof→proof 4. In particular, all
tactics corresponding to object-level rules of inference are of this type. Furthermore, all
predefined tacticals (such as the ones listed in figure 2.7) are of type (proof→proof)∗ →
(proof→proof), in other words, they map a number of tactics onto a new tactic. Now, a
user defined tactic is only considered to be syntactically correct if the system is able to
infer that it is indeed of type proof→proof, in other words that it maps a correct partial
proof onto a correct partial proof. In this way, it is impossible for a user to write tactics
that produce unsound proofs.

2.3.3 Proof plans

A second effort to automate the construction of proofs in Intuitionistic Type Theory is
based on the notion of proof plans [Bundy, 1988], [Bundy et al., 1988]. The essential idea
behind proof plans is to not use meta-level programs like ml-tactics in the search for a
proof, but instead to write specifications of these meta-level programs, and to then use
these specifications in the search for a proof, rather than the tactics themselves. These
specifications are called methods, and are expressed in a meta-logical language containing
primitives to inspect and construct logical formulae occurring in the object-level proof. A
method consists of a number of slots, the most important of which are:

• An input-slot, specifying the form of the object-level formula to which the method
is applicable.

• A precondition-slot, specifying further conditions that must be true for the method
to be applicable.

• An output-slot, specifying the form of the object-level formulae that will be produced
as subgoals when the method has applied successfully.

• A postcondition-slot, specifying further conditions that will be true after the method
has applied successfully.

• A tactic-slot, specifying the name of the tactic for which this method is a specification.

An example of a particular method is the unfold method shown in figure 2.9. This
method rewrites one occurrence of a recursively defined term using the step equation for
that term. The input-slot of the method (2), can be any sequent H`G, where H is the
hypothesis and G is the goal. The argument [N|Pos], to the name, unfold, of the method
(1), and the tactic (6) is a list of numbers specifying a position of the term to be rewritten
in the goal G. The preconditions, (3), for attempting the tactic are as follows. In position
[N|Pos] in G there should be a constructor term, Constructor with a constructor function
ConstructorFunc as its dominant function, F, whose recursive definition has the step case

4In fact, tactics map partial proofs onto partial proofs, so that the name of the type proof is somewhat
misleading.
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method(unfold([N|Pos]), (1)

H |- G, (2)

[type(_, _, _, Constructor),

exp_at(Constructor, [0], Constructor_Func),

exp_at(G, [0,N|Pos], Constructor_Func),

exp_at(G, [0|Pos], F),

prim_rec(F, N),

step(F, StepEq)

], (3)

[rewrite(Pos, StepEq, G, NewG)], (4)

[H |- NewG], (5)

unfold([N|Pos]) (6)

).

Figure 2.9: an example method

StepEq. The result of a successful application of the tactic will be that the output, (5),
will be a sequent H`NewG, in which NewG is formed from G by rewriting the term at position
Pos using StepEq (4).

These methods can be regarded as operators in the sense of plan formation: they
transform one state of the proof (as specified by the input-slot) into another state of the
proof (as specified by the output-slot). These methods can then be fitted together to form
a sequence of methods such that each method in the sequence is applicable to the output
formula of the previous one, with the final method having no more subgoals to prove.
Standard planning techniques can be used to construct these sequences, which are called
proof plans. Advantages of using the methods in the search for a proof rather than the
corresponding tactics are firstly that the methods are written in a meta-linguistic logic, and
are thus more intelligible than the tactics written in ml, and secondly that the computation
of the pre- and postconditions of the methods is more efficient than the execution of the
tactics.

A further considerable advantage of the use of methods combined with planning tech-
niques instead of tactics is that the methods are not required to be full specifications of
the (provably sound) tactics. Instead, they can be partial specifications which only com-
pute part of the required pre- and postconditions for a method. The gain of this is that
the power (and therefore the cost) of the pre- and postconditions of the methods can be
adjusted at will to balance applicability and specificity. The price of this is of course that
the plans which are built out of these method are then no longer guaranteed to succeed
when it comes to executing the corresponding combinations of tactics. This may lead to
having to replan part of the original sequence of methods and retrying the execution.

This approach of building proof plans before executing them is very different from the
other systems described in this section, all of which combine the use of meta-level control
knowledge with the inference in the object-level theory, rather than separating them as in
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proof planning and execution.

2.4 Programming languages

In this final section of the review of meta-level systems in the literature, we will discuss
a few programming languages that allow the explicit representation of control informa-
tion. Of course, the knowledge representation languages discussed in section 2.1 are also
strictly speaking programming languages, but they are designed for a very specific purpose,
whereas the languages we describe here are general purpose programming languages. We
will describe two Prolog based systems, and one system based on lisp.

First we will discuss a small example in Prolog which shows that the explicit representa-
tion of control knowledge is not only useful in reasoning systems, as discussed in chapter 1,
but also in the context of a general purpose programming language such as Prolog. Prolog
is based on resolution over a set of Horn Clauses in first order predicate calculus. Although
the resolution procedure uniquely determines a set of answers for a given query, it does
not determine the order in which these answers will be produced, and thus some control
regime needs to be enforced on the resolution procedure. Standard Prolog systems impose
a hardwired “top-down, left-to-right” computation rule, in which clauses are selected in a
fixed top-down order, and conjunctions are resolved left-to-right. Such a uniform and fixed
computation rule is unsatisfactory. As an example, consider the Prolog clause:

grandfather(X, Y) :- father(X, Z), father(Z, Y).

together with a (potentially large) set of ground clauses specifying father-relations. If we
use this clause on a query like

:- grandfather(pete, Y).

the left-to-right computation rule is quite sufficient, because it first solves the conjunct
father(pete, Z), which presumably only results in a small number of possible bindings
for Z, each of which can be tried in the fixed top-down order in the second conjunct.
However, if we consider the goal

:- grandfather(X, pete).

the fixed left-to-right computation rule does not work so well. It will first compute
father(X, Z), resulting in many possible bindings for X, each of which has to be tried
in the second conjunct, where almost all of them will fail. In this case it would have been
better to select the second conjunct first, although either choice will eventually result in
the same set of bindings for X. The only5 solution for this problem in a standard Prolog
system is to write two specialised versions of the original clause:

grandfather(X, Y) :- var(Y), !, father(X, Z), father(Z, Y).

grandfather(X, Y) :- father(Z, Y), father(X, Z).

using the non-logical features of Prolog, such as var/1 and the cut, and mixing the control
of the computation with the logical contents of the computation.

5Other Prolog systems, such as IC-prolog, [Clark and McCabe, 1982] solve this problem by annotating
the object-level variables with control information. Since such systems do not have an explicit meta-level
architecture, we will not discuss them here.
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2.4.1 Gallaire/Lasserre

The Prolog system described in [Gallaire and Lasserre, 1982] is an attempt to solve prob-
lems like the one sketched above (to escape from the fixed computation rule without mixing
logical contents and control) by providing an explicit and separate way to represent the
desired control of the Prolog computation, using meta-level Horn clauses. Meta-predicates
can be defined that handle both clause selection and conjunct ordering. These predicates
are then used in an interpreter-loop to determine the behaviour of the system. A fixed
vocabulary of meta-predicates is available that can express a variety of properties of the
object-level propositions that compete for execution. These properties include among oth-
ers the number of literals in a clause, the presence of a particular literal in a clause, the
value of any ancestor of a clause, and the invocation depth of the clause. The object-level
propositions that are present in the knowledge base can be specified in the meta-rules by
their position in the knowledge base, or by a (partial) specification of their contents. In
the Prolog syntax that is used in the system, a clause like

order(p(X,Y), [N1, N2, N3, ..., Ni]) :-

C1, C2, C3, ..., Ck.

states that for the resolution of literals that are an instantiation of p(X,Y) the clauses num-
bered N1, N2, ..., Ni will be used in that order, provided the conditions C1, ..., Ck

are met. Notice that the variables X, Y, N1, N2, ..., Ni can be used in the conditions
Ci. An example of this would be

order(p(X), [1, 2, 3]) :- cond1(X).

order(p(X), [1, 3, 2]) :- cond2(X).

order(p(X), [3, 1, 2]) :- cond3(X).

This specifies a different order for the clauses for p(X) for different conditions on the
argument X.

An example of content directed conflict resolution is

before(p(_), Clause1, Clause2) :-

length(Clause1, _, N), length(Clause2, _, M),

N < M.

which states that for the resolution of literals of the form p(_) shorter clauses will be
used before longer clauses. Replacing p(_) with either a variable or a more specific term
(e.g. p([])) would enlarge or reduce the scope of this heuristic. Both position directed
and content directed conflict resolution allow the formulation of domain dependent and
domain independent strategies.

The system also provides a mechanism for conjunct ordering. A clause of the form

need(p(X, Y, Z)) :- inst(X).

says that for the selection of literal p(X, Y, Z) for execution, it is necessary that variable
X has been instantiated. This possibility for conjunct-ordering can be used to solve the
problem with the grandfather example described above. Adding the control instruction:
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need(father(X, Y)) :- inst(X) ; inst(Y).

would cause the interpreter to always prefer partially instantiated calls to father/1 over
uninstantiated calls, and would thus optimally execute both the query

?- grandfather(pete, X).

and the query

?- grandfather(X, pete).

using the single clause

grandfather(X, Y) :- father(X, Z), father(Z, X).

A literal can be mentioned directly (as the literal p in the example above), or it can be
designated indirectly, using an expression like:

literal(X, Name, ListOfProperties)

This indicates a literal X named by Name that satisfies each of the properties on
ListOfProperties. This is a list of pairs (Pi:Vi), where Pi is the name of a prop-
erty, and Vi is its required value. The properties that are available include such things as
ancestor, father, depth and solved. For instance, a meta-level clause like

before(T1, T2) :-

literal(T1, X, [depth:N1]),

literal(T2, Y, [depth:N2]),

N1 < N2.

specifies a breadth-first strategy for the interpreter. Further restrictions on X and Y would
impose such a strategy only on the named literals.

In earlier work along the same lines [Gallaire and Lasserre, 1979], further facilities were
proposed to

• assign priority numbers to competing clauses,

• block backtracking over specified clauses (corresponding to dynamic cut introduction)

• inhibit the execution of literals until they reach some degree of instantiation.

These declarative meta-rules are all used in the interpretation process, which is a literal-
selection - clause-selection loop. The basic loop of the interpreter looks like:

goal(G) :-

select-literal(G, L),

select-clause(L, C),

substitute(G, L, C, R1),

goal(R1).
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The meta-predicates are used in the first two stages of this control loop to select literals
and clauses. However, the definition of this loop is a fixed part of the system and is not
available for modification by the user. Thus, this central part of the control knowledge
is not fully explicitly represented in this system (since our definition of an explicit repre-
sentation, section 1.2.2, required both inspectability and modifiability). As a result, the
system only allows the construction of chronologically backtracking, backward-chaining
Horn clause interpreters. The behaviour of the system can only be affected by redefin-
ing the selection strategies for literals and clauses, using the primitives made available for
this purpose. Other dimensions of the system’s search strategy, such as its backtracking
behaviour, cannot be influenced at all. Another problem with the system is that there is
no clear distinction between meta-level and object-level language. Prolog is used for both
languages (and also as the implementation language of the system). Although this mixing
of levels allows for an efficient implementation, it can give rise to serious confusion, both
at a conceptual design level and in the implementation.

An essentially similar approach is found in [Devanbu et al., 1986]. They also add control
rules for Prolog programs. These control rules specify appropriate behaviour of the Prolog
clauses on the basis of the standard 4-port execution model for Prolog. Another example
of this approach is the metalog system [Dincbas and Le Pape, 1984]. Although the
metalog system also provides the use of control-knowledge at other points in the control
cycle (such as during backtracking) the main features from metalog resemble the system
described above. Yet another similar, though somewhat extended approach can be found
in [Eshghi, 1986]. This system not only allows literal and clause selection, but also what
Eshghi calls node selection: the ability to expand nodes in different parts of the proof
tree. Furthermore, Eshghi provides an explicit representation of the object-level proof tree
(unlike Gallaire and Lasserre and Devanbu et al.). Another system based on this approach
is rlog [Kramer, 1984].

2.4.2 Bowen/Kowalski

A different approach to the same problem (the explicit representation of control in Prolog)
is taken in [Bowen and Kowalski, 1982]. The main feature of their system is that it explicitly
represents the provability relation of the object-level language (Horn clause logic). This
provability relation, in logic normally written as P ` G (G is provable from P ) can be
formalised in Prolog as the demo/2 predicate:

demo(Prog, Goals) :- empty(Goals).

demo(Prog, Goals) :-

select(Goals, Goal, Rest),

member(Proc, Prog),

rename(Proc, Goals, VariantProc),

parts(VariantProc, Concl, Conds),

match(Conc, Goal, Subst),

apply(Subst, Conds+Rest, NewGoals),

demo(Prog, NewGoals).
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Notice that this formulation of provability requires the ability to explicitly refer to object-
level programs (or theories, sets of clauses), something that is not required in the Gal-
laire/Lasserre system. Different control strategies can now be implemented by changing
the above formulation of demo or its constituent predicates. For instance, clause selection
or conjunct-ordering can be changed by redefining member or select respectively. Since
demo formalises provability, this approach not only allows us to change the control of the
object-level but also its logical properties. However, this is not our prime interest here,
since we are mainly interested in the flexibility of the system with respect to its control.
Thus, while the declarative reading of the above definition of the demo predicate defines
the provability relation of the object-level, its procedural interpretation gives us a defini-
tion of the inference strategy. This approach of formalising the provability relation of the
object-level language at the meta-level is of course very close to what press does in the
context of algebraic problem solving. Just as in press, the system completely simulates
the object-level problem solving at the meta-level, by replacing every object-level problem
A `L B by the corresponding meta-level problem Pr `M demo(A,B), where L and M
are the object-level and meta-level language, and `L and `M represent object-level and
meta-level provability, and Pr is the representation of the demo predicate at the meta-level.
However, Bowen and Kowalski argue that

“. . . many object language problems can be solved more naturally and more
efficiently in the object language than in the metalanguage. Thus it is desirable
to combine the directness of the object language with the power of the meta-
language in an amalgamation which facilitates the communication of problems
and their solutions between them.”

Such communication can be accomplished by means of rules that link the object-level and
the meta-level:

Pr `M demo(A′, B′)

A `L B
A `L B

Pr `M demo(A′, B′)

The first rule allows the meta-level language to communicate the solutions of object-level
problems to the object-level language, whereas the second rule allows the object-level lan-
guage to communicate the solutions of its problems to the meta-level language. [Weyhrauch,
1981] calls these rules reflection principles, after [Feferman, 1962]. To complete the amal-
gamation of L and M , we need a naming relation which associates with every linguistic
expression of L at least one variable-free term of M . In the above rules, A′ and B′ are
the meta-level names in M of the object-level theory A and the object-level expression B.
Bowen and Kowalski are particularly interested in the amalgamation where L = M , i.e.
the two languages are identical. This case is of special interest for logical reasons, since it
allows the formulation both of sentences which mix object-level language and meta-level
language, and of self-referential sentences. From the viewpoint of control and of system-
architecture in general, the case where L = M also plays a special role, which will be
discussed in later chapters.
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The demo predicate described above, formalising the derivability relation of the object-
level, is itself implemented by the very same Prolog processor that it models. Such a
construction (where an expression in some computational formalism models its own com-
putational process), is known as a meta-circular interpreter. “Meta-” because it models
another level of computation, and “circular” because it does not provide a well-founded
definition of the computational formalism: a meta-circular interpreter (from now on: mci)
has to be run by the very formalism that it models in order to yield any sort of behaviour.
An mci provides a two-level architecture, where the mci defines explicitly (at the meta-
level) the execution of code at the object-level, in such a way that this object-level code,
when interpreted by the mci behaves the same as when executed by the base implemen-
tation. However, we can of course drop this last constraint, and change the code of the
mci, and thereby the way it will execute object-level code, providing us with a system
with an explicitly represented (i.e. both inspectable and modifiable) control regime at the
meta-level. As stated, the code for such an mci is itself executed by the base-level imple-
mentation, and as a result its interpretation process (i.e. the meta-meta-level interpreter)
is implicit in the system and can neither be inspected nor modified, restricting us to a two
level system. 3-lisp is an attempt to generalise this situation to an n-level system, for
arbitrary n.

2.4.3 3-LISP

3-lisp is meant as a general purpose function programming language with a meta-level
mechanism that allows the user to modify the underlying interpreter, for instance how it
deals with evaluation order, variable bindings, function definitions, debugging information,
etc. A program in 3-lisp [Smith, 1984], [des Rivières and Smith, 1984] is executed by an
mci for 3-lisp (i.e. written in 3-lisp itself). However, unlike the mci used by Bowen and
Kowalski in their Prolog system, the mci in 3-lisp is itself again interpreted by another
mci etc., ad infinitum. This gives full inspectability at all levels of interpretation of
the system, but not yet modifiability. In order to achieve this, functions in a 3-lisp
program can be declared as “reflective”6, which means that during their execution the
system will “reflect up”, moving up one level in the infinite tower of mcis. If a function
f is declared as a reflective function, and the expression (f e1 ... en) is encountered
by an interpreter at level n, then the function body of f is called with three arguments:
the original argument list (e1 ... en), the current variable binding environment and
the current continuation7, and this call will be executed by the interpreter at level n + 1.
The binding environment and the continuation together completely determine the state

of the interpreter at level n, and since the function f now has access to these two values,
it can itself determine the course of the computation at level n. Notice that the binding
environment plus the continuation determine the flow of control in an mci, but many other
things are left implicit: how errors are processed, how data structures are implemented,

6This terminology is chosen because a program at level n in the tower can “reflect” upon the behaviour
of the program at level n− 1.

7See [Steele and Sussman, 1978] for a detailed description of continuation-passing interpreters. For our
purposes it is enough to say that a continuation consists of all the code to be executed by the interpreter
after the current function exits.
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(define REFLECT boundp (symbol &optional env cont)

(funcall cont

(if (mapcan ’(lambda (binding) (eq (car binding) symbol)))

env

(cons (cons symbol nil) env))))

(define SIMPLE foo (...)

...

(if (boundp bar) ...)

...)

Figure 2.10: a reflective function in 3-lisp

how I/O is carried out, etc. All these things are buried in the primitive procedures of 3-lisp
and are made neither inspectable nor modifiable: the reflective capabilities of 3-lisp only
concern the flow of control. An mci can be viewed as an account of how a language is
processed, and as such it explains various things about how the language is processed, but
many other things are not explained.

As an example of the use of the reflective facility, we can define a function to be executed
at level n+ 1 which checks if a certain variable is bound at level n and provides a default
binding nil if necessary, as shown in figure 2.108. If the function foo is executed at level
n, then the reflective function boundp will be executed at level n+ 1 with the environment
and the continuation of level n as extra arguments, allowing it to inspect and modify the
execution of the computation at level n.

One question that has to be settled for an implementation of 3-lisp to be possible is
the obvious threat of the infinite regression of mcis, each mcin being interpreted by mcin+1

without any base implementation at the top to close the tower. The following argument,
as given in [des Rivières and Smith, 1984] shows that although the user can think of 3-lisp
as an infinite tower of mcis, in practice only a finite number of levels is needed. The key
observation is that the activity at most levels - in fact at all but a finite number of the
lowest levels - will be monotonous: the mci will primarily be used to process the same
expressions, namely those that make up the mci itself (or more precisely, those that make
up the mci of the level below). From some finite level k all the way up, the tower will just
consist of mcis interpreting an mci. Smith and

des Rivières call a processing level “boring” if the only code that is processed at that
level in the course of a computation is the code of the mci of the level below. The degree
of reflection ∆ of a user-program is defined as the lowest n such that when the program
is run at level 0, all levels higher than n are boring. Thus, user programs that do not
use any reflective capabilities have ∆ = 1. 3-lisp only requires programs with a finite

8The syntax in this figure is not exactly according to the original 3-LISP specification, given in [des
Rivières and Smith, 1984]. Instead, to improve readability we have adopted a CommonLisp-like notation,
as in [Maes, 1987], from which this example is taken.
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degree of reflection to terminate, just as a correct implementation of recursion is only
required to terminate if the recursion depth is finite. We can assume the existence of an
implementation G (G for ground) that executes programs with ∆ = 1 (after all, such a G
only has to interpret 3-lisp programs stripped of all reflective capabilities). Given G, the
possibility of an implementation for programs of ∆ = n for any n follows by an obvious
inductive argument on n. In fact, this is more or less how the actual implementation of
3-lisp described in [des Rivières and Smith, 1984] works. Notice that this implementation
is very similar to the implementation of krs described above, where the reflective process
(in krs realised by defined meta-concepts) can go up arbitrary many levels, until the first
level that does not have a meta-concept is executed by the base implementation.
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Chapter 3

Analysis of the literature

In the previous chapter we discussed a number of systems, built for different purposes,
that all represented different solutions to the problem of explicitly representing control
knowledge. Because of this diversity, it seems very difficult to compare and classify these
systems and the solutions they offer, in order to discuss which solutions are good ones and
which are not. Exactly such a comparison is the task of this chapter.

The most obvious distinction that can be made between the systems presented in the
previous chapter is the language that is used to represent the domain knowledge in the
system. This varied from Horn Clause logic to a functional language, and from an object-
oriented language to production rules. Each of these particular choices of representation
language brings with it its own version of the control problem (the problem of how to
control the search space that is generated by the domain representation). For Horn Clause
logic, the system has to decide (among other things) on conjunct-ordering and backtracking
strategies, an object-oriented system has to decide how to handle messages, a production
rule language has to do conflict resolution, etc. All these control problems are quite dif-
ferent from one another. Furthermore, it is well known that appropriate choices of both
a representation language and an ontology to describe the domain problem can greatly
reduce the size of the control problem for a specific application. Much of the research in
knowledge representation is exactly about finding a suitable language (e.g. Horn Clause
logic) and a suitable ontology (i.e. what particular predicates, functions and constants are
chosen) that reduces the search space for a particular problem to a feasible size. A classic
paper that illustrates this phenomenon in the context of the “Missionaries and Cannibals”
problem is [Amarel, 1968]. In general, we can distinguish two aspects of dealing with the
control problem for a particular application. First there are the choices of the represen-
tation language, an ontology for that language, and the corresponding inference engine.
Second, we have to define a control regime for that inference engine in such a way that the
inference engine behaves suitably for our particular application. Both choices affect the
control problem. This is obvious for the second choice, but, as argued above, also true for
the first. In general, it is impossible to say how much of the control problem that must
be solved by formulating a control regime is dependent on the choice of the representation
language and of the ontology. If the formulation of the control regime (which as we argued
in the previous chapter should be done explicitly at the meta-level) was completely depen-
dent on the choice of the object-level representation language and its ontology, then there
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would be very little that we could say, in general, about meta-level architectures, without
committing ourselves to a particular combination of object-level representation language
and ontology. It is certainly true that for more detailed observations about meta-level
systems we will have to commit ourselves to a particular representation language, and that
is exactly what we will do later in this book (from the next chapter onwards). However,
it is possible to abstract away from the particular representation language, and to look at
the general architecture of the system, that is: to look only at the relation between object-
level and meta-level, without looking at the formalisms and ontologies that determine their
contents. Perhaps surprisingly, such an abstract point of view reveals that the diversity of
systems discussed in the previous chapter can be classified into a limited number of typical
architectures. The advantage of such a classification, based on essential architectural fea-
tures rather than on properties incidental to a particular representation language, is that
it will allow us to compare the different meta-level architectures independently from the
choice of their representation language.

In this chapter we will first develop a classification based on our main distinguishing
characteristic, leading to a classification in which all the systems from the previous chapter
have a place. After that we will discuss a number of other, independent properties by which
these systems can be distinguished, although they are of secondary importance. Again, we
will classify each of the systems from the previous chapters with respect to these properties.
Finally, we will compare all the different types of systems within these characteristics, and
argue in favour of one particular type of system.

3.1 Classification of meta-level architectures

The essential characteristic of meta-level architectures is, of course, that they consist of
two levels, the object-level and the meta-level. Each layer can be seen as an individual
system with a representation language and an interpreter for expressions in that language.
The system as a whole can at any moment be active at one of the two levels; either it is
interpreting object-level expressions (using the object-level interpreter), or it is interpreting
meta-level expressions (using the meta-level interpreter). This leads us to the notion of the
locus of action (using a phrase coined in [Welham, 1986]): the place in the system which
is active at any one point in time. This locus of action can then be either the object-level
interpreter or the meta-level interpreter. It is exactly this locus of action that will form the
basis for our main classification of meta-level architectures. We will distinguish a spectrum
of systems, with at one end of the spectrum systems where the locus of action is almost
all the time the object-level interpreter, and where meta-level activity takes places only
occasionally. At the other end of the spectrum we will see systems where the converse is
true: almost all (or sometimes: all) system activity takes place in the meta-level interpreter,
and (almost) no activity takes place at the object-level. The systems in the middle of this
spectrum exhibit equal amounts of object-level and meta-level activity. This classification,
plus further subdivisions, is shown in figure 3.1, and we will discuss each of the types of
system in this classification in the following subsections.
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Figure 3.1: classification of meta-level systems

3.1.1 Object-level inference systems

On one extreme of the classification shown in figure 3.1 are the systems where the main
activity is in the object-level interpreter. In fact, these systems do not have a separate
meta-level interpreter (i.e. an interpreter for meta-level expressions), but only a built
in (i.e. implicit, not inspectable and modifiable) object-level interpreter that takes the
meta-level expressions into account during its computational cycle in order to adjust its
behaviour. As a result, the object-level interpreter executes two types of instructions:
firstly, the object-level expressions it is supposed to interpret, and secondly the meta-level
expressions that affect its behaviour. Typically, the object-level interpreter performs a
fixed computational cycle, and the meta-level expressions are concerned with certain fixed
points within this cycle.

A good example of a system from this category is the Prolog system from Gallaire and
Lasserre (section 2.4.1). The object-level Prolog interpreter goes through a fixed literal-
selection clause-selection loop which can be affected in certain parts by meta-level instruc-
tions concerning the selection of clauses and literals. Thus, there is no separate meta-level
interpreter to execute the meta-level expressions (remember that the main literal-selection-
clause-selection loop is not modifiable and does not therefore constitute an explicit meta-
level interpreter). In the case of the Gallaire/Lasserre system, the meta-level expressions
can affect either the object-level interpreter in general, or only when it is executing specific
object-level expressions, depending on whether the meta-level instructions mention specific
object-level expressions or not.

A second example of this type of architecture is golux (section 2.3.1), where the
behaviour of the object-level theorem prover is constrained by meta-level assertions that it
must “obey”, i.e. the behaviour of the object-level interpreter must always be consistent
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with the control assertions.

3.1.2 Mixed-level inference systems

In the middle of figure 3.1 we find systems where the computation takes place in both
the meta- and the object-level interpreter. Object-level and meta-level computations are
interleaved, and some mechanism is provided for switching between the two. We can
further subdivide this category of systems in the middle of the spectrum on the basis of
the criterion that is used for switching between object- and meta-level, as shown in figure
3.1.

3.1.2.1 Reflect-and-act systems

Sometimes the meta-level interpreter is called very frequently, before or after every object-
level step. This organisation has been called a reflect-and-act loop, since the object-level
interpreter “acts”, the meta-level interpreter “reflects” on the actions of the object-level
interpreter and these two together are chained together in a continuous loop. teiresias
(section 2.1.1) and bb1 (section 2.1.3) are examples of such architectures

find all

applicable

rules use meta-rules

to select one

applicable ruleapply

selected

rule

Object-level Meta-level

1

Figure 3.2: flow of control in reflect-and-act systems

The flow of control in such reflect-and-act systems can be described as in figure 3.2.
The object-level interpreter finds the set of all applicable object-level rules and passes this
conflict-resolution set on to the meta-level interpreter. For instance in teiresias, the
meta-level interpreter uses its control knowledge to select one of these applicable rules,
which is then handed down again to the object-level interpreter, which applies this rule.
Similarly, in bb1, the object-level system finds the set of all active knowledge sources, and
the meta-level system decides which of these knowledge sources should be applied, after
which the object-level interpreter executes the selected knowledge source.

3.1.2.2 Crisis-management systems

Sometimes the meta-level is called only if a crisis or an impasse occurs in the object-
level computation, for example when too many or not enough steps are possible at the
object-level. pdp-0 (section 2.2.3) is an example of this approach.
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Figure 3.3: flow of control in crisis-management systems

The flow of control in crisis-management systems is summarised in figure 3.3. The
object level interpreter uses the domain knowledge to solve a particular problem, and only
hands over control to the meta-level interpreter if some kind of crisis occurs which prevents
the object-level computation from continuing. The meta-level interpreter then uses its
strategic (meta-level) knowledge base to try to solve this crisis. If some kind of solution
has been found it is handed down to the object-level interpreter which can then proceed
with the computation. Different kinds of crises can occur. One example of a crisis is
when no object-level rules can be found that apply to the current subgoal. The meta-level
interpreter then has to find a different subgoal for the continuation of the object-level
computation. In this way we could implement user-directed backtracking, rather than the
built-in standard behaviour of a system like Prolog. Another example of a crisis is when
more than one object-level rule applies to the current subgoal. The object-level interpreter
then turns to the meta-level for conflict resolution. In this way a reflect-and-act system can
be simulated in an efficient way by a crisis-management system (efficient since the meta-
level is only called if there is indeed more than one applicable object-level rule, rather than
in every loop, as in reflect-and-act systems).

3.1.2.3 Subtask-management systems

Yet another approach is where the meta-level knowledge is used to partition the object-level
task into a number of subtasks. In such a system, the meta-level interpreter decides on a
task to be done, and this task will then be executed by the object-level interpreter. After
completion of this object-level task (be it successful or not), the meta-level decides on the
next subtask for the object-level. This approach is taken in s1 (section 2.1.2), neomycin
(section 2.2.1), and mla (section 2.1.4).

The flow of control in subtask-management systems is described in figure 3.4. The meta-
level interpreter first decides upon a subtask to be solved by the object-level interpreter.
The object-level interpreter then tries to solve this subtask, and only returns to the meta-
level when it has either found a solution or when it has established that it cannot solve
the subtask. On the basis of this result the meta-level interpreter can then try to find
a new subtask to be solved. As can be seen from figures 3.3 and 3.4, the architectures
for crisis- and subtask-management systems are very similar. The main differences are in
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Figure 3.4: flow of control in subtask-management systems

the type of data that is passed between the object- and the meta-level (subtasks or crisis
information), and in the place where the computation starts: crisis-management systems
initiate their computations at the object-level, while subtask-management systems start
their computation at the meta-level.

3.1.3 Meta-level inference systems

On the right side of the spectrum in figure 3.1 we see systems where the computation
mainly takes place in the meta-level interpreter. In these systems the behaviour of the
object-level is fully specified at the meta-level. Using this description of the object-level,
the meta-level can completely simulate the object-level inference process. This means that
there is no longer a need for an explicit object-level interpreter. As a result, the object-level
interpreter is no longer present in the system, and its behaviour is completely simulated by
the execution of its specification at the meta-level. Examples of this type of architecture
are press (section 2.2.2), 3-lisp (section 2.4.3), and the amalgamated logic by Bowen and
Kowalski (section 2.4.2). For example in the amalgamated logic, the meta-level interpreter
fully specifies the object-level computation, so that every aspect of it can be changed. The
same holds for the other systems.

An important subdivision of meta-level inference systems can be made on the basis of
the relation between the object-level language L and the meta-level language M used by
the system. On the one hand, there are the systems that we will call bilingual. These
systems support two strictly separate languages L and M . In order to provide upwards
and downwards communication between L and M , the languages are related via a naming
relation which translates sentences, sets of sentences, and other linguistic entities of L into
variable free terms of M . The press system provides such an approach, where the meta-
level language is Prolog and the object-level language represents variables as designated
Prolog atoms. Other bilingual systems discussed in chapter 2 are the nuprl and the Proof
Plan systems. On the other hand there are systems in which L and M are the same
language. These systems can be divided into two subtypes. One subtype are the mono-
lingual systems. In these systems , no syntactic distinction is made between object-level
and meta-level expressions. Object-level and meta-level variables are both represented in
the same way, and no account is given of the difference between object-level and meta-level
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expressions. Examples of these systems are 3-lisp and the Gallaire/Lasserre system. For
instance in the Gallaire/Lasserre system Prolog is used for both L and M . The other
subtype of systems which have L = M are the amalgamated systems. As in the mono-
lingual systems, the amalgamated systems use the same language for both levels, but
unlike the mono-lingual systems, the amalgamated systems do employ a naming relation
as described above, so that each object-level expression has a variable free term as its
name associated with it. (Since this variable free term is itself again a syntactically correct
object-level expression, since L=M , it again must have another variable free term as its
name, ad infinitum). An example of this approach is presented in the Bowen/Kowalski
system described in section 2.4.2.

This concludes our classification of meta-level architectures according to their locus
of action. This distinction corresponds roughly to a distinction made by Silver [Silver,
1986] between object-level driven and meta-level driven systems. Systems at the left end
of the spectrum shown in figure 3.1 are object-level driven, since their main computation
takes place at the object-level, and systems at the right end of the spectrum are meta-level
driven.

3.2 Other properties of meta-level architectures

In this section we will discuss some more properties of meta-level architectures that can be
used to further classify them, beyond the classification on the basis of the locus of action
as described in the previous section. Some of the properties discussed in this section are
found implicitly in the literature. The aim of this section is to sharpen these criteria, and
to make them explicit. Figure 3.5 at the end of this section will summarise the position of
all the systems described in the previous chapter with respect to all of these properties.

3.2.1 Linguistic relation between levels

The distinction between mono-lingual, bilingual and amalgamated systems used to subdi-
vide meta-level inference systems in the previous section can in fact be used more generally,
to apply also to object-level inference and mixed-level inference systems.

Object-level inference systems can have their meta-level instructions to the object-level
interpreter expressed in a language that is either the same as or different from the object-
level language. The Gallaire/Lasserre system relies on the two languages being the same,
whereas golux separates the two languages, providing an explicit quoting mechanism to
give meta-level names to object-level expressions (using this mechanism, the ground terms
at the meta-level that are used as the names of object-level expressions are always atomic
constants).

The distinction between mono-lingual, bilingual and amalgamated systems also applies
to mixed-level systems. teiresias is a bilingual system: although both object-level and
meta-level language are production rule languages, they are quite different languages, prop-
erly separated. The languages are of the same type, namely production rule languages, but
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they are not identical. This is similar to golux, where both meta-level and object-level
language are of the same type (first order predicate calculus), but are in fact separate lan-
guages. The same remark holds for mla. neomycin and s1 are also bilingual systems, but
in both these systems the meta-level language is not only different from the object-level
language, but also of a different type. Both neomycin and s1 use production rules at the
object-level, but use some special purpose language at the meta-level: the task-language
in neomycin and the control blocks in s1.

3.2.2 Declarative or procedural meta-language

As already explained in section 1.2.1, the control knowledge of the meta-level can be either
expressed in a declarative or a procedural language. Expressions in a procedural language
can only be understood in terms of the behaviour of the meta-level interpreter, the actions it
takes, the order in which it does things etc., whereas a declarative language states true facts
that can be understood without reference to the behaviour of the meta-level interpreter.
For example, the meta-level expressions of golux are purely declarative descriptions1of
properties of object-level proof trees, whereas something like the control knowledge of
s1 is purely procedural in nature, talking about the order in which to perform actions,
sequences and loops of instructions etc. Yet other systems (such as press) have a meta-
level language that has both a declarative and a procedural reading (as explained in the
section on press, section 2.2.2).

3.2.3 Partial specifications

An important property of some of the systems described in the previous chapter is that
they allow the partial specification of meta-level knowledge. Such systems (like golux,
Gallaire/Lasserre, mla, 3-lisp, krs and Bowen/Kowalski) provide a default specification
of the behaviour of the system that can be totally or partially overwritten by the user to
modify the systems default behaviour. In some of these systems the default definition is
available for inspection in the system (3-lisp, krs, Bowen/Kowalski), whereas the other
systems (golux, Gallaire/Lasserre, mla) only contain an implicit definition of their default
behaviour.

3.2.4 Combinatorial completeness and soundness

As mentioned in chapter 1, one of the main purposes of having a meta-level architecture
at all is to allow the object-level to be purely declarative, without having to worry about
procedural aspects. Thus, for any given query, the object-level (implicitly) specifies a set
of answers2. It is the task of the meta-level interpreter to determine which of these
possible answers is going to be actually computed, and in which order. Furthermore, in

1It should be stressed that by “purely declarative” we do not mean that these expressions only have a
declarative meaning, but instead that it is possible to give an account of the meaning of these expressions
without any reference to a procedural interpretation.

2This is clearest if the object-level consists of a logical theory plus a set of logical inference rules, but
similar notions exist for other declarative representation languages.
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some systems, it is possible for the meta-level to produce answers not derivable from the
object-level theory, using meta-theoretic devices like reflection principles [Feferman, 1962],
implemented for instance in fol [Weyhrauch, 1981]. We call a meta-level architecture
combinatorially complete if it computes all the results derivable from the object-level theory
(i.e. the meta-level does not suppress any object-level results). We call a meta-level system
combinatorially sound if it computes only results derivable from the object-level theory (i.e.
the meta-level does not extend the object-level results). Notice that it is possible for a meta-
level architecture to be both incomplete and unsound, namely if the meta-level suppresses
some of the object-level results, but also computes extra ones.

With these definitions it is clear that completeness of a meta-level system is not always
a desirable property. The whole point of a meta-level architecture is often to prune parts
of the object-level search space, thereby suppressing certain object-level results because
they are too expensive to compute, or unwanted in some other sense. [Wallen, 1983] used
the term “positive heuristic” in connection with the concept of completeness: a positive
heuristic is

“a heuristic that prefers certain object-level computations over others, but that
does not prohibit certain computations altogether.”

In other words, a system that only allows positive heuristics is automatically complete.
Unlike combinatorial completeness, combinatorial soundness of a meta-level system in the
above sense is always a desirable property. In the context of using meta-level systems for
control, we do not want to extend the results of the object-level theory. As described in
section 1.2.3 one possible use of a meta-level architecture is to try and extend the results
of the object-level theory, but this is not our interest here.

A system like the Gallaire/Lasserre Prolog system is one of the few systems described
in the previous chapter that is complete: its only concern is the ordering of clauses and
literals, thereby affecting only the order in which the object-level computation takes place,
but not its ultimate outcome3. A system like golux is certainly not combinatorially
complete, as the example in section 2.3.1 shows: we can force proofs in golux to be
deterministic, thereby pruning alternative solutions. However, golux is combinatorially
sound in the above sense: no new object-level results can be introduced through meta-level
computation. This is not true in meta-level inference systems like krs and 3-lisp. Since
their meta-levels completely specify the object-level computation, it is possible to extend
the object-level behaviour in order to produce extra results.

This concludes our discussion of different properties to distinguish meta-level archi-
tectures. The table in figure 3.5 summarises the position of all the systems described in
chapter 2 on these properties. This table also contains data on the Socrates system, which
will be described in chapter 5. However, for convenience, we already include Socrates in
the table here.

3Strictly speaking, this is only true for those versions of their system that do not allow dynamic cut-
introduction. This corresponds to dynamically removing object-level backtrack-points, thereby potentially
suppressing certain object-level results.
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System Architecture linguistic declarative/ partial sound &
type relation procedural spec. complete

teiresias reflect-act biling. decl. yes C– ; S+
s1 task-man. biling. proc. ? C– ; S+
bb1 reflect-act biling. proc. yes C– ; S+
mla task-man. biling. decl. yes C– ; S+
krs meta-inf. mono-ling. 1 yes C– ; S–
neomycin task-man. biling. proc. 2 C– ; S+
press meta-inf. biling. decl.&proc 2 C– ; S–
golux object-inf. biling. decl. yes C– ; S+
pdp-0 crisis-man. ? ? 2 ?
Gallaire object-inf. mono-ling. decl.&proc yes C+4 ; S–3

Bowen meta-inf. amalgam. decl.&proc yes C– ; S–
3-lisp meta-inf. mono-ling. proc. yes C– ; S–3

Socrates task-man. biling. decl.&proc no C– ; S–
nuprl task-man. biling. proc. no C– ; S+
Proof Plans task-man. biling. decl.&proc no C– ; S-

Legend:

? = unknown, cannot be determined from available literature.
n = not applicable, see note n.

C+/– = completeness enforced/not enforced.
S+/– = soundness enforced/not enforced.

Notes:

1 It is unclear how the object-oriented paradigm relates to the distinction declarative vs.
procedural.

2 The possibility of partial specifications does not occur in this system since it is a program
built for a particular task, containing a full specification of one appropriate control
regime.

3 The system can be made combinatorially unsound because the confusion between object-
level and meta-level language (mono-lingual) allows the meta-level predicates to in-
troduce arbitrary bindings for the object-level variables.

4 The system is only complete without the facility of dynamic cut-introduction.

Figure 3.5: properties of meta-level systems
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3.3 Comparison of the different architectures

In this section we will compare the different types of meta-level architectures as distin-
guished in the previous section. We will identify shortcomings of almost all these types
of meta-level architectures. This will lead us to prefer one particular type over all the
others. However, even that type of architecture is not free from problems, but these will
be discussed in more detail in chapter 6, and not in this section.

In our comparison of architecture, we will use as our main criterion the degree to which
control knowledge can be separately and explicitly represented. This criterion is of course
a direct consequence of the arguments in sections 1.2.1 and 1.2.2.

The most obvious problem is associated with the object-level-inference systems. The
meta-level does not have a separate place in the architecture of these systems, and is not
stated as explicitly as would be necessary in order to achieve the advantages discussed in
the introduction (better explanation, re-usability and ease of development and debugging).
The main structure of the control strategy of these systems is only implicit in the system.

Although possibly available for inspection, it is never available for modification, and only
a restricted number of aspects of the control strategy can be changed. For instance in the
Gallaire/Lasserre system, it is possible to change the clause- and literal-selection strategies,
but the fact that the system is chronologically backtracking and backward chaining is
hardwired.

The mixed level systems do not suffer from this problem, but they have other problems
associated with them, which can best be discussed using the subcategories of this type of
system.

A problem that is associated with both the crisis-management systems and the reflect-
and-act systems is that the search in the solution space is still performed at the object-level.
As a result, the meta-level knowledge is only used as a preference criterion over the separate
object-level search space, whereas in systems that are more meta-level driven the meta-
level knowledge is used to specify completely the whole structure of the search space of
the system. This means that no full advantage is taken from the fact that the meta-level
search space is better behaved than the object-level search space.

A problem associated with the task-management systems is what could be called the
black box effect: after the meta-level has decided on a task to be performed by the object-
level, the object-level is no longer under the control of the meta-level, and again no full
benefit is gained from the differences between meta-level and object-level search.

None of the mixed-level inference systems makes all the control knowledge in the sys-
tem explicit: reflect-and-act systems deal only with conflict resolution strategies, crisis-
management systems know how to solve impasses in the computation and subtask-
management systems represent the selection of goals and subgoals, but none of them
contains a full description of the object-level computation.

Meta-level inference systems do not suffer from these problems. In meta-level infer-
ence systems, the meta-knowledge is not just used as preference criteria over the separate
object-level search space, but it is used to specify completely the whole structure of the
search space. Meta-level inference systems perform their search in the meta-level search
space and thereby gain the full benefit of the better properties of the meta-level search
space. Furthermore, meta-level inference systems contain a full specification of the infer-
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ence strategy of the system, thereby allowing the user to change any part of this strategy,
and not just a few predefined aspects of it. However, meta-level inference systems do have
problems of their own, which will be discussed in chapter 6.

This leaves us with the choice between the different subtypes of meta-level inference
systems: mono-lingual, bilingual and amalgamated systems. A number of reasons can be
given why it is important for the meta-level language to be separate from the object-level
language, thus ruling out both the mono-lingual and the amalgamated systems.

• Suitability: First of all, there is an epistemological reason. [Reichgelt and van
Harmelen, 1985,Reichgelt and van Harmelen, 1986] and [Chandrasekaran, 1983,Chan-
drasekaran, 1985b, Chandrasekaran, 1985a, Chandrasekaran, 1987] argue that differ-
ent domains require different representation languages. Since the object-level and
the meta-level deal with widely different domains (the object-level deals with the
application domain of the system, while the meta-level deals with the issue of con-
trolling the object-level), it follows that these two levels of the system do indeed need
different representation languages to suit their different needs.

• Distinguishability: A second argument concerns the modularity of the system.
One of the advantages of separating control knowledge from domain knowledge is
that the two can be changed independently. The same domain knowledge can be used
for different tasks under different control regimes, and the same control knowledge
can be used to solve similar tasks in different domains. However, this ability to
vary the two levels independently would be greatly reduced if control knowledge and
domain knowledge were represented together in one and the same language, which will
inevitably lead to the two being represented in a mixed way, rather than separately,
as needed to achieve the desired modularity.

• Explanation: The third argument is one about explanation. As argued in
[Warner Hasling et al., 1984], the explanations given by reasoning systems should
not only include what the system is doing, but also why it is doing a particular action
and not another one. In other words: the control knowledge should be an identifi-
able part of the explanations given by the system. In order to enable the system to
include control knowledge explicitly in its explanations, it is important for both the
human reader and the automated explanation generator that control knowledge can
be syntactically distinguished from domain knowledge. This would not be possible if
one and the same language were used for both levels.

• Formal correctness: A final argument in favour of bilingual systems is the work in
[Hill and Lloyd, 1988]. They provide a theoretical foundation for meta-programming
in logic programming. After an initial attempt to use a mono-lingual system as
the basis of their theoretical account (introducing a many-sorted language to rescue
the separation of object-level and meta-level statements), they ultimately turn to
a bilingual representation4 as the only way of providing a satisfactory theoretical
account of meta-level programming. This point is elaborated further in [Lloyd, 1988],
as illustrated by the following quote:

4Hill and Lloyd use the term “ground representation” where we use bilingual representation, for the
obvious reason that object-level expressions are represented by variable free terms at the meta-level.
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“[. . . ], we argue that the current research effort being put into the [mono-
lingual] interpreter and its enhancements is largely misplaced. It would be
better to start with an interpreter based on the ground representation.”

At this point we have to stress that a bilingual architecture does not imply that we
can not use similar languages at object-level and meta-level if so desired. For instance,
we could choose to use first order predicate calculus at both levels. The only requirement
is that the two languages, although of the same type, are syntactically distinct. In other
words, we would have two copies of the same language, one for each level, with the two
copies being syntactically separate.

A further problem associated with the amalgamated approach is the recursive appli-
cation of the naming convention. Each ground term in the meta-level language that is
the name of an object-level formula is itself again an object-level formula (since the two
languages are the same), and thus has some ground term as its name, etc. This intro-
duces the possibility of self-referential sentences, which is necessary for introspection, or
for incompleteness proofs à la Gödel (the self-referential capability is used in exactly this
way in [Bowen and Kowalski, 1982]). However, if we are not interested in these aspects of
meta-level reasoning this added complexity is not needed, and we can get away with the
much simpler construction of separate languages.

Thus having narrowed our choice down to bilingual meta-level inference systems, we still
have to discuss the best position on the other properties of meta-level systems described
in the previous section: the possibility of partial specifications, a declarative versus a
procedural meta-level language, and enforcing combinatorial soundness and completeness
on the meta-level.

The possibility of writing only partial specifications of the control strategy of the system
is obviously attractive for the development of a system. We can gradually refine the
control strategy of the system, without overcommitting ourselves at any point, postponing
decisions until we understand enough of the domain. However, a high price needs to be
paid for this possibility, resulting in a severe restriction of the system’s architecture. In
order for the system to be able to “fill in the gaps” of the partial specification of the
control regime by the user, it is necessary that this partial specification is of a particular
format, so that it is possible for the system to identify which parts of the control regime
are underspecified, and need to be filled in with default values. This restricts the possible
range of control regimes that can be formulated by the user.

The question of a declarative versus a procedural meta-level language is not very clear.
This issue will return again in chapter 5 where we will describe the meta-level architecture
of the Socrates system.

Concerning the issues of combinatorial soundness and completeness we can say the
following: for reasons discussed before, we would not want to enforce completeness on a
meta-level architecture, since often the whole point of having a meta-level is to be able to
avoid the expensive computation of certain object-level results. Combinatorial soundness
on the other hand, not allowing the meta-level to extend the set of results that can be
computed by the meta-level, is a desirable property, since we are only interested in the use
of meta-level inference for control.

63



3.4 Conclusion

In this chapter we have categorised the meta-level systems described in the literature, and
have distinguished the following types:

• object-level inference systems

• mixed-level inference systems, which can be divided into

– reflect-and-act systems

– crisis-management systems

– subtask-management systems

• pure meta-level inference systems, which can be divided into

– mono-lingual systems

– bilingual systems

– amalgamated systems

Furthermore, a number of secondary properties of meta-level architectures were iden-
tified:

• Is the meta-level language declarative or procedural?

• Does the system allow partial specifications of the control regime?

• Does the system enforce combinatorial soundness and completeness of the control
regime?

We have compared these systems, and have argued in favour of bilingual, pure meta-
level inference systems.
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Chapter 4

The structure of meta-level inference
systems

In this chapter we will take a closer look at the structure of meta-level inference systems,
the type of meta-level architecture that was argued for in the previous chapter. This will
lead us to a list of necessary components for meta-level inference systems and for logic
based meta-level inference systems in particular.

4.1 Basic components

At various places in the literature researchers have analysed the basic components of meta-
level architectures in general (not just of meta-level inference systems). The most recent
of these, which is based on previous analyses in [Smith, 1985] and [Batali, 1983], is given
in [Maes, 1986b,Maes, 1986a]. Maes has suggested that introspective systems should have
three essential ingredients, but in fact these requirements hold for any system with a meta-
level component:

• a model of the object-level computation,

• a causal connection between meta-level actions and object-level behaviour,

• an architecture of introspection, which allows the system to switch between meta-level
and object-level activities.

The most interesting of these (and as we will see the only one of interest for meta-level
inference systems) is the model of the object-level computation. Before we discuss this in
some detail, we will describe the other two points.

The requirement for a causal connection states that the model of the object-level com-
putation should not only be inspectable by the meta-level, but the meta-level should be
able to make changes in this model, and these changes should be reflected in the behaviour
of the object-level. Smith [Smith, 1985] has introduced the words introspective force and
introspective faithfulness for the two directions of the causal connection: “force” because
changes made by the meta-level in the model of the object-level computation must be
enforced upon the actual object-level machinery, and “faithfulness” because any change
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of the object-level must be faithfully represented in the meta-level model of the object-
level computation. A language such as omega [Attardi and Simi, 1984] incorporates a
‘read-only’ model of the object-level program, having only introspective faithfulness, and
lacking introspective force. Such a language would not have a proper bidirectional causal
connection.

Maes describes the introspection architecture as

“[an architecture which gives] the possibility to halt the computation of a pro-
gram, jump to a reflective level where a model of that computation can be
accessed and manipulated, and return to the affected computation afterwards.”

The behaviour of such an introspection architecture corresponds to the behaviour of the
mixed-level inference systems described in the previous chapter, where some criterion was
used to switch activity between object- and meta-level.

The above description of essential components for meta-level systems is taken directly
from [Maes, 1986b,Maes, 1986a]. Below we will specialise her analysis to meta-level infer-
ence systems in particular (which will result in removing two out of the three components),
and then further specialise the remaining component for logic-based meta-level inference
systems. This specialisation will allow us to give a much more detailed analysis of the
required components of such a system.

Although the two components mentioned above (the causal connection and the intro-
spection architecture) are part of meta-level systems in general, they are not required for
meta-level inference systems. This is most clear for the introspection architecture. Since
meta-level inference systems make all their inferences at the meta-level, and simulate the
object-level computation at the meta-level using a full specification of it, there is no need to
switch between the different levels: all the computation takes place at the meta-level. This
makes the concept of the introspection architecture unnecessary for meta-level inference
systems.

A similar argument holds for the causal connection. Its purpose is to ensure a cor-
rect relation between the object-level computation and the model of this computation at
the meta-level. However, a meta-level inference system completely models the object-level
computation at the meta-level, without separately executing any object-level computa-
tion. Since the model of the object-level computation is all there is, there is no need to
worry about the force or faithfulness of this model, and thus the causal connection is also
meaningless in meta-level inference systems.

This leaves us with the model of the object-level computation as the final component
of meta-level architectures. This model is obviously of central importance in a system
based on meta-level inference. After all, it is the subject of all the reasoning of the meta-
level interpreter. Maes follows [Batali, 1983] in saying that the power of the meta-level is
“model relative”1, i.e. the power of the meta-level inference process is directly related to
the richness of the model it has of the object-level computation. So far (in the previous
chapter and above) we have said that meta-level inference systems have a full, complete
model of the object-level computation, but this needs to be qualified. It is possible for

1Actually, Maes and Batali use the term “theory relative”, but we prefer the term “model relative”
instead, since the term “theory” already refers to object-level and meta-level theory.

66



meta-level inference systems to only have partial models of the object-level computation.
In such a case some aspects of the object-level computation are not explicitly represented at
the meta-level, but are instead implicit in the architecture of the system, and can therefore
not be inspected or modified. This makes the power of a meta-level inference system
relative to the completeness of its model of the object-level computation. In chapter 5
we will discuss a meta-level inference system whose meta-level model of the object-level
computation is indeed not complete, and we will discuss the advantages and disadvantages
of such an incomplete model.

Because this model of the object-level computation is of such central importance to
meta-level inference systems, we will discuss it in some more detail. We can distinguish
three components that constitute a model of computation:

• the object-level program,

• the computational behaviour of the object-level program,

• the state of the computation of the object-level program.

The first two of these components are static: the code is the set of instructions that form
the object-level program, and the computational behaviour is the procedural interpretation
under which these instructions will be executed. The third component of the model is
dynamic: it represents the current state of the object-level computation, and changes as
the computation proceeds. Each of these three components of the model of the object-
level computation can be expressed at arbitrary levels of description. In principle it would
be possible to give a description of voltages and electronic components of a particular
machine, or, at the other extreme, in terms of a high-level language such as Prolog or lisp.
Which level of description is appropriate depends on the particular application, but for
applications in controlling the inference in reasoning systems we will be more interested in
high level rather than low level descriptions.

It is important to note that this notion of a model of computation, consisting of these
three components, is not in any way restricted to meta-level architectures. All compu-
tational devices can be modelled in this way at any level of description. For example, a
computation in Pascal can be characterised by the program code, plus a description of the
Pascal virtual machine (the Pascal interpreter), plus the state of this machine (as defined
by the contents of the machine-registers and the procedure-call stack). The difference
between meta-level architectures and arbitrary computational systems is that we require
of meta-level architectures that all three components of this model (the program code,
the computational behaviour and the state of the computation) are explicitly represented
(i.e. available for inspection and modification), whereas in arbitrary computational sys-
tems (such as for instance a Pascal computation), we expect only the program code to be
available for inspection and modification, while the other two components are implicit in
the system.

4.2 Components of logic-based systems

As stated in chapter 1 we are particularly interested in systems that use logic as their
representation language. The three components described above constitute a model of an
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arbitrary computation that can be analysed in more detail in this specific context.
The most straightforward component is maybe the program code. In logic based sys-

tems this corresponds to the object-level theory (i.e. the set of object-level axioms), in
knowledge-based systems also called the “knowledge base”. The state of the computation
in a logic-based system is completely specified by a proof tree, representing all inference
steps that have been made so far.

The most complicated part of the model is the computational behaviour. In a logic-
based system this consists of two elements: the inference rules, and information on how to
use these inference rules. The set of inference rules for the object-level language defines the
set of all possible computations that can be made (given a fixed object-level theory), but in
order to specify what actual computations will be made, additional information is needed
on how to use these inference rules. In other words, the inference rules (in conjunction
with a given object-level theory) determine the search space of possible theorems, whereas
a search strategy is needed to specify how this search space should be traversed. This
distinction coincides with the one made in [Meltzer, 1971] where a theorem proving program
is separated into an inference system and a search strategy. Meltzer writes P = (I,Σ).
The inference system I is defined by the set of inference rules, whereas the search strategy
Σ consists of the strategies used for exploring the search space defined by the inference
system. The explicit representation of the search strategy is at the very heart of the meta-
level inference methodology. It constitutes the proof strategies that are axiomatised at the
meta-level and they form the meta-level knowledge that the system possesses.

4.3 Completeness and soundness

It is important to emphasise that the inference system I determines only the theoretical
space that should be searched by the system in order to find a solution. In general this
space is infinite which prohibits its explicit representation. The search strategy Σ is needed
to generate and traverse only relevant portions of this search space. The decomposition
P = (I,Σ) is used by Meltzer to distinguish two different notions of completeness, logical
completeness and combinatorial completeness, where logical completeness is determined
by I and combinatorial completeness by Σ. A theorem proving program P is logically
complete if I is a complete set of inference rules for the logical language L of P (i.e. every
valid sentence of L is provable under I). P is “combinatorially complete”2 if every derivation
admissible under I is eventually generated by P . In other words: if all theoretically possible
proofs will also in practice be generated. Thus, logical completeness is a property of the
object-level theory and the set of inference rules I, whereas combinatorial completeness is
a property of the search strategy Σ as specified in the meta-level theory. Although Meltzer
does not mention this, a weaker version of combinatorial completeness is also possible. A
theorem proving program P is weakly combinatorially complete if every sentence provable
under I will eventually be proved by P . This is a weaker requirement than the first
(strong) definition of combinatorial completeness, since we only require that every provable
sentence will eventually be proved, rather than requiring that every proof will eventually

2The notion of combinatorial completeness mentioned in chapter 3 is the same as the notion defined
here.
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be generated. Thus, if some sentences have multiple proofs, a weakly combinatorially
complete system is only required to generate at least one of these proofs in practice, whereas
a strongly combinatorially complete system must generate all of them.

In the meta-level inference system to be described in the next chapter we will see that
it is possible to affect both the logical and the combinatorial completeness of that system
(as determined by I and Σ respectively) at clearly separated places in the architecture.

The dual notions of logical and combinatorial completeness are of course logical and
combinatorial soundness. The notion of combinatorial soundness has already been defined
in chapter 3: a search strategy Σ is combinatorially sound if it only generates derivations
admissible under the logical rules of inference I. The notion of logical soundness is as
usual: I is logically sound if only valid sentences are provable under I. The definitions
of logical soundness and completeness are of course relative to some intended semantics
(defining the set of valid sentences). Similarly, the definitions of combinatorial soundness
and completeness are relative to the logical derivability relation. Thus, even if a system
is logically incomplete (i.e. not all valid formulae are logically derivable), it can still be
combinatorially complete (if all logically derivable formulae are actually derivable in the
system), and vice versa. The situation can be summarised as follows: if Π is the set
of provable sentences (under I), T is the set of valid sentences (under some intended
semantics), and Γ is the set of sentences whose proofs will actually be generated by Σ,
then we can rephrase the definitions above as follows:

logical soundness ↔ Π ⊆ T
logical completeness ↔ T ⊆ Π

combinatorial soundness ↔ Γ ⊆ Π
combinatorial completeness ↔ Π ⊆ Γ

4.4 Subcomponents of the search strategy

It is possible to further divide the search strategy Σ into three different components.
A strategy consists of a generative component, a directional component and a termi-
nation component. inxxdΣginxxdΣdinxxdΣt Following Meltzer, we could write P =
(I, (Σg,Σd,Σt)). The generative component Σg of a strategy describes which part of
the theoretical search space should be actually generated, the directional component Σd

describes how the resulting space should be traversed during the search process, and the
termination component Σt decides when the search process should be stopped. In the
context of logic-based inference engines, Σg tells us how to expand a given node in the
and/or tree, while Σd tells us which node should be chosen for the continuation of the
search process. Σg governs decisions such as which subset of the set of inference rules is to
be used at a particular node to generate new nodes, whether these inference rules are to
be used one at a time or all at once, whether they should be used exhaustively or not, etc.
Σd deals with decisions about the selection and ordering of nodes in the search tree. Σt

determines how many nodes will be visited, how many solutions will be generated, if there
is a maximum limit on the amount of effort spent by the system, etc. As said above, the
combinatorial completeness of a system is determined by its search strategy Σ. Actually,
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feature of component of
search process heuristic

exhaustive/ termination &
non-exhaustive generative

a maximum termination &
search depth directional
branch and generative

bound
best first/

breadth first/ directional
depth first/

agenda based
forward/ generative
backward
iterative- termination &
deepening directional

Figure 4.1: examples of components of strategies

for systems with a finite search space, only Σg and Σt affect the combinatorial complete-
ness, and Σd only affects the order in which solutions are generated. However, for systems
with infinite branches in the search space, Σd will also affect the completeness, since Σd

will determine whether or not the system manages to avoid getting trapped in the infinite
branches of the search space (this property is sometimes called fairness). (See [Hogger,
1984] for a precise definition of fairness).

Under these definitions the set of inference rules I, plus the choice between forward
or backward use of them, determines which solutions a system can generate in principle;
Σg, Σt (and possibly Σd) determine which of these theoretically possible solutions will be
actually generated in practice; and Σd determines in which order these solutions will be
generated. Figure 4.1 lists a number of different properties of control regimes, and shows
how these properties are defined by either the generative, the directional or the termination
components of strategies.

To illustrate the distinction between Σg, Σd and Σt, we can compare three related
Prolog systems, namely a normal Prolog interpreter, the enhanced Prolog system from
Gallaire and Lasserre (as described in section 2.4.1) and the bilingual meta-circular Prolog
interpreter that will be used in chapter 6, figure 6.4b, which is repeated here in figure 4.2
for convenience. A standard Prolog interpreter obviously fixes all three of Σg,d,t: Σg is
fixed to generate the full search space (i.e. no control decisions are taken by disregarding
certain parts of the search space); Σd is fixed to Prolog’s standard top-to-bottom, left-
to-right execution rule (textual order); Σt is fixed to terminate the search process when
one solution has been found. The enhanced Prolog system by Gallaire and Lasserre fixes
Σg and Σt to the same choices, but allows the user to define the choices for Σd (within
certain limits set by the language made available for this purpose): the user can affect
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solve([], []).

solve([G|Gs], S) :-

get_clause(G, C),

rename_vars(C, [G|Gs], C1),

head(C1, H1),

unify(G, H1, S1),

body(C1, B1),

append(B1, Gs, NewGs),

instantiate(NewGs, S1, NewGsPlusS1),

solve(NewGsPlusS1, S2),

compose(S1, S2, S).

Figure 4.2: code of a bilingual meta-circular Prolog interpreter

the choice-strategy for clauses and goals (i.e. at or-goals and and-goals). Finally, the
bilingual meta-interpreter from figure 4.2 allows the redefinition of all three components.
Σg is embodied in the definition of get_clause/2. This definition could be adapted to
not generate all clauses matching G, but to leave some out depending on some criterion
programmed by the user. Σd is distributed over two places in the code: the directional
strategy for or-nodes is again embodied in get_clause/2, and could be changed there.
The directional strategy for and-nodes is represented by the facts that (1) the 2nd clause
of solve/2 always selects the first conjunct of the list of unproven conjuncts, and (2) new
conjuncts are always prepended to the list of remaining conjuncts, using append/3. If the
beginning of the 2nd clause for solve/2 were changed to

solve(Gs, S) :-

get_conjunct(G, Gs),

...

then all of the Σd for and-nodes would be represented by get_conjunct/2. Finally,
the termination component Σt of the bilingual meta-interpreter is represented by the first
clause of solve/2, indicating to stop as soon as we have no more subgoals to prove. It
should be noted that all three of these systems do not allow their inference component I
to be changed. The next chapter will describe a system which not only allows variation of
all three of Σg,d,t, but also of I.

4.5 Conclusions

Summarizing, we can represent the above analysis of the components of a logic-based
system based on meta-level inference as in figure 4.3. From this we see that the essential
components are a tuple (O, I,Σg,Σd,Σt, T )3:

3Note that with these definitions, the model of the computation corresponds closely to what Hayes calls
a “state” (see section 2.3.1).
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Figure 4.3: components of logic-based meta-level inference systems

• an object-level theory O

• a set of inference-rules I

• information on how to use these inference-rules, Σ, consisting of

– a generative component Σg

– a directional component Σd

– a termination component Σt

• a representation of the object-level proof tree T .

The next chapter will describe the architecture of a meta-level inference system in which
all these components are explicitly represented and clearly recognisable.
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Chapter 5

A case study of a meta-level
inference system

In chapter 3 we argued in favour of one type of meta-level architecture, the so-called
bilingual meta-level inference systems, and we discussed the structure of these systems in
the previous chapter. The goal of this chapter is to look at one such system, called Socrates,
in some detail, to illustrate the decisions involved in building it, and how these decisions
influence the behaviour of the system. The first section of this chapter will describe the
Socrates meta-level architecture, the second section will locate the Socrates architecture in
the classification given in the previous chapter, and a final section will discuss some of the
choices that were made while building Socrates, and will anticipate some of the problems
and solutions discussed in later chapters.

5.1 The Socrates architecture

The Socrates system, described in [Reichgelt and van Harmelen, 1987] and [Corlett et al.,
1988], is an attempt to create an environment for building knowledge-based systems based
on the following principles:

• An epistemological analysis of the domain and task of a particular application guides
the choice of the appropriate representation language and the appropriate control
regime. As argued in [Reichgelt and van Harmelen, 1985,Reichgelt and van Harmelen,
1986] this means that different application domains will need different representation
languages and that different tasks will need different control regimes. Similar argu-
ments are made in [Chandrasekaran, 1983,Chandrasekaran, 1985b,Chandrasekaran,
1985a,Chandrasekaran, 1987] and [Breuker and Wielinga, 1986].

• Logic is used as the representation formalism. The case for logic as a representation
language was argued in chapter 1. This choice for logic is not in conflict with the
first point (which claimed that different domains would need different representation

0The work on the Socrates meta-level architecture reported in this chapter was done jointly with Han
Reichgelt and Peter Jackson in the Alvey funded project “A Flexible Toolkit for Building Expert Systems”.
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languages), since the language of logic is not restricted to that of standard two-
valued, truth functional, first order predicate calculus. Many other logics have been
proposed, offering a wide range of expressional and inferential power.

• Control knowledge is represented explicitly and is separated from the domain knowl-
edge. The case for this was also argued in chapter 1, and will not be repeated here.

When configuring the Socrates environment for a particular application, its architecture
can be varied along three dimensions:

• the representation language: users can define their own logical representation lan-
guage, including normal first order logic (possibly many-sorted), modal logics, tem-
poral logics, etc.

• the inference rules for the logical language, the set of rules that determine the possible
inferences made in the logical language, can be changed by the user.

• the control regime under which the inference rules will be used to perform proofs in
the logical representation language.

It is precisely the last two points which provide the meta-level architecture of Socrates.
We will discuss these two points in more detail. For a detailed description of the first
dimension of flexibility, the definition of a logical representation language, the reader is
referred to [Corlett et al., 1988]. However, in order to allow a full explanation of the meta-
level architecture we briefly describe the first dimension of flexibility (the representation
language) here.

Socrates allows the user to define the logical language that is to be used for representing
the domain knowledge. For this purpose the user declares the set of predicate symbols to
be used in the logical language, as well as the sets of function symbols and constants
of the language. Furthermore, the user defines the logical connectives of the language,
(conjunction, implication, modal operators, etc). On the basis of these declarations, the
system configures a storage and retrieval mechanism for expressions in this logical language.
The user can enter formulae of the logical language in a “knowledge base” (theory), or
remove them again. Furthermore, a retrieval function is constructed which takes as its
input a formula and a theory-name, tries to unify the input formula with a formula in
the theory, and returns the resulting variable bindings. Other features of the Socrates
representation mechanism such as

• a programmable indexing mechanism for formulae

• a hierarchical partioning mechanism for theories

• a type-lattice for many sorted logics

• the use of more than one logical language

• a slot-value annotation mechanism for formulae

are not essential for understanding the Socrates meta-level architecture, and are there-
fore not discussed here. The next two subsections will discuss the two aspects of the
Socrates meta-level architecture mentioned above, namely the declaration of a proof the-
ory (the rules of inference) and of a proof strategy (the control regime).
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5.1.1 Declaration of a proof theory

Given the syntax of a logical language that will be used as a representation language,
the user needs to specify how expressions in this logical language can be manipulated
to derive new formulae from old formulae, in other words: how we can perform proofs
with expressions of the logical language. A set of logical inference rules is defined for this
purpose. Since the system is based on the natural deduction style of theorem proving
[Prawitz, 1965], inference rules take the form of, for example

P, P → Q ` Q
P,Q ` P ∧Q

As shown in this example, inference rules are expressed in a meta-logical language very
close to that in standard logical use. P and Q are propositional variables (i.e. ranging over
logical propositions). These inference rules can be used in both a forward and a backward
direction. For instance, Modus Ponens (the first of the two rules above) can be used to
determine that it suffices to prove P and P → Q in order to prove Q (backward use), or
the rule can be used to infer that Q is true when we know that both P and P → Q are
true (forward use). Which of these two directions should be used is a control decision, and
is therefore a meta-level issue, which is not decided as part of the proof theory, but as part
of the control strategy defined at the meta-level.

There are a number of reasons why Socrates follows Bledsoe [Bledsoe, 1981] in using the
natural deduction style of performing proofs rather than, for instance, resolution. Although
natural deduction systems use a relatively large number of inference rules (as opposed to
the single inference rule of resolution based systems), and thereby create a potential control
problem, the following arguments can be given in favour of natural deduction. The inference
rules of a natural deduction system are more intuitively meaningful than for instance the
resolution rule, and no normal forms are required for the formulae used in a proof. As a
result, the proofs performed by a natural deduction system are easier to follow for a human
reader, thereby improving the possibilities for explanation facilities based on these proofs.
The naturalness of the proof development also makes it easier to write heuristics to control
the problem solving process in a meta-level control strategy.

Not all the inference rules that the system uses are declared as part of the proof strategy.
Some inference rules are incorporated into the retrieval mechanism instead. Incorporating
an inference rule in the retrieval mechanism means that the retrieval function described
above will not only try to unify its input formula with formulae in the theory, but that it
will also try to prove the input formula from the theory using the incorporated inference
rule. A first set of inference rules that is incorporated into the retrieval mechanism are the
rules that tell the system how to deal with quantification. These rules:

∀xP [x] ` P [c]

P [c] ` ∃xP [x]

∃x∀yP [x, y] ` ∀y∃xP [x, y]

are taken to be of universal validity (that is: across different application areas of the
system), and are therefore hardwired into the retrieval mechanism. A second set of rules
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can be made part of the retrieval mechanism rather than the proof theory, namely the rules
that deal with the commutativity and associativity of certain logical connectives, e.g.:

P ∧Q ` Q ∧ P
(P ∧Q) ∧R ` P ∧ (Q ∧R)

The main reason for taking these rules out of the explicit declaration of the proof theory
is efficiency. When users declare a logical representation language, they can declare logical
connectives to be commutative and/or associative, if so desired. This will then result in
either or both of the above rules of inference being incorporated in the retrieval mechanism.
Because these rules can be incorporated in the retrieval mechanism, they can be taken into
account by the unification algorithm of Socrates. Thus, when proving a query that can be
derived from the theory using one of the hardwired inference rules, no inference steps need
to be taken by the inference machinery (object-level and meta-level), but the unification
algorithm that is used for retrieving items from the theory makes these limited deductions.
As an example of the effectiveness of these hardwired inference rules, let us assume that
the connective ∧ has been declared commutative (as in the first rule above), and that
we are trying to prove the object-level goal f(a, b) ∧ g(a, b), when the object-level axiom
∀x[g(a, x) ∧ f(a, x)] is in the object-level theory. The retrieval mechanism can deduce the
goal directly from the axiom by using two of the inference rules mentioned above (namely
universal instantiation and commutativity of ∧). Without these two rules, the interpreter
would have to make two cycles to prove the same goal. This saving easily offsets the
increase in cost of the more complex retrieval mechanism.

On the basis of the user’s declarations of the logical language, the properties of the
connectives, and the rules of inference, Socrates automatically constructs the following two
predicates that can be used by the user in the definition of a proof strategy (which will be
described in the next section):

• object_level_axiom(F, T, S): this predicate will be true if there is a substitution
S for variables occurring in the object-level formula F such that applying S to F results
in an axiom in the object-level theory T.

• object_level_inference(F, T, D, L): this predicate will be true if L is the list of
formulae which can be constructed by applying an inference rule of the object-level
theory T, in direction D (i.e. forward or backward) to the object-level formula F. For
example, if in a theory t1:

t1 = {f(1)→ f(10), f(2)}

the rules Modus Ponens and Conjunction Introduction have been declared, then the
call:

object_level_inference(f(1), t1, forward, L)

would succeed with

L = [f(10), f(1)∧f(2),f(1)∧f(1)→f(10)]
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A final point to be made about the declaration of the proof theory concerns the logical
soundness and completeness of the set of inference rules. In order to guarantee soundness1of
the proof theory, the user should not be allowed to declare arbitrary inference rules, but only
to select inference rules from a predefined (and sound) set. (Such a selection procedure has
not been provided in the current implementation of Socrates). This selection process will
of course affect the logical completeness of the system. However, the loss of completeness
in the context of knowledge-base systems is not serious, since one does not want to infer
all facts that are logically implied by the available knowledge, but only those facts that
one is interested in.

5.1.2 Declaration of a proof strategy

Given a logical representation language, and having defined the set of inference rules for
this language, the system is completely specified from a logician’s point of view. The
declaration of a logical language and its proof theory completely determines all possible
inferences that the system can make. However, in order to create a practical computer
system, a specific control strategy has to be defined, which will specify how the space of
possible proofs will be explored by the system. This separation represents exactly the
analysis of the previous chapter of a system P into a logical inference system I and a
search procedure Σ. The declaration of the proof theory corresponds to defining I, while
the declaration of a proof strategy corresponds to defining Σ.

The language that is used to express the control strategy is Horn Clause Logic [Horn,
1951]. This language, although also a logical representation language, should be distin-
guished from the logical languages used to represent the domain knowledge. Unlike the
object-level languages, the language used at the meta-level has a fixed set of logical connec-
tives, namely exactly those connectives needed in Horn Clause Logic (conjunction, implica-
tion and negation) plus disjunction. All these connectives are declared as non-commutative,
non-associative. This is done because the procedural interpretation (i.e. the way in which
the meta-level interpreter executes expressions of the language) is also fixed. The proce-
dural interpretation of the language is the standard interpretation for Horn Clauses, the
standard depth-first proof procedure as found in Prolog systems. The reason why Socrates
does not allow the user to change the control regime of the meta-level interpreter (which
would amount to providing a meta-meta-level interpreter) is based on the previously men-
tioned idea that an epistemological analysis of domain and task of a particular application
should guide the choice of the appropriate representation language and the appropriate
control regime: typical tasks such as diagnosis, planning, monitoring etc. are related to
particular control regimes (as argued in [Reichgelt and van Harmelen, 1985,Reichgelt and
van Harmelen, 1986] and [Chandrasekaran, 1983,Chandrasekaran, 1985b,Chandrasekaran,
1985a, Chandrasekaran, 1987]). The meta-level controls the behaviour of the object-level
interpreter according to the task to be performed. The variation in control is achieved by
changing the meta-level theory. There is no need to change the interpreter which always
has the same task, namely controlling the behaviour of the object-level interpreter by using
the data in the meta-level theory2.

1Where soundness is defined with respect to some intended semantics imposed by the user.
2This separation of task from domain, with only the task influencing the control strategy is of course
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With the logical connectives and their procedural interpretation fixed, the only parts
of the logical meta-level language that are subject to declarations of the user are the set
of constants, predicates and function symbols, and the set of evaluable predicates. These
predicates are somewhat similar to what Weyhrauch [Weyhrauch, 1981] calls semantic at-
tachment. When one of these predicates is encountered in a proof the system will execute a
procedure defined for this predicate to determine its truth value and possibly provide bind-
ings for any variables. These predicates provide an interface between the logical language
and the computational environment of the system, enabling external systems interaction,
input/output for interacting with the user, and the access of the facilities provided by the
implementation language of the system. Below we will see that this mechanism is also used
to implement the communication between object-level and meta-level.

Thus, Socrates allows the user to specify a control strategy in a logical language. This
control strategy provides the system with a description of its desired behaviour. This
description is interpreted at run time by the meta-level interpreter. As a result, the meta-
level interpreter executes this control strategy, and thereby guides the search through the
space of all possible proofs.

Figure 5.1 shows an example of a description of a local-best-first, non-exhaustive,
backward-chaining, control strategy. In this example, clause [1] states that in order to
prove a non-compound expression F on the basis of the contents of theory named P giving
a substitution S as a result, the system should either try to see if the formula is a known
fact in the theory, or the system should try to infer the formula on its own, or it should
ask the user. Trying to infer the formula means generating all possible inferences, selecting
some of these possible inferences, and continuing with clause [2]. This clause chooses the
best of all selected possible steps, and tries to continue the proof with this selection. If
this succeeds, the proof terminates (i.e. is non-exhaustive), if this fails, the proof continues
with the next best step. Clause [3] states the criterion used in the best-first search, while
clause [4] describes what needs to be done in order to prove a compound expression (that
is: a formula containing the meta-level function-symbol ‘,’ as used in the definition of
inference rules): prove both left- and right-hand sides of the compound expression, and
combine the results.

This example shows how the different aspects of this strategy can be changed if needed
for a particular application. For example, the order of the disjuncts in clause [1] might
be changed to ask the end-user for solutions before the system tries a proof itself, or the
ask-user disjunct might be deleted all together. The criterion used for best-first scheduling
could be changed, or a new decision for scheduling the order in which conjuncts are proved
in clause [4] could be introduced. More thorough changes to the strategy could also be
made, but they would amount to writing a completely new proof strategy, rather than
changing the one shown in this example.

The only predicates which are predefined by the system (and therefore fixed) are the
predicates compound-expression, object-level-axiom and object-level-inference,
and the last two of these are constructed on the basis of the object-level declarations by the
user. As a result, all aspects of the example strategy shown in figure 5.1 can be redefined

an idealisation. In a closer analysis (such as in [Chandrasekaran, 1983, Chandrasekaran, 1985b, Chan-
drasekaran, 1985a, Chandrasekaran, 1987] and in [Breuker and Wielinga, 1986]) there is an interaction
between the two.
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[1] (∀ F, P, S)

[¬ compound-expression(F) ∧
( object-level-axiom(F, P, S)

∨ infer(F, P, S)

∨ ask-user(F, S)

)

→ proof(F, P, S)

]

[2] (∀ F, P, Best, Next, Rest, S)

[¬ compound-expression(F) ∧
object-level-inference(F, Next, backward) ∧
best(Next, Best, Rest) ∧
( proof(Best, P, S)

∨ infer(Rest, P, S)

)

→ infer(F, P, S)

]

[3] (∀ List, Rest, Best)

[highest-certainty-value(List, Best, Rest)

→ best(List, Best, Rest)

]

[4] (∀ F, P, Lhs, Rhs, S, LhsSubst, RhsSubst)

[compound-expression(F) ∧
split-compound-expression(F, Lhs, Rhs) ∧
proof(Lhs, P, LhsSubst) ∧
proof(Rhs, P, RhsSubst) ∧
combine(LhsSubst, RhsSubst, S)

→ proof(F, P, S)

]

Figure 5.1: specification of control in Socrates

by the user.
In order to achieve the flexibility described above (the ability to vary both the log-

ical inference rules and the control strategy), Socrates is implemented as a two-layered
architecture. The bottom layer of this architecture is the object-level, and embodies the
declarations made for the representation language and its inference rules (the proof theory).
This object-level consists of a unifier for object-level expressions that takes into account the
declarations concerning associativity, commutativity and quantification, plus a mechanism
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for storing and retrieving expressions in the logical language that the user has specified.
The predicate object-level-axiom in figure 5.1 represents this retrieval mechanism. Fur-
thermore, and most importantly in the context of meta-level reasoning, the object-level
contains a procedure that takes as its input an expression in the object-level logical lan-
guage plus a direction in which to apply the inference rules (either forward or backward),
and returns as output a set of formulae that can be derived from the input formula by
applying all the declared inference rules. This is the predicate object-level-inference

in the example of the control regime in figure 5.1. This predicate models the object-level
proof theory at the meta-level, and provides the meta-level interpreter with an explicit
representation of the object-level search space. This enables the meta-level interpreter to
manipulate this search space, and to choose which branches of the object-level proof tree
will be expanded, on the basis of the control regime provided by the user.

We can use this example of a control regime formulated in Socrates to illustrate the
subdivision of a search strategy Σ into its three components Σg, Σd and Σt, as described in
the previous chapter. In figure 5.1, axioms [1] and [2] embody the generative component
of the heuristic Σg, describing how a node should be expanded, whereas axiom [3] is
the directional component Σd, specifying which node to choose for expansion. Axiom [4]
is a mixture of both, specifying how to expand a compound-expression-node, but also
specifying which part of the expansion to pursue first, the left- or the right-hand side of
the compound expression. This axiom could have been written as

[4a] (∀ F, Lhs, Rhs, First, Second, S, LhsSubst, RhsSubst)

[compound-expression(F) ∧
split-compound-expression(F, Lhs, Rhs) ∧
select-conjunct(Lhs, Rhs, First, Second) ∧
proof(First, FirstSubst) ∧
proof(Second, SecondSubst) ∧
combine(FirstSubst, SecondSubst, S)

→ proof(F, S)

]

[4b] (∀ Conj1, Conj2, First, Second)

[... some criteria for selecting a conjunct ...

→ select-conjunct(Conj1, Conj2, First, Second)

]

in which case axiom [4a] strictly deals with generation and [4b] with direction. Finally, the
fact that disjunction is used in axioms [1] and [2] to string together the different ways of
achieving a goal embodies the termination heuristic Σt: only one solution (non-exhaustive
search) is required before the search for a proof terminates.

Although not crucial to the meta-level architecture of Socrates, it is worth mentioning
that the system provides a third layer on top of the object-level and meta-level described
above. This third level is called the scheduler, and it is intended to deal with the notion
of a subtask. As shown in [Reichgelt and van Harmelen, 1986], many expert systems per-
form not just one simple task, but a composite one that can be thought of as consisting
of a number of elementary tasks (mycin, r1 and vm are among the systems discussed in

80



that paper). It is unlikely that one appropriate control regime can be found that would
be suitable for these composite tasks. Rather, the composite task should be split up into
its constituent subtasks, and a proper control regime can then be chosen for each of the
subtasks. The subtasks that would be the end results of this decomposition process are
the kind of prototypical tasks proposed in [Reichgelt and van Harmelen, 1986], [Chan-
drasekaran, 1983, Chandrasekaran, 1985b, Chandrasekaran, 1985a, Chandrasekaran, 1987]
and [Breuker and Wielinga, 1986] like classification, monitoring, simulation, design etc.
The scheduling level of the Socrates architecture is meant to deal with this subdivision of
the major task into prototypical subtasks. Each of these prototypical subtasks can then be
solved using the appropriate meta-level control strategy. (By using a partitioning mecha-
nism, it is possible to equip a Socrates configuration with more than one control strategy).
For engineering purposes it would be easiest to equip the scheduling level with a language
similar to (but again syntactically separate from) the language used to describe the control
strategy at the meta-level, because all the machinery to deal with logical languages (unifi-
cation, substitution etc) is already available for the object- and the meta-level. However,
early experience indicated that the type of knowledge to be expressed at the scheduling
level is of a very procedural nature (even more so than the knowledge expressed at the
meta-level), and therefore a language with more conventional procedural primitives such
as sequences, conditionals, loops and subroutines was thought to be more appropriate. The
relation between meta-level theory and scheduler is very different from the relation between
object-level and meta-level theory. The scheduler does not specify the complete control
strategy for the meta-level theory (as the meta-level theory does for the object-level the-
ory). It only selects an appropriate meta-level theory to be executed, but the way in which
this theory is executed cannot be influenced by the schedule: the procedural interpretation
of the meta-level Horn Clause theory is fixed. In terms of the classification of chapter 3.1,
the relation between scheduler and meta-level theory is like a subtask-management system
(section 3.1.2.3).

5.1.3 Practical experience with Socrates

The Socrates system as described above has been used in a number of applications. The
main goal of these applications was to validate the claim that the Socrates architecture
would be flexible enough to cope with a number of different tasks in a number of different
domains. The following is a list of projects for which the Socrates system has been used.
A more detailed description of these can be found in [Jackson et al., 1989, chapter 4].

• osiris is a system built with Socrates, designed to assist maintenance programmers
in the task of debugging a particular, large, real-time software system. On the basis
of error messages produced by the real time software, osiris uses some 130 object-
level axioms to predict which modules of the system might be at fault, using certainty
weightings to deduce the likelihood of failure for each module. The osiris system
uses a backward-chaining strategy to do its diagnosis task.

2Work on the Socrates applications was done jointly with Robert Corlett, Nick Davies and Robin Khan
from GEC-Marconi Research Centre.
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• docs is a system built with Socrates, and is a re-implementation of an existing
system that assesses the risk category of patients with chest pains arriving in a
hospital. The docs system used some 130 object-level rules and some 80 sorts in the
sorted object-level logic to perform diagnoses using two different control strategies
at the meta-level, one for easy and one for hard cases. The logical reformulation of
the existing system in Socrates plus a verification theorem prover formulated as a
meta-level strategy were used to detect inconsistencies in the object-level theory, and
several such inconsistencies were indeed discovered.

• A system has been built with Socrates to do a configuration task: it allocates a
limited set of resources to a set of tasks under constraints given by the user. An
eager forward chaining strategy was used for this task.

• A path-finding system was built to find shortest paths in a network, using an agenda
based control mechanism, with sub-goals picked from the agenda for further process-
ing on the basis of a small number of heuristics.

• A challenge problem for theorem provers known as Schubert’s Steamroller [Walther,
1984] has been successfully and efficiently solved by Socrates using a many sorted
formalisation of the problem, and a number of different control strategies: breadth-
first search, best-first search and alpha-beta pruning.

• A modal temporal logic has been implemented in the Socrates framework [Reichgelt,
1987], although this language has not yet been used in a practical application.

• A default logic has been implemented in the Socrates framework [Davies, 1988], but
again this has not yet been used in a practical application.

The above lists demonstrates that the flexibility of Socrates with regard to its object-
level language and its meta-level control strategies make it applicable to a wide class of
varying tasks and domains. This success has to be qualified by saying that the performance
of these applications in terms of speed would not have been sufficient to make them suitable
as usable systems in a production environment. Later chapters will discuss this efficiency
problem extensively.

5.2 Implementation

This section will briefly discuss some technical aspects of the implementation of the Socrates
system, with emphasis on the meta-level control component of the system.

Implementation language: After an initial implementation on the InterLisp-D ma-
chine (whose programming environment facilitated the prototyping process), a final version
was implemented in CommonLisp on a Sun workstation. This system consisted of some
10,000 lines of CommonLisp code, divided roughly in 6000 lines for object-level represen-
tation and knowledge base management3, and some 4000 lines for meta-level control.
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User Interface: 4 An additional 2000 lines of CommonLisp code were written in the
Poplog CommonLisp system to provide a window/menu-based environment for Socrates
implemented using the Poplog CommonLisp window manager. Interaction with all compo-
nents of the system (declaration of object-level language and inference rules, construction
of object-level and meta-level theories, execution of the resulting system) was all done
through a series of protocols and menus which guide the user through the correct sequence
of definitions and declarations.

Meta-level theories: Apart from the specialised meta-level theories written for some
of the applications listed above, a number of weak, general problem solving methods were
encoded as a library of meta-level theories. This library included the following search
strategies: depth-first, breadth-first, local-best-first, exhaustive and non-exhaustive ver-
sions of these three, branch and bound search, iterative deepening and interleaved forward
and backward search. All these search strategies were written in the Horn Clause logic
available as the meta-level language, and all were independent of the particular object-level
language and rules of inference that they would have to control, thus validating the point
about the reusability of control-knowledge made earlier.

Evaluable predicates: The mechanism of evaluable predicates was initially imple-
mented only to enable the communication between meta-level and object-level (the au-
tomatically constructed predicates object-level-axiom and object-level-inference

are implemented as evaluable predicates), and to allow inspection of meta-level names of
object-level formulae (see section 5.4.4 for a more detailed discussion of this topic). It was
however quickly recognised that this facility of interfacing predicates in the meta-level the-
ory to computation in the underlying implementation language was a useful tool in general,
and it was made available for general use in writing meta-level theories. A small program-
ming environment guaranteed the correct interaction between CommonLisp code and the
logical meta-level language, and allowed the compilation of these evaluable predicates by
the Lisp compiler. Specific use of this facility was made for implementing arithmetic in
the meta-level language, and for user interaction in the meta-level theory (as illustrated
by the predicate ask-user in figure 5.1). Potential other uses include the interaction with
external devices and window management (which would be part of a meta-level theory
that implemented more cooperative problem solving strategies).

Machine constructed predicates: An interesting part of the Socrates code was
concerned with the automatic generation of the predicates object-level-axiom and
object-level-inference. The behaviour of both these predicates is determined by a
number of definitions made by the user. For the predicate object-level-axiom, these
definitions are the contents of the object-level theory and the syntax of the object-level
language, and for the predicate object-level-inference these definitions are the set of
inference rules and again the syntax of the object-level language. It is quite acceptable for
these predicates to inspect the definition of object-level theory and inference rules during

4These items were implemented by Robert Corlett, Nick Davies and Robin Khan from GEC Software
Research. The other items were implemented by the author.
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their execution, but it would be prohibitively inefficient if these predicates continuously
had to access the definitions of the object-level language at run-time. This would have to
be done every time a unification was attempted between two object-level formulae or be-
tween an object-level formula and a rule of inference. To avoid this problem, the Socrates
system automatically constructed a unification procedure after the user has completed the
definition of the object-level language. This construction process takes into account the
associativity and commutativity properties of the object-level connectives, the declarations
of the sort lattice for the object-level language, and the definitions of predicates, function
symbols and constants made by the user. The result of this construction process is a Com-
monLisp procedure that performs efficient unification of object-level expressions which can,
through the Lisp compiler, be translated down into machine code for optimal performance.
This construction process is very close to partial evaluation (discussed in chapter 7): the
general definitions of the meta-level predicates are specialised for the particular values of
object-level theory and proof theory.

Meta-level interpreter: A number of different architectures were used for the Socrates
meta-meta-level interpreter (i.e. the code which interpreted the Horn Clauses of the meta-
level theory). Some of the issues involved are discussed below:

• The first implementation consisted of a stack-based interpreter, where the Horn
Clause recursion stack was maintained as a Lisp data-structure. The advantage
of this organisation was that all data-structures of the interpreter were inspectable
by the user for explanation and debugging purposes. However, the performance of
this implementation was unacceptably low, with its speed (in terms of lips5ratings)
dropping to single figures.

• To cope with this problem a second version was implemented which did not represent
the Horn Clause stack as a Lisp data-structure, but instead used the Lisp recursion
stack for this purpose. As a result, the debugging options for the user of this in-
terpreter were greatly reduced, but performance improved to lips ratings in double
figures.

• A final version dropped the stack based architecture of the interpreter altogether, and
instead used an interpreter based on the notion of continuation passing very similar to
the foolog system described in [Nilsson, 1983,Nilsson, 1984]. This further improved
the performance to a level which was sufficient to realise the applications mentioned
in the previous section. However, performance of the interpreter remained a bottle-
neck in Socrates, and this problem will be discussed in greater depth in the following
chapters.

Current status: After the work on Socrates had been reported in the literature (e.g
in [Corlett et al., 1988] and, most extensively, [Jackson et al., 1989]), the Socrates program
did not continue to be used in practice. As mentioned above, the version with the best
engineered user-interface was built in Poplog CommonLisp, and as the Poplog window

5The LIPS measure (Logical Inferences Per Second) will be discussed extensively in the next chapter.
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manager was substantially redesigned, no manpower was available to upgrade Socrates to
the new environment. As a result no working version of Socrates exists at the moment.

5.3 Socrates in the classification of meta-level archi-

tectures

The main distinction made in chapter 3 between different types of meta-level architectures
was based on their locus of action. Of the three possible categories (object-level inference
systems, mixed-level inference systems and meta-level inference systems), Socrates classi-
fies as a meta-level inference system. In the architecture described above the main activity
takes place at the meta-level, while the object-level proofs are simulated at the meta-level.
Superficially it would seem that Socrates is a mixed-level inference system, since it has an
explicit representation of the object-level theory rather than a meta-level encoding of the
object-level theory (as press does). However, the separate representation of the object-
level theory can be regarded as a notational variant of a series of n meta-level axioms of
the form

object-level-axiom(F ′1)
. . .
object-level-axiom(F ′n)

one for each object-level axiom Fi, with each F ′i the meta-level name of an object-level
axiom Fi. Given such a meta-level encoding, the two predicates that access the separate
object-level theory (object-level-inference and object-level-axiom) could have been
explicitly defined at the meta-level, and the system is then clearly a meta-level inference
system. Within the category of meta-level inference systems, Socrates is of the bilingual va-
riety, rather than being mono-lingual or amalgamated, since Socrates uses different logical
languages for meta- and object-level. Even when the object-level representation language
happened to be defined as Horn Clause logic (the same language as used at the meta-level),
the two languages would still be syntactically separate. The two languages relate to each
other in a specific way. The meta-level language contains names for object-level expres-
sions. In Socrates, the name of an object-level formula is a constant of the meta-level
language. Other meta-level constants are used to denote bindings of object-level variables
(the results of object-level proofs). Furthermore, meta-level expressions can range over
other extra-logical properties of object-level expressions such as truth values, certainty fac-
tors, justifications etc. In this way Socrates could for instance be configured to deal with
certainty values by specifying as part of the control strategy how certainty values should
be used in a proof. This corresponds to the approach suggested in [Shapiro, 1983], with
the important difference that Socrates makes a correct distinction between meta-level and
object-level languages, whereas Shapiro mixes the two, and uses Prolog for both.

A feature worth emphasising is that Socrates allows an explicit representation not only
of the control regime that is to be employed during a proof, but also of the object-level
inference rules that are to be used, i.e. of both I and Σ. Although other systems also allow
the explicit representation of proof strategies, not many systems explicitly represent the

85



inference rules used in an object-level proof. Most of the logic based systems in the liter-
ature are Prolog based, and just inherit the inference rules used by the Prolog interpreter
for both their object-level and meta-level proofs.

In the previous chapter we identified the essential components of a meta-level inference
system as a tuple (O, I,Σg,Σd,Σt, T ). We can now illustrate how each of these components
is present in the Socrates architecture:

• The object-level theory O is represented in the form of expressions in the logical
language as declared by the knowledge engineer, and is accessible at the meta-level
through the predicate object-level-axiom described above.

• The set of inference-rules I is specified by the knowledge engineer and is represented
at run-time in the form of the routine object-level-inference described above.

• The search strategy Σ is represented as logical expressions in the meta-level theory.
All the subcomponents of Σ (Σg, Σd and Σt), are separately identifiable in this theory,
although not explicitly separated in the system.

• The object-level proof tree T is only partially represented in Socrates. At each step in
the proof, the meta-level interpreter has access to all possible nodes that can be gen-
erated from the current node in the tree (via the routine object-level-inference).
However, no full representation of the whole proof tree is available. The explicit
representation of this tree would enhance the power of Socrates substantially. This
limitation is not inherent to the Socrates architecture, but rather a property of the
current implementation. It would be a rather simple change to add this feature to
the system.

5.4 A discussion of some of the choices made in

Socrates

From the above it is clear that certain choices were made in the architecture of Socrates
for which alternatives would have been possible. In this section, we will discuss some
of these choices, and in particular the way in which they influence the efficiency of the
system. Some of the subsections below will justify certain choices made in Socrates, other
subsections will argue that, with full hindsight, some things maybe should have been done
differently, while yet other subsections discuss options for which we are unable to give a
full answer.

5.4.1 The meta-level language

The choice of the language used to describe control regimes at the meta-level is problem-
atic. Currently Socrates employs a logical language for this purpose, but the declarative
reading of the expressions in this language in the context of control is far from clear. More
often than not the formulae have a very strong procedural flavour. In the example of fig-
ure 5.1, axiom [3] has a clear declarative reading, but the other axioms should really be
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read not as logical implications (although their surface syntactic structure suggests this),
but as the division of goals into an ordered sequence of subgoals. This gives these ax-
ioms a very strong procedural reading. This suggests that a logical language might not
be the appropriate choice for a meta-level description language in an architecture such as
Socrates, although such a language will be useful when it comes to combining or learn-
ing control knowledge. ml, originally designed as the meta-level language for describing
proof-strategies for lcf ( [Gordon et al., 1979] and mentioned in section 2.3.2), is a func-
tional language, whereas other systems in the literature, some of which were described in
chapter 2, employ production rule languages, object-oriented languages or block-structured
languages.

However, whatever the choice of language for the meta-level would be, it would not
affect the main philosophy of meta-level inference, namely that inference activity takes
places at the meta-level, thereby simulating object-level proofs as a side effect and it would
therefore not have a great bearing on the performance of the overall architecture.

5.4.2 Lazy or eager evaluation of the object-level interpreter

One of the main channels of communication between the object-level and the meta-level
is the procedure object-level-inference described above. This procedure generates a
local section of the object-level search space, providing it to the meta-level for inspection
and manipulation. Currently, the procedure eagerly generates all possible descendents of a
node in the proof tree. It would be possible to change this behaviour into a lazy generation
of nodes on demand. For certain search strategies this would be cheaper (consider for
instance a depth-first, non-exhaustive search), and would reduce the costs of both the
object-level interpreter itself, its communication with the meta-level, and possibly reduce
some of the costs of the meta-level effort as well. It has to be noted however that for many
search strategies the meta-level will want to inspect all descendants of an object-level
node anyway (for instance in exhaustive strategies, or in best-first strategies). This would
completely neutralise the possible gains made by the lazy evaluation of the object-level
interpreter. Furthermore, in the context of the current implementation of Socrates, the
cost of the eager behaviour of the predicate object-level-inference is only a fraction
of the total run time of the system.

5.4.3 Provision of default declarations

One of the main reasons for the power and flexibility of the Socrates architecture is the fact
that it makes very few assumptions about what the user of the system wants to do. This
means that users can mould the system into most of the shapes they require. The other side
of this coin is of course that the users have to instruct the system about every aspect of the
task they want done, since the system does not make any assumptions on its own. Apart
from the fact that this can be quite difficult, it means that very few parts of the Socrates
architecture are hardwired. Almost all components of the system are parameterised over
declarations of the user. Such components will always be less efficient than modules which
have a particular behaviour hardwired into them. One possible compromise would be to
supply a number of default modules in the system, for which an efficient implementation
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could be provided. Users are then allowed to override such default behaviour, but they
would have to pay a price in efficiency for doing so.

For instance, it would be possible to hardwire the declarations for first order predi-
cate calculus as a representation language into the system, with the usual rules regarding
commutativity and associativity. It would then be possible to construct a more efficient
storage and retrieval mechanism for this particular object-level language.

5.4.4 The naming relation between meta-level and object-level

As mentioned above, formulae at the object-level correspond to constants at the meta-level.
The only logical constraint that the naming relation between object-level and meta-level
should obey, in general, is that an object-level formula should correspond to a variable
free term at the meta-level. The fact that Socrates uses simple atomic constants for these
variable free terms, and not more complex terms, is an implementation decision indepen-
dent of the general architectural structure of the system. However, it could be argued
that a richer meta-level representation of object-level formulae than just atomic constants
has advantages. In particular, if a meta-level control strategy wants to compute certain
properties of an object-level formula, Socrates’ use of constants enforces the need to deref-
erence the meta-level name into the corresponding representation at the implementation
level, compute the properties, and return the results to the meta-level. All this must be
implemented with evaluable predicates that allow the dereferencing of the meta-level name
to the implementation language of the system, since this dereferencing is not possible us-
ing just the meta-level language. (After all this language does not contain terms that
can describe the object-level formula, other than the atomic constant that serves as the
name). Had formulae been represented as more complicated terms, then certain properties
of the object-level formula could have been computed using the meta-level representation
of the object-level formula, rather than having to dereference this representation into the
underlying implementation representation.

As an example, consider the formula F = ∀x∀y∃zf(x, y, z). Under the current nam-
ing relation the meta-level name of this formula is represented as the single meta-level
constant C = “∀x∀y∃zf(x, y, z)”. If a meta-level control strategy wants to compute the
number of universally quantified variables in F , the only way to do this is to build an
evaluable predicate that dereferences C to F , (or more accurately, to the internal system
representation of F ), counts the number of universal variables in F , and reports this num-
ber back to the meta-level. However, had we used a richer representation for F at the
meta-level, say C’ = all(var(1), all(var(2), exists(var(3), f(var(1), var(2),

var(3))))), where object-level quantifiers, predicates and variables are all represented
by a construction of meta-level function symbols and constants, then this computation
could have been performed (and more importantly, explicitly specified) at the meta-level
itself, rather than having to resort to the lower level of evaluable predicates implemented
in Lisp. The terms “quotation-mark names” and “structural-descriptive names” have been
used by Tarski [Tarski, 1956] to distinguish these two different approaches to the naming
relation between object-level and meta-level.
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5.4.5 The representation of object-level failure

The specification of a control regime as given in figure 5.1 is incomplete, since we have
to know what the procedural interpretation of this specification is in order to understand
which control regime it specifies. This meta-level control regime is used in an essential
way: the way in which the object-level backtracks between conjuncts in a proof is directly
related to the way in which the meta-level backtracks between the conjuncts of clause [4].
The backtracking behaviour of the object-level is not explicitly specified at the meta-level
at all, but is implicitly encoded using knowledge about the backtracking behaviour of the
meta-level. Furthermore, the meta-level proof procedure fails if it fails to find an object-
level proof. It can be argued that it would be better if the meta-level proof procedure
does not fail in such a case, but that it succeeds, returning a special status indicating
that the object-level proof has failed. Thus, object-level backtracking should be explicitly
specified at the meta-level, rather than being implicit in the meta-level backtracking, and
object-level failure should be explicitly represented as well, rather than being represented
by meta-level failure.

This is an example of how the power of a meta-level inference is “model relative”, as
discussed in the previous chapter: the power of the Socrates meta-level is limited by the
power of the model of the object-level computation that is available to it.

5.4.6 Logical soundness

A problem with the system in general and with the meta-level interpreter in particular is
the issue of logical soundness. As already discussed above, the current system allows the
user to declare arbitrary sets of inference rules for the propositional part of the object-level
logic (the quantificational part of the proof theory is hardwired in the retrieval mechanism).
This allows the user to declare potentially unsound sets of inference rules, an obviously
undesirable situation. As described in section 5.1.1 above, it is possible to the restrict the
declaration of the proof theory to a process of selection of a subset from a set of sound
inference rules, thereby making it impossible to introduce unsoundness in the proof theory.
However, this approach breaks down when the user introduces new logical connectives that
are not included in the library of predefined sets of inference rules. A further source of
unsoundness is the meta-level interpreter. Not only do the control strategies at the meta-
level affect the completeness of the system (as they are intended to do in order to cut
down the search space), but unfortunately they can also affect the soundness. Taking the
example of figure 5.1, we can change clause [4] into:

[4’] (∀ F, Lhs, Rhs, S, LhsSubst, RhsSubst)

[compound-expression(F) ∧
split-compound-expression(F, Lhs, Rhs) ∧
proof(Lhs, S) ∧
→ proof(F, S)

]

and thereby reducing the proof of a compound expression to the proof of the left-hand side
of that expression only. This would obviously produce an unsound system, but the user is
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in no way prevented from making mistakes like this. Again, we could introduce a library
system, and allow the user only predefined strategies from this library, but this would
severely restrict the flexibility and power of the system. Other approaches are possible,
such as the one in the lcf/ml system [Gordon et al., 1979], where a type system enforces
the soundness of the system, as described in section 2.3.2. (See also chapter 8 where
another solution to this problem is proposed).
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Part II

Measuring and improving the
performance of meta-level inference

systems
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Chapter 6

The problem of meta-level overhead

In chapter 3 we argued in favour of a particular type of meta-level architecture, the bilingual
meta-level inference systems, and in chapter 5 we showed how such an architecture can be
built. However, as we will discuss in this chapter, this type of system also suffers from a
serious problem, related to the run time efficiency of such a system. In the previous chapters
we have argued in favour of meta-level architectures on the basis of their ability (among
other things) to cut down the object-level search space. However, two potential problems
hamper the performance of meta-level systems. These two problems, to be discussed in
more detail in this chapter, are briefly speaking as follows.

The first problem has to do with the cost/benefit structure of meta-level reasoning.
On the one hand a meta-level architecture gives us increased flexibility of the behaviour
of the system, allowing us to formulate efficient search strategies. On the other hand a
meta-level architecture has to interpret at run time the explicitly represented strategy,
instead of executing a hardwired, implicit control strategy, as a single-level system would
do. This gives rise to a situation of cost and benefit. The benefit is the reduced search
space achieved through the formulation of explicit control strategies, the cost is the extra
meta-level computation to be performed by the system. As a result, part of the gain of a
meta-level architecture is lost through the costs of the explicit interpretation. In the first
part of this chapter we will present a theoretical model of this trade-off which will show
that in general there will indeed be a point beyond which the meta-level investment of
a system outweighs the object-level savings. Thus, the trade-off is between a reduction
in the number of object-level inferences that the system has to make versus an increase
in the cost per single object-level inference. Obviously, a meta-level inference system will
only be of realistic use if the increase in cost per object-level inference is outweighed by
the reduction in the number of object-level steps. This problem is well acknowledged in
the literature (although not often quantitatively investigated), and applies to all meta-
level architectures. As we shall see in the second part of this chapter, this problem is
of particular significance for bilingual meta-level inference systems. In this case, the cost
of maintaining the naming relation between the object-level and the meta-level language
aggravates the increase in cost per object-level inference, and thus requires a particularly
large reduction in the number of object-level steps to offset this effect.

We will call this problem the problem of meta-level overhead. The purpose of this
chapter is to analyse the cause and size of this problem in more detail. We will find that
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the increase in cost per object-level inference is significant and especially so for bilingual
systems. This will lead us to the question we will try to solve in the remaining chapters:
how can we reduce the meta-level overhead without losing the advantages of an explicit
meta-level?

6.1 Costs versus savings of meta-level inference

In the context of meta-level overhead it is important to distinguish between two different
quantities, on the one hand the number of steps necessary to solve a problem, and on the
other hand the cost of one of these steps. What meta-level inference gives us is enough
flexibility to specialise the architecture in such a way that the number of steps in the
(object-level) search can be greatly reduced. The problem lies in the fact that this flexibility
comes at the expense of an increase in the cost for each single object-level step, because a
number of meta-level steps might be needed for any single object-level step. For meta-level
inference to work, it is crucial that this increase in the cost of a single simulated object-level
step does not outweigh the reduction in the number of such steps. In this section we will
present a simple model of a meta-level architecture (based on a model given in [Rosenschein
and Singh, 1983]). This model will show that in general there is a point beyond which the
meta-level investment of a system outweighs the object-level savings.

In our model we will assume that a system has two independent methods for solving a
particular object-level problem, although the model can be easily extended to an arbitrary
number of methods. It is assumed that without meta-level reasoning, the system will try
to use the two methods in a random order to solve the problem. Again, the model can
be easily adjusted to accommodate for the more realistic assumption that the system will
execute the methods in some fixed order if no meta-level reasoning is done. Some remarks
about such an extension are made at the end of this section. The goal of any meta-level
effort in the system is to find the optimal order for the two methods, resulting in a saving
of object-level inference at the expense of some meta-level inference. We will use the model
to investigate the trade-off between these two.

Let us call the two object-level methods available to the system for solving the problem
x and y. We will assume that each of these methods has a certain probability of solving
the problem, say px and py, initially unknown to the system. Furthermore, each method
has some associated expected cost of executing that method, say cx and cy. Again, these
expected costs are initially unknown to the system. In our model we will assume that cx is
independent of whether x succeeds or not (and similarly for cy). This assumption can be
relaxed to distinguish between cfx, the cost of x when x fails and csx, the costs of x when x
succeeds (see the remarks at the end of this section). Given these assumptions about x, y,
cx, cy, px and py, the expected cost of executing x before y, exec([x; y]) is

exec([x; y]) = cx + (1− px)cy (6.1)

namely the expected cost of executing x plus the expected cost of executing y, but reduced
by the chance that y is not executed because x has succeeded in solving the problem. An
analogous expression holds for exec([y;x]). The decision to try x before y should be made
when

exec([x; y]) < exec([y;x])
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or equivalently, using (6.1):
py/cy < px/cx.

The quantity φ(z) = pz/cz (for z = x, y) can be seen as a measure of the utility of a method
z. The above inequality says that the method with the highest utility should be tried first.

As mentioned above, the values for success rates and the expected costs of x and y (and
therefore the values of φ(x) and φ(y)) will in general not be available to the system, and
will have to be computed at the cost of some meta-level effort, say cm. Once the meta-level
has computed φ(x) and φ(y), the optimal ordering for the two methods is known. We can
now derive the savings s made by executing the methods in this optimal order as follows:
assume that without any meta-level effort, the system chooses a random ordering of x and
y. The savings are then the cost of executing a randomly chosen method minus the cost
of executing the methods in the optimal ordering, increased with the cost of finding the
optimal ordering:

savings = cost-of-random-choice — (cost-of-optimal-choice + meta-level-cost)

The expected cost of executing the methods in a random ordering is

exec([x; y]) + exec([y;x])

2
.

If the system spends cm on meta-level effort and then chooses x before y as the optimal
ordering, the execution cost would be:

exec([x; y]) + cm

The saving s would then be the difference between these two formulae:

exec([y;x])− exec([x; y])

2
− cm

This would be the saving if the system preferred x over y. Making this argument symmet-
rical in x and y, we get as the expected savings s:

s =
|exec([x; y])− exec([y, x])|

2
− cm =

|pxcy − pycx|
2

− cm. (6.2)

In general, we cannot expect that the meta-level will always succeed in computing the true
values of φ(x) and φ(y). We can adjust our model to the assumption that the meta-level
prefers x over y (i.e. it claims φ(x) > φ(y)), but that this decision is only correct with a
probability pm. In this case the expected savings of preferring x over y are

s([x; y]) = pm(pxcy − pycx) + (1− pm)(pycx − pxcy)− cm,

namely: the expected gain for the correct decision (exec([x; y])−exec([y;x]) = pxcy−pycx)
times the probability that it was indeed correct, plus the expected gain when the decision
was incorrect (or actually the loss, since pycx − pxcy is a negative quantity because we
assumed φ(x) > φ(y)) times the probability the decision was incorrect, minus the meta-
level cost cm. The above expression can be simplified to

s([x; y]) = (2pm − 1)(pxcy − pycx)− cm
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These are the expected savings when the meta-level reasoning prefers x over y. An anal-
ogous expression holds for s([y;x]). Combining these two, and again taking into account
that without meta-level effort the system randomly orders x and y, therefore getting it
right half the time, the expected savings of meta-level reasoning are

s =
(2pm − 1)∆x,y

2
− cm (6.3)

where ∆x,y is a notation for |pxcy − pycx|. Notice that when pm = 1, formula (6.3) reduces
to formula (6.2) above.

In realistic situations, the value of pm, the probability of making a correct choice between
methods, will be dependent on the amount of meta-level effort spent, i.e. pm = f(cm).
Placing this in equation (6.3) above, we get

s(cm) =
(2f(cm)− 1)∆x,y

2
− cm (6.4)

Obviously, we want to maximise s as a function of cm. Exactly what shape s(cm) will have
will depend on how the accuracy of the meta-level reasoning depends on the meta-level
effort spent by the system, i.e. f(cm). The following are reasonable assumptions to make
about f(cm):

• We expect of a meta-level that the quality of computations does not decrease with
increased effort, making f(cm) non-decreasing:

df

dcm
(cm) ≥ 0 (6.5)

• With no meta-level effort, i.e. cm = 0, our model assumes pm = 1
2 (because of the

random ordering of x and y):
f(0) = 1

2 (6.6)

Notice that f(0) = 1
2 implies s(0) = 0, which is the correct boundary condition for s.

• Since f(cm) is a probability, we certainly expect 0 ≤ f(cm) ≤ 1. Together with (6.5)
and (6.6) above this gives:

1
2 ≤ f(cm) ≤ 1 (6.7)

• Finally, although this is not strictly necessary, we can expect some effect of dimin-
ishing returns, giving a smaller increase of meta-level correctness for every further
increase in cm:

d2f

dc2m
(cm) ≤ 0 (6.8)

For illustrational purposes it is interesting to look at a number of example functions for
f(cm) which have the above properties, to see what the actual shape of the savings curve
would be for these functions.

Figure 6.1a shows the case for pm = f(cm) = 1− 1
2e−cm . It is important to stress that

the only significance of this function is that it obeys conditions (6.5)-(6.8), but otherwise
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Figure 6.1: first example of a meta-level cost function

pm

cm

1

1/2

c

s

cmc

∆/2 − c

a b

1

Figure 6.2: second example of a meta-level cost function

it is arbitrary. It serves to illustrate the possible case where a relatively small amount of
meta-level effort results in substantially improved performance, while there are diminishing
returns for subsequent effort. Its convergence to pm = 1 for cm →∞ is arbitrary, and does
not influence the qualitative shape of the savings curve for s(cm) shown in figure 6.1b. In
this figure we can see that at a certain point, the savings achieved by meta-level reasoning
reach a maximum, and any further meta-level effort will only reduce the overall savings.
With even more effort spent on meta-level reasoning, the system will eventually behave
worse than without any meta-level effort at all. Similarly, figure 6.2a shows an example
where increased meta-level effort initially pays off, but does not contribute to a more
effective control decision beyond a certain threshold c. The function used in this figure
(shown as a solid line) is pm = f(cm) = 1

2cm/c+ 1
2 on the interval [0, c), and pm = f(cm) = 1

on [c,∞). Again, the only crucial properties of this example for f(cm) are conditions (6.5)-
(6.8). Other properties, such as the slope of f(cm) on [0, c), or the fact that f(cm) = 1 on
[c,∞) are irrelevant to the qualitative shape of the saving curve shown as the solid line in
figure 6.2b, where again the savings reach a maximum at some point, beyond which further
meta-level effort will only degrade the performance of the system.

Figure 6.2 also shows the changing behaviour of the system when it tries to solve
harder meta-level problems. We call a meta-level problem harder if for the same amount
of meta-level effort cm, the system achieves a lower value of pm (i.e. the choice between
the applicable methods is made less reliably). In the case of the definition for f(cm) used
in figure 6.2, this means an increasing value of c as indicated by the family of dashed
lines in figure 6.2a. The corresponding behaviour of the saving function s(cm) is shown
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Figure 6.3: savings functions for harder meta-level problems

by the dashed lines in figure 6.2b. We see that if the meta-level problem gets harder, the
optimum meta-level effort is found for a larger value of cm, and the corresponding savings
are reduced. This behaviour illustrates a phenomenon often observed in developing meta-
level systems, namely that the usefulness of meta-level inference cannot be illustrated
adequately on very simple toy problems. For those problems, c will be very small, and any
significant amount of meta-level effort is likely to be larger than c, and will thus overshoot
the point of maximum utility. A similar set of curves can be drawn for the example used in
figure 6.1. If we take f(cm) = 1− 1

2e−cm/α (instead of f(cm) = 1− 1
2e−cm), then increasing

values of α ≥ 1 will represent harder meta-level problems. Again, the maxima for s(cm) for
different values of α lie at increasing values of cm. An example of this behaviour is shown
in figure 6.3 which displays different curves s(cm) for values α = 1, 1.5, 2, 3, 5.

Looking back at the simple model described above, we can see that there are some
assumptions which can be relaxed without significantly changing the conclusions we draw
from the model.

• number of methods:

Rather than modelling just two methods x and y, we can adjust to model to choose
between n methods. Expression (6.1) can be generalised from 2 to n methods, so
that the cost of executing methods x1, . . ., xn in that order is

exec([x1; . . .;xn]) = c1 +
n∑
i=2

(
i−1∏
j=1

(1− pj))ci (6.9)

(i.e. the total cost is the sum of the cost of each method multiplied with the chance
that all earlier methods failed). The optimal order for executing the methods would
of course be some order xi1 ; . . .;xin such that for all j, 1 ≤ j ≤ n−1, φ(xij) ≥ φ(xij+1

).

• initial ordering of methods:

The model assumed that with no meta-level effort the system would make an arbitrary
choice for the order in which it executed its object-level methods x and y. A more
realistic assumption would be that the system would apply x and y in some fixed
order, say first x and then y, on the basis of some a priori knowledge that the system’s
designer has about φ(x) and φ(y). Suppose that with no meta-level effort, the system
chooses x before y, and that this choice is indeed the right one with a chance p0. In

98



other words, the value f(0), the quality of the meta-level decision at no meta-level
effort, is no longer 1

2 , as specified in (6.6), but is now p0. Presumably, 1
2 < p0 ≤ 1,

since the fixed ordering programmed into the system will be better than a random
ordering. Because (6.6) has changed to

f(0) = p0 (6.10)

formula (6.7) must also change, into

p0 ≤ f(cm) ≤ 1 (6.11)

We would like our new version (6.10) to imply s(0) = 0, just as (6.6) did, so we have
to recalibrate (6.4). Furthermore, rather than multiplying (2f(cm)− 1)∆x,y by 1

2 , as
in formula (6.4), representing the initial random ordering, we should multiply with
(1 − p0), the chance that the a priori decision would have been wrong. As a result
of these changes, and after algebraic simplifications, the new version of the savings
equation (6.4) becomes

s(cm) = 2(1− p0)(f(cm)− p0)∆x,y − cm (6.12)

Notice that (6.12) is equal to (6.4) for the case p0 = 1
2 (the random choice case).

Furthermore, given an extra assumption about the behaviour of f(cm) we can prove
that the value of (6.12) is always smaller than the value of (6.4). This is just what
is to be expected, since with the fixed ordering the system performs better without
any meta-level effort than it did before without meta-level effort, and as a result the
potential savings that can be made by the meta-level are smaller. The additional
assumption about f(cm) that is needed to ensure that (6.12) ≤ (6.4) is that, when
p0 increases, f(cm) does not increase more than p0 for any value of cm. Formally, if
fp′ and fp′′ are two versions of f(cm) for different values of p0 = p′, p′′, with p′′ > p′,
we require:

∀cm : fp′′(cm)− fp′(cm) ≤ p′′ − p′

This is a reasonable assumption to make, since we cannot expect that the a priori
knowledge about the relative utilities of x and y will increase the quality of the meta-
level effort by more than just this a priori amount. The proof goes as follows: for
p0 = 1

2 we have (6.12)=(6.4). If p0 increases, the value of (6.12) decreases, since the
value of (1 − p0) decreases, and the value of (f(cm) − p0) also decreases. This last
statement is only true because of our extra condition: generally, if p0 increases, f(cm)
will increase, but our extra condition states that it will not increase more than p0, so
that (f(cm)− p0) either stays the same or decreases as well, so that the whole value
of (6.12) decreases, making it less than (6.4) for any value of p0 >

1
2 .

• cost independent of success:

The assumption above was that a method z had some associated expected cost cz
which was independent of whether the method succeeded or failed. This assumption
can be lifted by introducing for any method z two costs, namely csz, the cost of z if z
succeeds, and cfz , the cost of z if z fails. The expected cost of executing a method z

99



is then cz = pzc
s
z + (1− pz)cfz , namely the cost of z succeeding times the probability

it will succeed plus the cost of z failing times the probability it will fail. We can then
uniformly substitute this new expression for any cz in the above, for z = x, y. If we
do this in expression (6.1), representing the cost of executing first method x and then
method y, the resulting expression can be rewritten to the following:

exec([x; y]) = pxc
s
x + (1− px)(cfx + pyc

s
y + (1− py)cfy) (6.13)

which is exactly what we expect, namely the cost of x succeeding times the probability
that x succeeds plus the sum of x failing and executing y times the probability that
x fails.

6.2 The cost of meta-level inference

The previous section showed that there will indeed be a point beyond which increased
meta-level effort will outweigh the benefits gained at the object-level. It therefore becomes
a matter of considerable practical concern to find out where this trade-off point lies in a
particular system. If the increase in cost per object-level step due to meta-level effort is
significant, then it is less likely that this increase will be outweighed by the reduction in
the number of object-level steps needed for a particular task.

We can expect this increase in cost per object-level step to be higher for bilingual than
for mono-lingual systems, because bilingual systems need the extra effort of translating
between object-level formulae and their meta-level names. In order to assess the size of
this problem we will compare both a mono-lingual and a bilingual meta-level system (to be
called I1 and I2) with some single level system (I0) that has a hardwired control strategy.
We will measure the performance of each of these interpreters for the same task, using
the same control regime, although explicitly represented in I2 and I1 and hardwired in I0.
We will expect I0 to outperform the other two, since all three interpreters run the same
control regime, but I1 and I2 will have to explicitly interpret the control regime. What
we are interested in is the difference in overhead between I1 and I2 relative to I0, which
will be an indication of the costs of I2 being bilingual. We are not so much interested
in the performance difference between I0 on the one hand and I1 and I2 on the other.
This comparison would in some sense be unfair, since for the purpose of the experiment
we restrict all three interpreters to run the same control regime. However, I1 and I2 have
the potential to run other (possibly more efficient) control regimes whereas the behaviour
of I0 is in this respect fixed. Thus, the fact that I0 outperforms both I1 and I2 should
not be taken as an argument against explicit meta-levels, since the behaviour of I1 and I2
could potentially be adjusted to a control regime more appropriate for the particular task,
leading to increased efficiency.

In order to do the comparison between a mono-lingual, a bilingual and a hardwired
interpreter, we need an environment in which we can build all these without too many
irrelevant differences between them that might distort our results. We cannot use the
Socrates environment for the experiment, since it is by design only bilingual. Instead, we
will use a Prolog system as the environment for our experiments. Prolog is often claimed
to be particularly well suited for building interpreters, and the Prolog literature contains
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solve(true).

solve((LeftGoal, RightGoal) :- solve(LeftGoal), solve(RightGoal).

solve(Goal) :- clause((Goal:-Body)), solve(Body).

figure a

solve([], []).

solve([G|Gs], S) :-

get_clause(G, C),

rename_vars(C, [G|Gs], C1),

head(C1, H1),

unify(G, H1, S1),

body(C1, B1),

append(B1, Gs, NewGs),

instantiate(NewGs, S1, NewGsPlusS1),

solve(NewGsPlusS1, S2),

compose(S1, S2, S).

figure b

Figure 6.4: code of meta-circular interpreters in Prolog

descriptions of both mono-lingual and bilingual meta-interpreters ( [Kowalski, 1979], [Ster-
ling and Shapiro, 1986], [O’Keefe, 1985]). Furthermore, since these meta-interpreters are
often meta-circular (in the sense discussed in section 2.4.3), their behaviour is functionally
equivalent to that of the Prolog base level system in which they are implemented. Thus,
we can use the Prolog base level system as our hardwired interpreter I0. We can represent
our experimentation environment schematically as:

I0

I1

I2

P(n)

1

where P (n) stands for some object-level program with input of length n that is to be
executed by either the base-level interpreter I0 or by one of the two meta-interpreters I1
of I2, which are themselves, of course, in turn executed by I0.

The code for the interpreters I1 and I2 is given in figure 6.4. Figure 6.4a lists the
code for the most simple version of a meta-circular interpreter for pure Prolog. The meta-
level interpreter represents clauses in the same way as the base level interpreter does, with
the ,-functor used to represent conjunctions as usual. This interpreter is mono-lingual,
since Prolog is used to represent both the meta-interpreter and the object-level program it
interprets.
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Figure 6.4b lists the top-level code for a bilingual meta-interpreter for Prolog. Fur-
ther explicit definitions of all the predicates get_clause/2, rename_vars/3, head/2,

unify/3, body/2, instantiate/3 and compose/3 must obviously also be provided. This
meta-interpreter is bilingual, since the language used to represent the object-level program
is different from the language in which the meta-interpreter itself is written (Prolog).
Object-level clauses are represented as Prolog clauses except for the variable representa-
tion. The object-level variables are represented as var(x), var(y), ... instead of the
Prolog variables X, Y, ... Thus, an object-level literal like p(X) for I0 and I1 would
look like p(var(x)) for I2. The predicates used in the code for I2 (like unify/3 etc.) are
programmed to deal with this variable representation, rather than with the standard Pro-
log variables. This means that I2 must explicitly manipulate substitutions for object-level
variables, rather than implicitly use the mechanism provided by the base-level interpreter,
as I1 does. As a result, I2 is a 2-place predicate instead of the 1-place predicate for I1

1.
I2 also has a slightly different representation of object-level conjunctions, representing

them as lists instead of using the ,-functor, but this difference will not influence any mea-
surements, since neither the ,-functor nor the list-constructor has any special status in the
Prolog systems that we will use. Strictly speaking, the code for I2 from figure 6.4b is not
quite correct, since it does not explicitly represent the object-level theory. This can easily
be changed, by adding a third argument to solve/2, consisting of a list of clauses of the
object-level theory. This argument would then be passed as an additional argument into
get_clause/3. However, the implementation shown in figure 6.4b allows us still to use
the hardwired indexing mechanism of the Prolog system for the object-level theory. Due
to the lack of separation in the Prolog language between function-symbols and predicate-
symbols, the predicate get-clause/2 can still use the built-in database indexing to access
the object-level predicates (which are strictly speaking function symbols at the meta-level).
This programming trick removes one difference between I2 on the one hand and I1 and I0
on the other which might otherwise distort the measurements that we are interested in. A
final remark to be made about the code for I2 in figure 6.4b is that it performs standard
depth-first Horn Clause resolution, exactly as the code for I1 in figure 6.4a although en-
coded slightly differently. A version of I1 that encodes depth-first search in the same way
as I2 and that also uses lists to represent conjunctions would look like:

solve([]).

solve([G|Gs]) :-

clause(G, B),

append(B, Gs, NewGs),

solve(NewGs).

The differences between this version of I1 and the version of figure 6.4a will not influence
our measurements, and because the code in figure 6.4a will make some of the arguments
later in this section somewhat easier to present we will use the version of I1 as given there.

Having described the purpose and setting of the experiment, we have to decide how
to measure the performance of the three interpreters. Although many objections can

1The reader should remember that the advantage of this additional complexity of I2 is that the object-
level language for I2 can be changed, whereas the object-level language of I1 must always be the same as
the meta-level language, namely Prolog.
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be made against it (see below), we will use the standard performance measure for logic
programming systems, namely the number of Logical Inferences. The number of logical
inferences li performed by a Prolog goal P , by executing the clause P : −P1, . . ., Pn is
defined as

LI(P ) = 1 +
n∑
i=1

LI(Pi)

If P is a unit clause (i.e. n = 0), then P performs 1 logical inference. To illustrate this
definition, we take the standard code for the predicate member/2:

member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

An example call to this predicate, such as

member(3,[1,2,3,4]).

would make 3 logical inferences, namely

LI(member(3,[1,2,3,4])) =

1 + LI(member(3,[2,3,4])) =

1 + 1 + LI(member(3,[3,4])) =

1 + 1 + 1 = 3

As mentioned, a number of objections can be made against the logical inference as a
performance measure:

The first objection is one that does not actually affect the use of the li-measure for our
purposes, but reduces its usefulness in other contexts. The definition of logical inference
takes into account only the clauses that are executed as part of the proof tree. Many
other clauses might have been executed in the search space of the interpreter, but only the
successful clauses that contribute to the solution are counted. This can again be illustrated
using the example call to member/2 above. In the computation of member(3, [1,2,3,4]),
no account was taken of the fact that the base clause failed for all but the last recursive
call, although, presumably, the Prolog system had to spent some effort trying to match the
head of this unit clause with the goal and failing. Even worse, if our base clause had read:

member(X, [Y|_]) :- expensive_calculation, X=Y.

the li measure would not reflect the effort spent in performing expensive_calculation

twice as part of the failing base clause. In other words, the li-measure takes account only
of the size of the proof tree, and not of the size of the search tree (where the proof tree
is only a subset of the search tree). For our experiment this property of the li-measure is
not important since its effects are equal for all three interpreters. This is because all three
interpreters run the same control strategy, and therefore traverse the same search tree to
find the same proof tree, and thus the li-measure blurs the distinction between search tree
and proof tree in equal amounts for all of the interpreters. Since, we are only interested
in the performance of each interpreter relative to the others, and not in any absolute
speed measurements, this objection to the li-measurement will not influence our results.
Nevertheless, this seriously disqualifies the logical inference as a performance measure
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between interpreters that run different control regimes: both efficient and inefficient control
regimes would score the same li-rating, since they both eventually find the same proof tree.
The only possible way of using the li-rating in such a case is to take into account the time it
took the interpreter to make the logical inferences, in other words, to measure the number
of logical inferences an interpreter can make per second, li/sec, often written as lips. In
that case the efficient control regime will get the same number of logical inferences in less
time, thereby scoring a higher lips-rating.

The second objection against li as a performance measure is that it only measures the
cost of executing the conjuncts P1, . . ., Pn, and that it ignores the cost of executing the
conjunction itself. This objection is indeed relevant for our experiment, since as we will
see below, the cost of executing a conjunction is much higher for I2 than it is for I1 and I0,
and is a function of the number of shared variables between the conjuncts. The fact that
this cost is ignored in the cost-measure of the task therefore underestimates the cost of I2
compared to the cost for I1 and I0.

The third objection agains li as a performance measure is that it assumes that each
procedure call has the same (unit) cost. Procedure calls are of course not of uniform cost,
since different amounts of computation are performed for the unification of the arguments
in the head of different procedure calls. In this context the terms step complexity and
unification complexity are sometimes used. The li-measure only takes account of the step
complexity and ignores the unification complexity. Again, this objection is relevant to our
experiment since unification is much more expensive in I2 than in I0 and I1.

On the basis of these objections, a more appropriate definition for LI(P ) would be

LI(P ) = f(P ) +
n∑
i=1

(LI(Pi) + g(Pi)) + h(P )

where f(P ) represents the unification complexity of P , g(Pi) represents the cost of Pi
sharing variables with other conjuncts, and h(P ) is a measure of the effort spent on the
failing or-branches for P . However, since we can give no reasonable estimates for f , g or
h, we will cautiously use the conventional measure, while bearing in mind the objections
mentioned above. Notice that our li measure will only underestimate the value of the
computational effort (since f , g and h are all positive values), so that our measurements of
computational effort will be conservative estimates of the real values. Before we proceed
to discuss the measurements we will be taking, we introduce a further notation. For some
object-level program P , with input of length n, and some interpreter Ii (i = 0, 1, 2), we
will write LI(Ii, P (n)) to mean the number of logical inferences it takes Ii to execute
program P on input n, and similarly LIPS(Ii, P (n)) for the corresponding li/sec-rating.
For interpreter I0, the program it executes can not only be some object-level program P ,
but also some other interpreter Ii (i = 1, 2) which is in turn executing some object-level
program P . Using the same notation, the number of logical inferences required by I0 in
this situation would be written as LI(I0, Ii(P (n))) (i = 1, 2).

Given the above descriptions of the experimental environment and the performance-
measurement, and using the notation introduced above, we can answer our previously
defined question (comparing the overheads of both I1 and I2 with respect to I0) in two
ways:
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1. Given an object-level task P which takes an input of length n, we can compare the
overheads in terms of the time it takes for all three interpreters to execute P (n).
This corresponds to comparing

LIPS(I1, P (n))

LIPS(I0, P (n))
with

LIPS(I2, P (n))

LIPS(I0, P (n))

in other words, we are interested in the ratio

LIPS(I1, P (n))

LIPS(I2, P (n))

Since P is the same in all cases, and since all three interpreters Ii, i = 0, 1, 2 execute
the same control strategy, we have

LI(I0, P (n)) = LI(I1, P (n)) = LI(I2, P (n))

so all we would have to measure here is the time taken by each interpreter to perform
P (n).

2. Alternatively, we can compare the number of logical inferences it takes I0 to execute
P (n) either directly, or via I1 or via I2. This corresponds to comparing

LI(I0, I1(P (n)))

LI(I0, P (n))
with

LI(I0, I2(P (n)))

LI(I0, P (n))

in other words, we are interested in the ratio

LI(I0, I2(P (n)))

LI(I0, I1(P (n)))

Division of any of the three quantities LI(I0, Ii(P (n))) for i=0,1,2 (where we should
read LI(I0, I0(P (n))) as LI(I0, P (n))) by the time taken for that task should presum-
ably result in the same figure, namely the lips rating of I0.

The first of these two approaches measures the meta-level overhead in terms of the
speed of each of the interpreters, and the second approach measures the overhead in terms
of the effort needed by the base-level implementation. If our measurements could be done
accurately, and if the li and lips were indeed good measures of the run-time complexity of
logic programs, then both approaches should result in the same conclusion, in other words,
we would expect

LI(I0, I2(P (n)))

LI(I0, I1(P (n)))
=

LIPS(I1, P (n))

LIPS(I2, P (n))
(6.14)

However, because of the deficiences in the definition of li as discussed above, and because
of the difficulties in measuring lips (explained in detail in section 6.3), we cannot expect
this equality to hold in practice. Each of these measurements can of course be done for
either a fixed object-level task P , with input of fixed length n, or over a variation of both
n and P . If the logical inference is indeed a good measure of complexity, then all of these
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Prolog system I0 I1 I2 I0/I1 I0/I2 I1/I2

Edinburgh 7500 311 0.7 24 10700 445
Quintus 20000 850 2.0 24 10000 425
BIMProlog 17000 326 1.6 52 10600 204

Figure 6.5: lips ratings on nrev(30)

measurements should lead to the same conclusions about the difference in overhead for I1
and I2.

The advantage of the first approach (using the lips-ratings), is that it directly mea-
sures the speed of the different interpreters, which is the property we are interested in.
The disadvantage is that it involves measuring execution times of programs, which are
always prone to variations due to unpredictable effects in operating system and hardware.
The advantage of the second approach (using the li-ratings) is that these ratings can be
computed or measured exactly, rather than only approximately. The disadvantage of this
approach is that these li-ratings are only of indirect interest. In themselves they do not
tell us anything about the speeds of the different interpreters, and only relate the speeds
of I1 and I2 to the speed of I0 via the following equation:

LIPS(Ii, P (n)) = LIPS(I0, P (n))× LI(Ii, P (n))

LI(I0, Ii(P (n)))
for i = 1, 2 (6.15)

The motivation for this equation is as follows: the speed of Ii (in logical inferences per
second) equals the speed of I0 divided by the number of logical inferences I0 needs to make
for each logical inference of Ii. This number of logical inferences I0 needs to make for each
logical inference of Ii can be represented as the quotient of the total number of steps I0
makes for executing a task via Ii and the total number of steps Ii has to make to that task,
ie LI(I0, Ii(P (n)))/LI(Ii, P (n)). Dividing the speed of I0, LIPS(I0, P (n)), by this quotient
gives the above relation between the speed of Ii and the speed of I0. Notice that the above
equation is trivial for i = 0 (if we read LI(I0, I0(P (n))) as LI(I0, P (n))).

Equation (6.15) can also be used to derive equation (6.14) above, which stated that
both approaches to measuring the ratio of overhead of I1 and I2 (using either li or lips
ratings) should give the same result. Taking the right-hand side of (6.14), and applying
equation (6.15) to both numerator and denominator, for Ii, i = 1, 2 respectively, we obtain

LIPS(I0, P (n))× LI(I1,P (n))

LI(I0,I1(P (n)))

LIPS(I0, P (n))× LI(I2,P (n))

LI(I0,I2(P (n)))

.

After applying the equality LI(I1, P (n)) = LI(I2, P (n)) and algebraic simplification we
obtain the left-hand side of equation (6.14) as desired.

After all these preliminary discussions we are finally ready to describe the experiments
that embody the two ways discussed above of measuring the meta-level overhead. Our first
experiment measures the first of these two, the LIPS(Ii, P (n))-ratings. The object-level
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program P that was used for the measurements shown in figure 6.5 is the standard logic
programming benchmark of naive-reverse on a list of 30 elements, where naive reverse is
defined as:

nrev([], []).

nrev([H|T], R) :- nrev(T, TRev), append(TRev, [H], R).

append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

This is, of course, the representation of P for I0 and I1. The version for I2 uses the
different representations for variables and conjunctions, but is otherwise the same. The
lips-measurements reported in the first three columns of figure 6.5 are reliably reproducible
within a margin of error of ±10%, making the ratios in the other columns reliable within
±20%. What is important in the table of figure 6.5 are not the absolute figures measured
for I0, I1 and I2 (the measurements for the different Prolog systems were taken on different
machines), but rather the differences between the ratios I0/I1 and I0/I2 (i.e. I1/I2) for each
Prolog system. This shows that I1 runs an order of magnitude slower than the base-level
Prolog system in which it is executed, while I2 runs 4 orders of magnitude slower than its
executing base-level.

We should explain here that the column for I0 in figure 6.5 (and consequently the
ratios involving I0) are lower than the figures which are claimed by the vendors of these
systems. This is because commercial Prolog systems are heavily optimised for the nrev-
benchmark (by incorporating special case instructions in their virtual machine instruction
set), resulting in an unrealistically high value for LI(I0, nrev(n)), which is not reached by
these systems while executing other programs, such as I1 and I2. We therefore measured
LIPS(I0, nrev(30)) not on the code for nrev listed above, but on the following procedurally
equivalent code:

nrev([], []).

nrev([H|T], R) :- nrev(T, TRev), append(TRev, [H], R).

append([], L, L) :- !.

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3), !.

append(_, fail, fail).

This change eliminates most of the special case optimisations, resulting in a value for
LIPS(I0, nrev(30)) which is only 25% of the speed quoted by the vendors, but which is a
better reflection of the speed of the system.

The conclusion of these simple measurements (i.e. comparing LI(Ii, P (n)) ratings for
fixed P (n) for i = 0, 1, 2) is that the bilingual interpreter runs 4 orders of magnitude slower
than the mono-lingual interpreter.

All the above measurements are for an object-level program P that takes an input of
fixed length n. The measurements reported in figure 6.6 show the results of measuring
LIPS(Ii, nrev(n)) in the Quintus Prolog system for varying values of n. As in the previous
figure, the measurements of figure 6.6 are reliably reproducible within ±10%. The prime
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Figure 6.6: lips ratings on nrev(n)

interest of figure 6.6 is of course that both I0 and I1 show a constant lips-rating over
varying input size, while I2’s lips-rating drops when the input increases. The reason for
this different behaviour of I2 is that both I0 and I1 can dereference their variables (Prolog
variables in both cases) in constant time, whereas I2’s cost for dereferencing a variable
grows with the size of the computation (since it handles substitutions explicitly, and they
become larger for larger input).

The main conclusion from this second experiment measuring lips-ratings is that the
inverse relation between the lips-rating of I2 and the size of the computation contrasts
sharply with the behaviour of I1 and I0, which does not depend on the size of the proof.
This indicates that the loss of efficiency due to meta-level interpretation is much larger
than is generally estimated in the logic-programming literature2.

We will now turn to the second approach mentioned above, to measure the difference in
overhead between I1 and I2, namely measuring the ratios LI(I0, Ii(P (n)))/LI(I0, P (n)) for
i = 1, 2. The value of LI(I0, P (n)) can be easily computed for our standard benchmarks
append/3 and nrev/2. By looking at their code (given above), we find:

LI(I0, append(0))3 = 1

LI(I0, append(n)) = LI(I0, append(n− 1)) + 1

or equivalently
LI(I0, append(n)) = n+ 1 (6.16)

2This cost is usually taken to be an order of magnitude, and constant in the size of the computation,
as with the mono-lingual interpreter I1 above. See for instance [Sterling and Beer, 1986].

3Of course append/3 takes two input arguments, but only the first argument determines the complexity
of the algorithm, thus justifying our notation append(n).
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by a simple induction argument on n. Similarly, for nrev/2 we find

LI(I0, nrev(0)) = 1

LI(I0, nrev(n)) = LI(I0, nrev(n− 1)) + LI(I0, append(n− 1)) + 1

or equivalently, again by induction on n, and using equality (6.16):

LI(I0, nrev(n)) = 1
2(n+ 1)(n+ 2) (6.17)

A similar counting argument can be done to find the values for LI(I0, I1(P (n))). Looking
at the code for I1 in figure 6.4a we see that I0 needs 2 logical inferences for each or-branch
in P interpreted by I1 (the last clause in the code of I1), 1 logical inference per and-
branch (the second clause), and 3 logical inferences for each leaf in P ’s proof tree. Taking
P =append/3, we get

LI(I0, I1(append(0))) = 3

LI(I0, I1(append(n))) = LI(I0, I1(append(n− 1))) + 2

or, in closed form
LI(I0, I1(append(n))) = 2n+ 3 (6.18)

and similarly, taking P =nrev/2

LI(I0, I1(nrev(0))) = 3

LI(I0, I1(nrev(n))) = LI(I0, I1(nrev(n− 1))) + LI(I0, I1(append(n− 1))) + 2 + 1

or, in closed form:
LI(I0, I1(nrev(n))) = n(n+ 1) + 4n+ 3 (6.19)

Having thus derived LI(I0, Ii(P (n))) for i = 0, 1 and P =append/3, nrev/2 and re-
alising that LI(Ii, P (n)) is the same for i = 0, 1, 2 we can now compute the ratio
LI(I1, P (n))/LI(I0, I1(P (n))), which relates the speed of I1 with the speed of I0, as specified
in equation (6.15). Combining (6.16) with (6.18) and (6.17) with (6.19) we get:

LI(I0, append(n))

LI(I0, I1(append(n)))
=

n+ 1

2n+ 3

LI(I1, nrev(n))

LI(I0, I1(nrev(n)))
=

1
2(n+ 1)(n+ 2)

n(n+ 1) + 4n+ 3

These ratios both approach 1
2 for large n. This would indicate that I1 is about twice as slow

as I0, whereas our previous measurements of LIPS ratings indicated that I1 is an order of
magnitude slower than I0. This indicates a deficiency in the use of the logical inference as
a unit of measurement, but even with this quantitative discrepancy, the above ratio is still
qualitatively correct: it predicts correctly that the relation between the speed of I1 and I0
is constant, and independent of the size of the input n.

A similar counting exercise as above would, in principle, be possible in order to compute
LI(I0, I2(P (n))), so that we could find a ratio between the speeds of I0 and I2, but the
complexity of the code for I2 (the code in figure 6.4b, plus the code for all the predicates

109



2500000

5000000

7500000

10 20 30 40

250

500

750

10 20 30 40

2500

5000

7500

10000

10 20 30 40
Size of

input

LI(I0, I2(P(n))) LI(I2, P(n))

LI(I0, I2(P(n)))

LI(I2, P(n))
rrrrrrrrrrrrr

a b c

1

Figure 6.7: li ratings and ratios for I2 and I0

mentioned there) makes this impractical. However, although impractical as a computation
on paper, we can construct a program that executes I2 and at the same time keeps track
of the number of logical inferences made during this execution. This program produced
the measurement of figure 6.7 which shows the values of both LI(I0, I2(P (n))) (figure a),
LI(I0, P (n)) (figure b) and LI(I0, I2(P (n)))/LI(I0, P (n)) (figure c) for P =nrev and for
varying n. The third curve in this figure (figure c) shows the factor by which I2 is slower
than I0 (in terms of logical inferences needed by I0 to perform a given task). Again, as in
figure 6.6, we see that the overhead of I2 is not constant with the size of the computation,
but rather grows with increasing input. The ratio in terms of LI-ratings of figure 6.7 is
consistent with the LIPS-ratings of figure 6.6, showing an overhead of 4 orders of magnitude
for input size n = 30.

Before we draw any conclusions from the above, we have to remark that these results are
based on the most extreme version of a bilingual meta-level interpreter, namely with the full
code of the meta-interpreter specified in the meta-level theory. An obvious optimisation
would be to hardwire such predicates as rename_vars/3, head/2, unify/3, body/2,

instantiate/3 and compose/3 (i.e. those predicates that are not part of the search
strategy defined by the meta-level interpreter), rather than defining and executing them
explicitly in the meta-level theory. Predicates that do affect the control strategy of the
system, like get_clause/2, and append/3, and of course the definition of solve/2 itself
should be left explicit. It is difficult to say what exactly the overhead of I2 would become
with such a hardwired set of predicates, without doing a full and efficient implementation
of them, which would be a serious task. The best approximation we can make using our
experimentation environment is to regard these predicates as built-in predicates, i.e. to
count each call to one of these predicates as 1 logical inference. This immediately reduces
the value of LI(I0, I2(append(n))) to 12n+ 11 (by a similar counting argument as above),
and thereby making the ratio LI(I0, I2(P (n)))/LI(I2, P (n)) a constant one, although still
an order of magnitude. However, this approximation is a simplistic one, since in general the
execution costs of the hardwired predicates will not be constant, but will increase with the
size of the proof, so a proper judgement on this issue has to be deferred to later work.
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6.3 Implementation

Finally, we will briefly describe some aspects of the programs that were constructed to
obtain all the measurements used in this chapter.

In order to obtain the lips-ratings (i.e. li/sec) used in this chapter it was only necessary
to measure the actual run-time of the programs, as explained above. This is because we
are interested in the ratio

LIPS(I1, P (n))

LIPS(I2, P (n))
=

LI(I1, P (n))/sec

LI(I2, P (n))/sec
,

and since LI(I1, P (n)) = LI(I2, P (n)) we do not require the values of LI(Ii, P (n)), i = 1, 2,
but only the respective run-times. These run-times can be measured using the Prolog
evaluable predicate runtime/2 which is built into most dec-10 based Prolog systems such
as the systems used in this chapter. However, in the systems used above, the implementa-
tion of this primitive relies on the Unix library facility times which suffers from a number
of problems which causes the results to be not totally reliable:

• The time-resolution of the times library call is only 1/50 of a second, prohibiting the
measurement of very small time intervals. For our purposes, 1/50 sec. is indeed a
very coarse resolution: an 80Klips Prolog system such as Quintus can perform 1600
logical inferences in 1/50 sec.

• Due to the timesharing nature of the Unix system, the measurements of run-times
will always be influenced by the use that other processes make of the machine’s
resources during the measurement. Furthermore, Unix is a virtual memory system.
This implies that the run-time of a program is influenced by which virtual memory
pages happen to be in our out of real memory at the time of the measurement, a
factor not under the control of the programmer. All this is exacerbated by the fact
that the particular machines used for our benchmarks were accessing their virtual
memory (on disk) over a network which can influence the time needed to bring a
virtual memory page in and out of real memory depending on the particular load
on the network. Again, this factor is outside the control of the programmer. The
times library routine can supposedly distinguish between the time spent on executing
system instructions (for paging, and by other processes), and the time spent by the
program itself. However, this distinction is not very precise in practice.

• A final problem with measuring run-times is the fact that some of the Prolog sys-
tems used in the benchmarks above (notably Quintus and bimprolog) can decide
to do garbage-collection at uncontrollable moments during the execution of a Pro-
log program. This means that the run-time for a particular user program can vary
greatly from one measurement to the next, depending on whether or not the Prolog
system happened to do a garbage collection during the execution of the program.

The result of these problems is that all measurements have to be taken over sufficiently
large time intervals so that the coarse resolution will not matter, and the fluctuations due
to system load, network load and Prolog garbage collections will “average out”. Even then
no greater accuracy can be obtained in lips-measurements than ±10%.
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No such problems of accuracy exist with measuring the li-rating of a particular pro-
gram. This rating can be established through a mathematical induction argument, which
closely follows the recursive structure of the program to be measured. However, very
quickly programs become too complicated for such arguments to be carried out in prac-
tice. For this case we have constructed a program which automatically counts the li-rating
of an arbitrary predicate. In order to this, the program transforms any n-place predicate
which is to be measured into an n+ 2-place predicate, with the extra two arguments, say
i and j, representing two numbers such that after the predicate succeeds, the value j − i
will be the number of logical inference performed by the predicate. Calling the predicate
with i = 0 will give us j as the number of li’s performed by the predicate. For example,
the definition of nrev/2 used in the experiments above:

nrev([], []).

nrev([H|T], R) :- nrev(T, TRev), append(TRev, [H], R).

append([], L, L).

append([H|L1], L2, [H|L3]) :- append(L1, L2, L3).

would be transformed into:

nrev([], [], I, J) :- J is I+1.

nrev([H|T], R, I, J) :-

nrev(T, F, I, I1),

append(F, [H], R, I1, I2), J is I2+1.

append([], L, L, I, J) :- J is I+1.

append([H|L1], L2, [H|L3], I, J) :-

append(L1, L2, L3, I, I1),

J is I1+1.

This code transformation reflects exactly the definition of li as given in section 6.2. Built-in
predicates were counted as 1 logical inference, and treated specially by the transformation
process. For example, the predicate append_print/3, a variation of append/3 which also
prints all elements of the first list:

append_print([], L, L).

append_print([H|L1], L2, [H|L3]) :- write(H), append_print(L1, L2, L3).

would be transformed into:

append_print([], L, L, I, J) :- J is I+1.

append_print([H|T1], T2, [H|T3], I, J) :-

write(H),

append_print(T1, T2, T3, I+1, I2),

J is I2+1.

where the use of I+1 instead of just I in the recursive call to append_print reflects the
cost of the write/1 predicate as 1 logical inference.
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6.4 Related work

A number of other authors have done more or less systematic investigations into the over-
head of meta-level interpreters. We will discuss three of these below.

O’Keefe in [O’Keefe, 1988] discusses a number of mono-lingual meta-level interpreters
for Prolog, of which I1 discussed above is an example. By using a different representation
of the object-level theory he manages to increase the speed of a variation of I1 as measured
via LIPS(I0, I1(nrev(30))) from 1 Klips (as measured above) to 5.5 Klips. This still leaves
the overhead of his variation of I1 well within the range of a factor 10–100 as concluded
above. O’Keefe does not extend his investigations to either I2 (the bilingual meta-level
interpreter), or to measuring the value of LIPS(I0, I1(P (n))) for some object-level program
P as a function of increasing n.

All the experiments described above use interpreters I0, 1, 2 with exactly the same
control regime. As a result, we have measured only the overhead of each of the interpreters,
without asking if this overhead could be off-set by possible savings made by writing meta-
level interpreters that implement control regimes that are tailored to specific applications.
Two related systematic studies ( [Owen, 1988a] and [Lowe, 1988]) have been done in
this area. Owen developed a series of meta-level interpreters for the interpretation of an
object-level theory concerning protein topology, and Lowe used the same set of meta-level
interpreters for the interpretation of an object-level theory concerning the simulation of
electronic circuits. Using I1 as above, Owen confirms our findings of an overhead of a factor
10–100 for LIPS(I0, I1(P ))/LIPS(I0, P ). It is interesting that this figure still holds when
interpreting more significant object-level programs P than just nrev/2 or append/3. When
Owen moves on to building special purpose versions of I1 (i.e. a version of I1 which do not
mimic the behaviour of I0), he eventually manages to improve performance by a factor of
2. His specialised version of I1 (I1,Lemma) is based on the use of object-level lemmas, and
interprets the object-level theory twice as fast as I0. This improvement in performance is
rather small, and the reason for this is of course that I1,Lemma has to reduce the number
of object-level logical inferences (LI(I1,Lemma, P )) significantly in order to make up for the
enormous increase in cost of a single logical inference. This is illustrated by the fact that
the improvement of the amount of object-level inference it does (i.e. LI(I0, P )/LI(I0, I1P ))
is more than a factor 300, although the run-time improvement of I1,Lemma is only a factor
2.

In [Lowe, 1988], the interpreters developed by Owen were applied to a different object-
level theory. She also finds a value of 10–100 for LIPS(I0, I1(P ))/LIPS(I1, P ), indicating
that this factor is indeed stable across a large variety of object-level theories P . Out
of a number of versions of I1 developed by Owen, and applied to a number of different
object-level theories (representing different electronic circuits), she finds only one meta-
level interpreter (based on the dynamic ordering of goals (I1, Goals)), and one object-
level theory (representing an n-bit adder (Padder(n))) with an improved performance over
I0(P (n)). This improved performance is achieved because I1, Goals reduces the complexity
of interpreting Padder(n) from exponential to linear, so that for large enough n the (lin-
ear) increase in cost of a single logical inference performed by I1, Goals is off-set by the
exponential reduction in the number of logical inferences needed to interpret Padder(n).

The general conclusion from all this seems to be that the increase in costs per logical
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inference is so high for even I1 that this makes the practical application of meta-level
interpreters for achieving increased efficiency through tailoring the control regime very
difficult if not impossible. None of the work in the literature investigates bilingual meta-
level interpreters like I2, but, as shown in this chapter, it is to be expected that the
behaviour of I2 is both quantitatively and qualitatively worse than that of any variation
of I1.

6.5 Conclusions

In this chapter we have investigated the problem of the overhead of meta-level interpre-
tation. In the first part of the chapter we have presented a model which shows that the
amount of meta-level overhead can indeed offset the gains made by the reductions of the
object-level search space, and in the second part of the chapter we have performed mea-
surements which show that the actual size of the meta-level overhead is so large as to be
a serious practical problem. Our experiments have shown that the overhead in bilingual
meta-level systems is much higher than in mono-lingual systems, and that this overhead is
much higher than is usually acknowledged in the literature.
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Chapter 7

Partial evaluation

Although many of the papers in the literature dealing with the use of meta-level interpreters
for control issues acknowledge the inefficiency that is inherent in the multiple layers of
interpretation, very few of them offer any solutions to this problem. An important section
of the limited work on reducing meta-level overhead in recent years has been based on the
idea of specialising the general purpose formulation of the meta-level control regime with
respect to the particular object-level theory that is being used in the system. Most of the
work on this idea is based on the use of partial evaluation as an optimisation technique.

Work reported in, for example, [Venken, 1984], [Takeuchi and Furukawa, 1986], [Take-
waki et al., 1985], [Safra and Shapiro, 1986], [Levi, 1988] and [Gallagher, 1986], is all based
on this technique. In this chapter we will first describe this technique, and its application
to meta-level interpreters in logic-based systems. In the second part of this chapter we will
explore some of the limitations of this technique in the context of meta-level interpreters
for logic-based systems, which remain largely undiscussed in the literature1. We will also
discuss some heuristic improvements that can be made to partial evaluation to alleviate
some of its limitations.

As a spin-off from the work on partial evaluation described in this chapter, a close
relationship was discovered between partial evaluation and a machine-learning technique
called explanation-based generalisation [Mitchell et al., 1986]. This work is published in [van
Harmelen and Bundy, 1988].

7.1 A description of partial evaluation

For some considerable time, the functional programming community, and more recently the
logic programming community, has been discussing a technique called partial evaluation as
a program optimisation method (see [Futamura, 1971] for an early paper on partial evalu-
ation, [Ershov, 1982] for partial evaluation in functional programming, and [Komorowski,
1982], [Venken, 1984], and [Takeuchi and Furukawa, 1986] for partial evaluation in logic
programming).

1The main work described in this chapter was done in the first half of 1987. Since then a number of
other authors in the literature have explored the limitations of partial evaluation, and have independently
reached similar conclusions. Some recent work in the literature on the limitations of partial evaluation, in
particular [Chan and Wallace, 1988] and [Owen, 1988b], will be discussed in the final part of this chapter.
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The main goal of partial evaluation is to perform as much of the computation in a
program as possible without depending on any of the input values of the program. The
theoretical foundation for partial evaluation is Kleene’s s-m-n theorem from recursive func-
tion theory [Kleene, 1952]. This theorem says that given any computable function f of
n variables (f = f(x1, . . ., xn)), and k (k ≤ n) values a1, . . ., ak for x1, . . ., xk, we can
effectively compute a new function f ′ such that

f ′(xk+1, . . ., xn) = f(a1, . . ., ak, xk+1, . . ., xn)

The new function f ′ is a specialisation of f , and is easier to compute than f for those specific
input values. A partial evaluation algorithm can be regarded as the implementation of this
theorem, and is, in fact, slightly more general in the context of logic programming: it allows
not only that a number of input variables are instantiated to constants, but also that these
variables can be partially instantiated to terms that contain nested variables. Furthermore,
a partial evaluation algorithm allows k in the above theorem (the number of instantiated
input variables), to be 0, that is, no input to f is specified at all. Even in this case a partial
evaluation algorithm is often able to produce a definition of f ′ which is equivalent to f
but more efficient, since all the computations performed by f that are independent of the
values of the input variables can be precomputed in f ′. Thus, a partial evaluation algorithm
takes as its input a function (program) definition, together with a partial specification of
the input of the program, and produces a new version of the program that is specialised
for the particular input values. The new version of the program may then be less general
but more efficient than the original version.

A partial evaluation algorithm works by symbolically evaluating the input program
while trying to (1) propagate constant values through the program code, (2) unfold pro-
cedure calls, and (3) branch out conditional parts of the code. If the language used to
express the input program is logic, then the symbolic evaluation of the program becomes
the construction of the proof tree corresponding to the execution of the program.

It is clear from this definition that partial evaluation is very close to normal evaluation,
and, for the case of logic, therefore very close to theorem proving. What distinguishes
partial evaluation from normal evaluation is the ability to specify only part of the input of
a program. However, in the case of logic this is hardly a special case (after all, unbound
variables are normal objects in a logic program), and this makes that partial evaluation
of logic programs is very close to their normal evaluation. This close relationship between
partial evaluation and normal evaluation is also clear from the definition of a very simple
partial evaluator for Horn Clause logic given in [van Harmelen and Bundy, 1988]: the
code given there for a toy partial evaluator is almost literally the same as the code for the
interpreter for Prolog given in figure 6.4a of the previous chapter.

A special case of partial evaluation is when none of the values for the input variables
x1, . . ., xk are given (in other words, k = 0). In this case, the partial evaluation algorithm
cannot do as much optimisation of the input program, and as a result the new program
will not be as efficient. However, the new program is no longer only a specialisation of the
original program, but indeed equivalent to it. Thus, in this way partial evaluation can be
used as a way of reformulating the input program in an equivalent but more efficient way.

As a simple example of partial evaluation, consider the following function in Lisp:
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(defun assoc (key alist)

(cond ((null alist) nil)

((eq key (caar alist)) (car alist))

(t (assoc key (cdr alist)))))

This function accesses the standard Lisp assoc-list data-structure. If we specify a partial
input, such as

alist = ’((key1 . val1)(key2 . val2))

then we can partially evaluate assoc, using the following call to the partial evaluator2:

(peval ’(assoc key ’((key1 . val1)(key2 . val2))))

to return the derived program:

(defun assoc (key)

(cond ((eq key ’key1) ’(key1 . val1))

(t (cond ((eq key ’key2) ’(key2 . val2))

(t nil)))))

One problem with partial evaluation in general is that the partial evaluator has to
handle uninstantiated variables. This is because the input of the source program is only
partially specified and some of the variables in the source program will not have a value at
partial evaluation time. In most programming languages it is hard to deal with uninstan-
tiated variables, and the partial evaluator has to be very careful about what it does and
does not evaluate.

This is exactly the reason why logic programming is especially suited for partial eval-
uation. Unification is a fundamental computational operation in logic programming, and
handling uninstantiated variables in unification is no problem at all. In fact, uninstantiated
variables arising from partially specified input3can be treated like any other term. For
instance, in the example above, care had to be taken not to further evaluate the eq’s and
cond’s, since the variable key was uninstantiated at partial evaluation time. However, in
Prolog, the program assoc:

assoc(_, [], []).

assoc(Key, [[Key, Value]|_], Value).

assoc(Key, [_|Alist], Value) :-

assoc(Key, Alist, Value).

plus a call to the partial evaluator:

2This call to the partial evaluator only specifies half of its input: the partially specified input to the
source program. The other half of the input to the partial evaluator (the actual definition of the source
program) is assumed to be globally available in the execution environment of this call. This argument
could be made explicit in the obvious way.

3In the context of logic programming G′ is a partial specification of G if G′ is subsumed by G. We also
say that G′ is an instantiation of G (notation: G′ ≤inst G) if there exists a substitution for variables in G,
θ , such that θ applied to G gives G′: G′ = θG. G′ is a strict instantiation of G (notation: G′ <inst G) if
there is a non-empty substitution for variables in G, θ , such that G′ = θG.
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theory(t1,

[o1(a) & h1(X) => c1(X, a),

o2(a) & h2(X) => c1(X, a),

o3(_, X) => h2(X),

o3(b, c),

o2(a)

]).

Figure 7.1: an object-level theory in Prolog

[1] proof(Goal, Theory) :-

object_level_axiom(Goal, Theory).

[2] proof(Goal, Theory) :-

object_level_inference(Goal, Theory, New_Goals),

proof(New_Goals, Theory).

[3] proof([], _).

[4] proof([Goal|Goals], Theory) :-

proof(Goal, Theory),

proof(Goals, Theory).

Figure 7.2: a meta-level interpreter in Prolog

:- peval(assoc(Key, [[key1, val1], [key2, val2]], Val)).

partially evaluates into:

assoc(key1, [[key1, val1], [key2, val2]], val1).

assoc(key2, [[key1, val1], [key2, val2]], val2).

assoc(_, [[key1, val1], [key2, val2]], []).

without having to worry about evaluation at all, since even with an uninstantiated variable
Key, the procedure evaluates to the equivalent specialised code, which now contains no
further calls to be executed at run time.

This technique of specialising a program with respect to its (partial) input to derive a
more efficient version, can also be applied in the special case when the source program is
itself the definition of an interpreter (i.e. a meta-level program). This will then produce
a version of the meta-level interpreter which is specialised for the particular object-level
program that was given as input specification.

Example in Prolog: Consider an object-level theory as in figure 7.14, and a meta-level
interpreter that specifies how to use these clauses, as in figure 7.2. This meta-level inter-

4The predicate names in the object-level theory of figure 7.1 are meant to suggest that the ci are
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[1] proof(o1(a) & h1(X) => c1(X,a), t1).

[2] proof(o2(a) & h2(X) => c1(X,a), t1).

[3] proof(o3(X,Y) => h2(Y), t1).

[4] proof(o3(b,c), t1).

[5] proof(o2(a), t1).

[6] proof(h2(c), t1).

[7] proof(c1(c,a), t1).

[8] proof(X & Y, t1) :-

proof(X, t1),

proof(Y, t1).

[9] proof([X|Y], t1) :-

proof(X, t1),

proof(Y, t1).

[10] proof([], t1).

Figure 7.3: the programs after partial evaluation

preter assumes a Socrates-like architecture, as described in chapter 5, where the predicate
object_level_inference generates all possible formulae derivable in one step from the
input formula using the available object-level inference rules5. A full instantiation of the
input to the meta-level interpreter consists of the object-level theory, plus the top goal
that should be proved. So, if the above meta-level program is partially evaluated with the
arguments:

Goal = c1(X, a)

Theory = t1

with the following call to the partial evaluator:

:- peval(proof(c1(X, a), t1)).

then, assuming that the inference rules Modus Ponens and Conjunction Introduction are
in the object-level inference rules, the derived version of the meta-level program becomes:

proof(c1(c, a), t1).

conclusions to be derived by the system, the hi are intermediate results to be derived by the system, and
the oi are observables to be obtained by the system from external sources (such as the user). These names
are purely mnemonic to help present some of the arguments later on in this chapter, and do not have any
further computational meaning.

5Actually, the meta-level interpreter from figure 7.2 does not quite follow the Socrates architecture.
For the sake of simplicity this interpreter mixes object- and meta-level language, so that object-level
substitutions do not have to be handled explicitly by the meta-level interpreter. However, this simplification
does not effect any of the arguments in this chapter, and only serves to scale down the examples.
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However, we don’t want to specify the top goal of the query, since we cannot predict which
goal we will want to prove. So, we underspecify the input to the source program (the
meta-level interpreter): we leave the query uninstantiated, and only specify the object-
level theory that we want to use. In the example above we would call the partial evaluator
with

:- peval(proof(Goal, t1)).

giving us the remarkable transformed source program as shown in figure 7.3. This program
contains the direct results for all the successful proofs that could be performed by the meta-
level interpreter, namely:

• clauses [1]-[5] contain all the results derived via clause [1] of the meta-level interpreter
(using object_level_axiom),

• clauses [6]-[7] contain all the results derived via application of Modus Ponens (via
clause [2] of the meta-level interpreter),

• clause [8] contains a precomputed scheme for applying Conjunction Introduction
(based on clauses [2]-[4] of the meta-interpreter),

• clauses [9] and [10] repeat the code from the meta-interpreter for iterating over con-
junctive goals. This code will never be used by the partially evaluated version, since
the iteration over conjunctive goals has already been precomputed in clause [8]. The
fact that this superfluous code still appears in the partially evaluated version is due
to the difference in status of clauses [1]-[2] and [3]-[4] of the meta-level interpreter:
clauses [1]-[2] are meant to be called by the user of the meta-level interpreter, whereas
clauses [3]-[4] are only meant to be called by the code itself. If this information had
been conveyed to the partial evaluator (for instance by introducing a new predicate
name), clauses [9]-[10] would not have occurred in the partially evaluated code.

The partially evaluated code from figure 7.3 is of course much more efficient than the
original code from figures 7.1 and 7.2. Any of the facts mentioned in clauses [1]-[5] of
figure 7.3 can now be proved in 1 logical inference6 instead of taking 2 logical inferences7.
Similarly, the facts from clauses [6]-[7] can now be proved in 1 logical inference, instead
of 8 and 21 logical inferences respectively. The speedup for conjunctive goals is 3 logical
inferences per conjunction. These speedups may be quite small as absolute figures, but
taken as a proportion of the small amount of inference done by this toy example it amounts
to an order of magnitude speedup.

7.2 Problems of partial evaluation

Although the above example indicates the power of partial evaluation, there are some seri-
ous problems associated with partial evaluation as a tool for reducing meta-level overhead.

6The measure of a logical inference is defined in chapter 6, section 6.2.
7Counting the predicates object level inference/3 and object level axiom/2 as built in predicates that

can be executed in 1 logical inference.
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These problems are not widely reported in the literature. In fact, most of the literature
ignores these problems by using partial evaluation for the optimisation of only a very lim-
ited class of meta-level interpreters. Our experiments with partial evaluation indicate two
main problems. The first of these is related to the definition of the object-level program
(which is one of the arguments of the meta-level procedure that is instantiated at partial
evaluation time), and the second problem is to do with the amount of information that is
available to the partial evaluator.

7.2.1 Object-level programs that change at run time

In partial evaluation, programs are specialised with respect to their (partial) input. This
gives a derived program that is specialised with respect to its input, and obviously this
specialised program cannot be used to do computations on different inputs. In our specific
case, the only part of the input to the source program (the meta-level interpreter) that
is specified is the object-level theory. However, this object-level theory is likely to change
while the meta-level interpreter is running. We are likely to want to add axioms to the
object-level theory during the proof of a particular query, thereby invalidating the optimised
version of the meta-level program.

An obvious solution to this problem is to follow [Reichgelt and van Harmelen, 1985,
Reichgelt and van Harmelen, 1986] in distinguishing object-level knowledge from object-
level data. The latter is object-level information that is dependent on a particular session
(such as the values of the observable predicates oi in the example theory t1 above), and
therefore will certainly change during a run of the system, whereas the former is object-
level information that is not likely to change between sessions, such as the general rules
linking the observable predicates oi and the intermediate hypotheses hi to the conclusions
ci. We can now restrict our partial evaluation algorithm to evaluate only code that uses
object-level knowledge. The execution of code that uses object-level data on the other
hand has to be postponed until run-time.8

Furukawa and Takeuchi [Takeuchi and Furukawa, 1986] describe an alternative solution
for the special case when the object-level theory grows monotonically. This involves con-
structing a version of a partial evaluator which is specialised for the meta-level interpreter
plus the current version of the object-level theory, by applying the partial evaluator to
itself with the meta-level interpreter and object-level theory as input. When a clause is
added to the object-level theory, the specialised version of the partial evaluator can be
used to construct both a partially evaluated version of the meta-level interpreter for the
increased object-level theory, as well as a new version of the specialised partial evaluator,
which is in turn to be used when the next clause is added to the object-level theory. Since
this process can be performed incrementally, the overhead of repeated partial evaluation is
greatly reduced. However, although this incremental approach might be useful during the
development stages of a system, it is doubtful whether the price of repeatedly constructing

8This separation of the object-level level theories into statically and dynamically known subtheories is
close to the multi-theory approach used in the Epsilon system [Coscai et al., 1988]. Although they do not
use the terms “data” and “knowledge”, their distinction of different object-level theories is very similar. A
similar distinction is made in [Treur, 1988], for the purpose of proving formal properties about diagnostic
expert systems. He uses the term “symptoms” where we use the more general term “data”.
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a new specialised version of both meta-level interpreter and partial evaluator at run time
does not cost more than it gains, especially when the object-level theory changes frequently.
In the context of the problem of changing object-level theories, Sterling and Beer [Sterling
and Beer, 1986] talk about “open programs”, which are programs whose definition is not
complete, for instance because input data for the expert system needs to be provided at
run time. They do not provide a solution for this problem, since they

“assume that a goal which fails during partial evaluation time will also fail at
run time, that is, we assume that a system to be partially evaluated is closed.”

7.2.2 Lack of static information

An important distinction can be made between so called static and dynamic information.
Static information is information which is part of, or can be derived from, the program code,
whereas dynamic information is dependent on the run time environment of the program.
For the purposes of partial evaluation we include the values of input variables supplied at
partial evaluation time in our definition of static information. For example, in the following
or statement

(or (eq x ’a)(eql y 2))

under the partial input specification

y = 3

both arguments to the call to eql are statically available (and therefore so is the result of
the call to eql), whereas only one argument to the call to eq is statically available, since
the value of x can only be dynamically determined.

[Beetz, 1987] distinguishes three different types of information that can influence the
search strategy:

1. Information that is independent of the current problem and the current state of the
problem solving process.

2. Information that is dependent on the current problem, but independent of the current
state of the problem solving process.

3. Information that is dependent on both the current problem and the current state of
the problem solving process.

Since both the second and the third type of control information will only be dynamically
available, search strategies that use such information cannot be optimised by using partial
evaluation9. Only search strategies that are independent of both the input problem and
the current state of the problem solving process can make full use of partial evaluation.
However, such search strategies are very weak and general, and do not typically play a very
important role in expert systems applications. It is notable that all the examples given

9or only to a limited extent, and by using much more complex versions of partial evaluation, for instance
by introducing suspended goals into the produced code.
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in the literature on partial evaluation show programs that employ only the first type of
information.

In order to analyse the problem of dynamic information in more detail, we can distin-
guish three techniques that are an integral part of any partial evaluator in order to produce
more efficient code10:

1. branching out conditional parts of the code,

2. propagating data structures,

3. opening up intermediate procedure calls (unfolding).

We will argue that each of these techniques is crucially dependent on a large proportion
of the information being statically available. If most of the information is only dynamically
available, partial evaluation will generate quite poor results.

The first technique deals with conditional branches in the code. If the condition for such
a branch cannot be evaluated at partial evaluation time, because its value is dependent on
dynamic information, the partial evaluator either has to stop its evaluations at this point,
or it has to generate code for both branches of the conditional, and leave it to the run
time evaluation to determine which of these branches should be taken. Neither of these
strategies is very successful: if a partial evaluator has to stop optimising the source code at
the first dynamically determined conditional it encounters in the code, the resulting code
may be not very different at all from the original code, and hence will not be any more
efficient. The other strategy (generating code for all possible branches) is also usually not
very attractive, given the high branching rates of most programs. This will result in very
bulky output code (possibly exponential in the size of the original code), most of which
will not be executed at run time. In the context of Prolog, this will mean a large number
of clauses that will have to be tried at run time, even though most of them will fail.

The second technique (propagating data structures) tries to pass on data structures
through the code in the program. This passing of data structures can be done both forward
(for input values), and backward (for output values)11. Obviously, the forward passing of
data structures only works for those parts of the data that have been provided statically as
partial input. The backward passing of data structures is typically dependent on the values
of the input, and is therefore also blocked if most information is only available dynamically.
A special problem occurs with the so called built-in predicates that are provided by the
Prolog interpreter. These predicates often depend on the full instantiation of a number of
their arguments (e.g. is), and can therefore not be executed by the partial evaluator if the
argument-values are not available. Other built-in predicates cause side effects that must

10Sometimes a fourth technique is included in this list, namely the so called “pushing down meta-
arguments” (see for instance [Sterling and Beer, 1986]). This involves transforming a call to meta-level
predicate such as solve(object-level-pred(X), Subst) into a call to the newly created object-level
predicated object-level-pred(X, Subst). However, this technique relies necessarily on the fact that
the object-level and the meta-level languages are the same, and is therefore not included in this list.

11It is exactly this passing of data structures which makes logic programs so suited for partial evaluation,
since both the forward and the backward passing is done automatically by the unification mechanism that
is provided by the standard interpreter for the language.
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occur at run time (e.g. write), and such predicates must also be suspended by the partial
evaluator.

The third technique (unfolding) tries to insert code for procedure calls as ‘in-line code’,
rather than explicitly calling the procedures at run time. This technique runs into trouble
as soon as the source program contains recursive calls. Although a particular recursive
program may in practice always terminate at run time, this is not necessarily the case at
partial-evaluation time, due to the lack of static information. In the case of a logic program
this means that the proof tree may contain infinite paths for some uninstantiated goals, and
the partial evaluation would be non-terminating. Since these infinite computations only
arise from the lack of information at partial-evaluation time, and do not occur at run time,
we will use the phrase pseudo-infinite computation. Two different types of pseudo-infinite
computation can be distinguished. The first type, pseudo-infinitely deep computation, is
caused by programs whose recursive clauses always apply (at partial evaluation time),
but whose base clauses never apply, due to the lack of static information. This gives
rise to a proof tree with infinitely long branches. The second type, pseudo-infinitely wide
computation, is caused by programs whose recursive clauses always apply, but whose base
clauses also apply. This gives rise to a proof tree with infinitely many finite branches. A
mixture of both types of pseudo-infinite computation is of course also possible. Pseudo-
infinitely deep computation corresponds to a program that needs an infinite amount of
time to compute its first output, and pseudo-infinitely wide computation corresponds to
a program that computes an infinite number of answers (on backtracking, in the case of
Prolog).

An example of both problems is the predicate num_elem/2, given below, which selects
numeric elements from a list:

num_elem(X, [X|_]) :- number(X).

num_elem(X, [_|L]) :- num_elem(X, L).

If this predicate is partially evaluated with no input specified, then the base case will
never apply, and an infinitely deep computation will result. If this predicate is partially
evaluated with the first argument bound to a specific number, but the second argument
still unbound, then the base case will apply, but so will the recursive clause, resulting in
an infinitely wide computation12.

In certain cases, the occurrence of infinitely wide computation does not need to lead
to problems during partial evaluation, in particular, if it is known at partial evaluation
time how many outputs are required of the source program. If it is known that at most
n different outputs are needed from the source program, then the partial evaluator can
unfold the proof tree of the source program until the base clauses have applied n times.
A realistic example of this is where a predicate P is immediately followed by a cut in a
Prolog program:

Q1, . . ., Qi, P, !, Qi+1, . . ., Qk

12Interestingly enough, if the predicate is executed with the second argument instantiated, then none of
these problems occur, and the predicate can be fully computed at partial evaluation time. Notice that this
example relies essentially on the use of the meta-logical predicate number/2. If a pure Prolog predicate is
used, then lack of information can never result in the failure of a clause.
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or more generally
Q1, . . ., Qi, P,Qi+1, . . ., Qj, !, Qj+1, . . ., Qk

where all the conjuncts Qi+1, . . ., Qj are known to be deterministic13. In such a case
n = 1, i.e. only 1 output will ever be required from P . This sort of analysis does of course
presuppose that the partial evaluation algorithm has knowledge about properties of cut
and of determinateness of predicates in the source program.

In the more general case, where such information about n is not known, or for pseudo-
infinitely deep programs, it is necessary for a partial evaluation program to select a finite
subtree from the infinite proof tree, in order to guarantee termination of the partial evalu-
ation algorithm. Let π be a source program, θ an input substitution to π, P (π, θ) a partial
evaluation procedure, and let π(θ) ↓ mean that π terminates on input θ, then we would at
least require P to terminate whenever π would terminate on θ (or on some instantiation
of θ). Formally:

∀π∀θ : (∃θ′ ≤inst θ : π(θ′) ↓)→ P (π, θ) ↓ .

This can of course always be achieved by trivial means, such as not unfolding recursive
predicates at all, or only unfolding them once (as in [Venken, 1984]), or in general only
unfolding them to a fixed maximum depth. However, a more sophisticated solution would
be to incorporate a stop criterion in the partial evaluation procedure that will tell us
whether a branch of the proof tree for π(θ) is infinite. Thus, we need a stop criterion S
such that:

∀π∀θ : (∀θ′ ≤inst θ : π(θ′) ↑)↔ S(π, θ). (7.1)

As soon as S becomes true on a branch for π(θ), the partial evaluation procedure should
stop. The problem with such a criterion S is that it amounts to solving the halting problem
for Prolog, and that therefore it is undecidable. The halting problem for a given language
L is to find a predicate HL that will decide whether an arbitrary program P written in L
will halt on an arbitrary input I or not:

∀P∀I : P (I) ↑↔ HL(P, I)14 (7.2)

One of the fundamental theorems of the theory of computation states that this problem
is undecidable for any sufficiently powerful language L. Prolog is certainly sufficiently
powerful, since it is Turing complete [Tarnlund, 1977]. Since having S from (7.1) would
also give us HProlog from (7.2), S must also be undecidable. This means that the best we
can hope for regarding a stop criterion for partial evaluation is one that is either too strong
or too weak. A stop criterion which is too strong will satisfy the ← direction of (7.1), but
there will be some π0 and θ0 such that

S(π0, θ0) ∧ ∃θ′ ≤inst θ0 : π(θ′) ↓,

in other words, S will tell us that π0 will not terminate on θ0 (or any instantiation of it),
when in fact it would. This would result in stopping the unfolding of the partial evaluation

13A predicate is deterministic if, given an input, it computes exactly one output.
14The reader should be aware of a possible confusion: the stop criterion S from (7.1) is true not when

π(θ) will stop, but when π(θ) will not stop, indicating that the partial evaluator should be stopped. By
analogy, (7.2) has been formulated using P (I) ↑ instead of the usual P (I) ↓.
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algorithm prematurely, thereby producing suboptimal results. Conversely, a stop criterion
which is too weak will satisfy the → direction of (7.1), but there will be some π0 and θ0
such that

¬S(π0, θ0) ∧ ∀θ′ ≤inst θ0 : π(θ′) ↑,
in other words, S will tell us that π0 will terminate on θ0 (or some instantiation of it),
while in fact it would not. This would result in a non-terminating partial evaluation.

In the practical use of a stop criterion, a partial evaluator would keep a stack of goals
that are unfolded during the expansion of the input program. If we call the original goal
G = G0, and we describe the stack of unfolded goals by Gi(0 > i > j), then a number of
useful stop criteria are:

1. unification: ∃i < j∃θ : θGj = θGi. We write Gj =unif Gi.

2. instantiation: ∃i < j∃θ : Gj = θGi, i.e. Gj ≤inst Gi.

3. strict instantiation: ∃i < j∃θ(non-empty) : Gj = θGi, i.e Gj <inst Gi.

4. alphabetic variancy: Gj ≤inst Gi and Gi ≤inst Gj, i.e. Gj =inst Gi (Gi and Gj are
identical up to renaming of variables).

It is not necessary to consider another variation, namely (Gj >inst Gi) where Gi is a
strict instantiation of Gj, since any chain of ever more general subgoals (a chain G0, . . ., Gn

where Gi <inst Gj if i < j) will always have a most general goal as its limit, and therefore
such a computation must always terminate. However, we can have two different variations
of [1], namely unification without occurs-check ([1a]) and unification with occurs-check
([1b]). These stop criteria relate to each other as follows:

([3] ∨ [4])↔ [2]

[2]→ [1b]→ [1a]

Simple examples can show that none of these criteria performs satisfactorily. In particular,
none deals satisfactorily with pseudo-infinitely wide computations. Consider for example
a predicate like:

p1(X, Y).

p1(X, Y) :- p1(s(X), Y).

which generates on backtracking all terms sn(0) after the call

:- p1(0, Y).

None of the above stop criteria is able to prevent a partial evaluator from looping while
trying to partially evaluate p1 with the first argument instantiated. The point here is not
that we would expect a great optimisation from the partial evaluation (it is not clear what
such optimisation could possibly be), but rather that the presence of a predicate like p1

in any code makes the partial evaluation non-terminating. An example that illustrates the
difference between some of the stop criteria is partially evaluating the above predicate p1

with no input specified. In this case stop criterion [3] is too weak, and lets the partial
evaluator loop infinitely, while criteria [4] (and by implication [2], [1a] and [1b]) properly
halt the partial evaluator and reproduce the original code. However, the roles of [3] and
[4] swap over on the predicate:
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p2(0).

p2(s(X)) :- p2(X).

which will succeed on any input of the form sn(0). Partially evaluating p2 with no input
specified will be properly stopped by [3] (and by implication also by [2], [1a] and [1b]), but
not by [4] which will loop forever.

For a more realistic example, we can turn to the example that was used in the previous
section to describe the use of partial evaluation for meta-level interpreters, shown in figures
7.1, 7.2 and 7.3. The partially evaluated code in figure 7.3 was computed from the code in
figures 7.1 and 7.2 using stop criterion [3] (strict instantiation). Had we used the stronger
stop criterion [2] (non-strict instantiation), the partial evaluator would have produced the
same code in as figure 7.3, but with clauses [6]-[7] replaced by the following clause:

[6a] proof(X, t1) :-

proof([Y => X, Y], t1).

This new clause represents a precomputed version of Modus Ponens, but the partial evalu-
ator has stopped short of actually applying this rule, as in in figure 7.3, due to the stronger
stop criterion. As a result, this new code is not as efficient as the code from figure 7.3. An
advantage of the stronger stop criterion is that it takes significantly less time to execute
the partial evaluator (the difference between the execution times of the partial evaluator
with stop criteria [2] and [3] is more than a factor of 100).

A different situation occurred while computing the code for figure 7.5 from section 7.3.3.
Fewer bindings for variables were known for that partial evaluation, since the object-level
theory was not included in the input specification. As a result, the stronger stop criterion
[2] had to be used to produce the result in figure 7.5. Any weaker stop criterion would result
in either a non-terminating partial evaluation, or in code with many spurious branches.

7.2.3 Summary of problems

Summarising, we can say that although in principle a powerful technique, partial evaluation
is rather restricted in its use for optimising meta-level interpreters for two reasons.

• Firstly, if the object-level theory is going to be changed at run time, at least part of the
object-level theory cannot be included as input to the partial evaluation algorithm,
thereby reducing the optimisations achieved by partial evaluation.

• Secondly, if most of the information in a program is only dynamically available (i.e.
at run time), partial evaluation suffers from the following disadvantages:

– If the source code contains conditional expressions, then a partial evaluator will
either have to stop the optimisation process at that point, or produce very bulky
code.

– Data structures cannot be propagated throughout the code.

– If the source code contains recursive procedures, then, unless specific stop cri-
teria are programmed for particular predicates, a partial evaluator will either
produce suboptimal code, or termination of the partial evaluator is no longer
guaranteed.
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It has to be stressed that although the above discussion quotes examples in Prolog,
the problems are not due to this choice, and are fundamental to the concept of partial
evaluation.

7.3 Heuristic guidance to partial evaluation

Although the problems discussed above seriously limit the applicability of partial evaluation
as a tool for reducing meta-level overhead, a number of heuristic solutions can be found to
alleviate the problems to a certain extent. The heuristics discussed below are all based on
the idea that we will try to build a specific partial evaluator for a particular application,
rather than a general, application independent one. More precisely, we can maintain the
general framework for a partial evaluator as discussed above, but identify specific places
in the algorithm where a user can tune the algorithm to suit a particular application.
In particular, in the following subsections we will point out a number of places in the
partial evaluation algorithm where we can insert specific knowledge about the behaviour
of components of the program to be evaluated. In our case these components will be
meta-level predicates, i.e. predicates occurring in the meta-level interpreter.

7.3.1 The stop criterion

An obvious candidate for removing over-generality is the stop criterion which is used to
determine when to stop unfolding recursive predicates. This criterion can never be correct
in the general case (since such a criterion would solve the halting problem for Prolog
programs, and hence for Turing machines). As a result, any general criterion is either
going to be too weak (i.e. not halting on some infinite recursion), or too strong (i.e.
halting too early on some finite recursion). However, if we know the intended meaning
of particular parts of a program we can construct specialised termination criteria that are
just right for these particular procedures. As example, consider the definition of member/2:

member(X, [X|_]).

member(X, [_|T]) :- member(X, T).

We know that this predicate is guaranteed to terminate as long as the length of the second
argument is decreasing. A good specialised stop criterion for this predicate would therefore
be:

∃i, j : i > j,memberi(X,Li) ∧memberj(X,Lj) ∧ ‖Li‖ ≥ ‖Lj‖,

where memberi represents the i-th call to member, and ‖L‖ is the length of list L. This
stop criterion would successfully unfold all calls to member/2 where the second argument is
instantiated, but will not loop on those calls where the second argument is uninstantiated
(due to a lack of static information). This corresponds to the notion that member/2 will be
used to test membership of a given list, and not to generate all possible lists containing a
certain element. This criterion will even work for partially instantiated second arguments
(remember that partial instantiation can be caused by a lack of static information). A call
to member/2 like
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:- member(X, [1,2|L]).

will properly partially evaluate to:

member(1, [1,2|L]).

member(2, [1,2|L]).

member(X, [1,2,X|_]).

member(X, [1,2,_|T]) :- member(X, T).

The partial evaluation has generated all possible results based on the available static in-
formation, while stopping short of looping on the uninstantiated part of the input.

The above halting criterion is based on the intended meaning and use of the predicate
member/2, and cannot be generally used, since it would again be either too strong or too
weak for certain predicates. Consider for instance the predicate nlist/2 which generates
a list of length n:

nlist(0, []).

nlist(s(X), [_|T]) :- nlist(X, T).

(We use terms sn(0) for representing the number n to avoid problems with the built-in
arithmetical predicates. More about this below). This predicate should not be stopped
when its second argument is increasing in length, as with member/2, but rather when its
first argument is increasing in depth. Such metrics should be devised where possible for
predicates used in a meta-level interpreter, and the stop criterion should be specialised for
these cases.

7.3.2 Operational predicates

A second heuristic that we can inject in the partial evaluation algorithm is a special treat-
ment for certain predicates which are known to be easy to compute at run time, but
possibly hard or impossible to compute with only static information. This idea is based
on the notion of an operational predicate as introduced in the explanation-based generali-
sation algorithm [Mitchell et al., 1986] which turns out to be closely related to the partial
evaluation algorithm (see [van Harmelen and Bundy, 1988]).

The partial evaluation algorithm should stop when encountering such an operational
predicate (which is declared as such beforehand), no matter what amount of precompu-
tation could potentially be done using the definition of such a predicate. For instance, it
is possible that the definition of such a predicate has a very high branching rate, leading
to an explosion of the size of the code generated by partial evaluation, while only one of
the many branches would be chosen and computed at low cost at run time, pruning all
the other branches. In such a case it is better not to generate the highly branched search
space explicitly at partial evaluation time, but to leave it for run time computation.

An example of this specialised treatment of the partial evaluation algorithm for certain
predicates is the standard logic programming technique where a predicate, when applied
to a list, unpacks the list into its elements, and then takes a specific action for each of the
elements in the list. If these specific actions have a very high branching rate, a good strategy
for the partial evaluator is to precompute the process of unfolding the list into its elements
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Figure 7.4: heuristically limited partial evaluation

proof(X, t1) :- object_level_axiom(X, t1).

proof(X, t1) :- proof([Y=>X,Y], t1).

proof(X&Y, t1) :- proof([X,Y], t1).

proof([X|Y], t1) :-

proof(X, t1),

proof(Y, t1).

proof([], t1).

Figure 7.5: the programs after restricted partial evaluation

(a deterministic operation), but to stop short of partially evaluating the actions taken for
the individual elements. These actions will have to be performed at run time, when extra
available dynamic information will possibly cut down the branching rate. Graphically, this
optimisation process can be depicted as in figure 7.4. Figure 7.4a shows the search tree of
original code before partial evaluation, with the α nodes doing the unfolding of the list,
and the β nodes doing the highly non-deterministic actions for the individual nodes. If we
designate β to be an operational predicate, the limited partial evaluation described above
will produce code that has a search space as in figure 7.4b, showing that the limited partial
evaluation still optimises the search space, but does not get bogged down in the explosive
parts of it.

7.3.3 Restricted partial evaluation

A third heuristic that can be used to solve some of the problems associated with partial
evaluation tackles the problem of a changing object-level theory. In section 7.2.1 we dis-
cussed how run-time changes to the object-level theory make it impossible to include the
object-level theory as part of the input specification of the meta-level theory at partial
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evaluation time. Two solutions to this problem were discussed (the distinction between
object-level data and object-level knowledge, and the use of incremental partial evaluation).
Another solution to the problem of run time changes to the object-level theory, would be
to not include the object-level theory in the specialisation process at all. However, would
this leave any input for specialisation of the meta-level interpreter? Looking at the com-
ponents of a logic-based meta-level architecture in figure 4.3 from chapter 4, we see that
if we do not want to include the object-level theory in the specialisation process, we are
left with the object-level rules of inference. In terms of the example meta-level interpreter
from figure 7.2, this would mean that we do not supply the object-level theory from fig-
ure 7.1, but that we do supply the definition of the predicate object_level_inference.
This restricted version of the partial evaluation process would not generate a very efficient
program like the one in figure 7.3, but the code in figure 7.5. Although this code is not
as optimal as the code in figure 7.3, (since a lot of computation is still to be done at run
time), it is still more efficient than the original version from figure 7.2. The new program
will not be invalidated by run time changes, since the object-level theory was not used in
the specialisation process (the predicate object_level_axiom will still be executed at run
time, and was not precomputed by the partial evaluator, as it was in figure 7.3). The rules
of inference (which were used in the specialisation process) are unlikely to be subject to
run time changes.

A second form of restricted partial evaluation can be obtained by including neither
the object-level theory nor the object-level rules of inference as input to the meta-level
theory, and only partially evaluating the meta-level theory itself. This can still provide us
with an optimised version of the meta-level theory if parts of the theory were expressed as
domain independent knowledge. In general, domain independent knowledge will provide a
concise and general way of representing knowledge, but much inference will be needed to
apply it in a particular case. Using partial evaluation, it is possible to transform general
but expensive domain independent knowledge into cheaper domain specific knowledge. We
repeat here an example of this as given in [Clancey, 1983b] with a slightly simplified syntax.
The following domain independent meta-level rule:

mentions(Rule1, Condition1) &

mentions(Rule2, Condition2) &

likely_to_be_true(Condition1) &

unlikely_to_be_true(Condition2)

-> use_before(Rule1, Rule2).

together with the domain dependent meta-level knowledge

likely_to_be_true("o1(a)").

unlikely_to_be_true("o2(a)").

could be partially evaluated to the domain specific meta-level rule:

mentions(Rule1, "o1(a)") &

mentions(Rule2, "o2(a)") &

-> use_before(Rule1, Rule2).
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Furthermore, if we supplied the meta-level information:

mentions(axiom1, "o1(a)").

mentions(axiom2, "o2(a)").

the whole rule could be even further optimised to

use_before(axiom1, axiom2).

7.3.4 Mixed computation

Another heuristic to optimise partial evaluation is mixed computation. This involves declar-
ing certain meta-level predicates to be executable at partial evaluation time. If the partial
evaluator comes across such a predicate during unfolding, it does not unfold that predicate
using its ordinary unfolding strategy, but rather it calls the hardwired interpreter that
would normally execute the meta-level code (i.e. in our examples the Prolog interpreter)
to execute the particular predicate. The resulting variable bindings are then taken into
account during the rest of the unfolding process, but the predicate itself can be removed
from the code.

7.3.5 Evaluable predicates

A final heuristic to be embodied in the partial evaluator concerns the evaluable predicates,
as typically built into a Prolog system. These predicates can be divided into three types,
and for each of the types a different partial evaluation strategy should be used.

• The first type of evaluable predicates are those that perform side-effects (e.g. input-
output). These predicates can never be performed at partial evaluation time, and
must always be postponed until run time.

• The second type of predicates are those that can be partially evaluated if certain
conditions hold. These conditions are specific for each particular predicate. For
instance, the predicate var/1 (which tests if its argument is a variable), can be
partially evaluated (to false, pruning branches from the code) if its argument is not
a variable. The reason for this is of course that if the argument is not a variable at
partial evaluation time, it will never become a variable at run time, since variables
only become more instantiated. On the other hand, if the predicate var/1 succeeds
at partial evaluation time, it must remain in the code, since its argument might or
might not have become instantiated at run time. Another example is the predicate
==/2 (testing if its arguments are the same Prolog object). This predicate can be
evaluated (to true, allowing it to be removed) if it succeeds at partial evaluation
time. The argument here is that if it succeeds at partial evaluation time, it will
also succeed at run time (since objects that are the same can never become different
again), but when the arguments are different at partial evaluation time the predicate
should remain in the code, since the objects might or might not have become the
same at run time15. A third example of this category is the predicate functor/3

(which computes functor and arity of a Prolog term). This predicate can be partially
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evaluated if either the first or both the second and third arguments are (at least
partially) instantiated. Further criteria could be provided for a number of other
built-in Prolog predicates.

• The final type of evaluable predicates are those which can be either fully evaluated (if
they are fully instantiated at partial evaluation time), or translated into a number of
simplified constraints. A good example of this type of predicates are the arithmetic
predicates. Obviously, a goal like X is 5+4 can be fully computed at partial evalua-
tion time, as well as goals like 9 is X+4 and X>10, X<5 (although a somewhat more
sophisticated algorithm is required). In general a goal like X is Y 〈op〉 Z, where
〈op〉 is any of the functions +, - and * can be fully computed at partial evaluation
time if at least 2 out of the 3 arguments are instantiated. Some types of calls cannot
be fully computed at partial evaluation time, but can be transformed into simplified
conditions, for instance X<10, X<11 can be reduced to X<10, and the integer division
4 is X/3 can be transformed into X>11, X<15.

7.4 Implementation

In this section we will briefly discuss a number of technical issues concerning the imple-
mentation of a partial evaluator that was used for experimentation and to produce the
examples presented in this chapter.

Most partial evaluators described in the literature follow more or less the same algo-
rithm, and appendix A lists the central code for this algorithm. This code is fairly small
(only 39 lines of Prolog), so we will not discuss all the details of it. The main outline
of the code is as follows: the top-level predicate of the code is peval/2 which takes a
goal as its first (input) argument, and returns a list of specialised clauses for that goal as
its second (output) argument. Initialising the recursion stack (used for loop-checking) to
the empty list, peval/2 calls peval/3, which, except in three special cases (which will be
discussed later), retrieves all relevant clauses from the Prolog database and calls peval_-

clauses/3. All peval_clauses/3 does is catch goals without any defining clauses or call
peval_clauses1/3 otherwise. This predicate iterates over all the clauses listed in its first
argument, and for each clause it iterates over all conjuncts in the body of the clause, calling
peval/3 on each conjunct and recursing on the result, after having made sure that each
or-parallel clause is evaluated in its own binding environment using new variables. This
recursion will terminate when (1) clauses are encountered with no defining clauses, or (2)
clauses are encountered with no subgoals in their body, or (3) if a loop is detected (see
below). For more technical details, the reader is referred to the comments in appendix A.

Three separate features of this code are worth mentioning since they reflect directly
some of the topics discussed in this chapter, and they are not generally found in this form
in partial evaluators published in the literature. The first of these is the way the stop
criterion is embodied in the code. This criterion is not hard-wired into the code of the
partial evaluator, but is instead isolated in the loop(Goal, Stack) predicate, called in

15This criterion for ==/2 is quite different from that used in the partial evaluator described in [Priedites
and Mostow, 1987], where it is incorrectly treated the same as =/2 (unification), which can always be
performed at partial evaluation time.
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the first clause of peval/3. This predicate recurses up the Stack of previously evaluated
goals, and checks if Goal and an element of this stack together satisfy the stop-criterion.
The definition of loop/2 can be changed through a software-switch to reflect different stop
criteria such as the ones discussed in section 7.2.2. The stop criteria mentioned there can
all be efficiently implemented in Prolog as follows:

[1] unify(G1, G2) :- \+ \+ (G1=G2).

[2] instantiation(G1, G2) :- \+ \+ (ground(G1), G1=G2).

[3] strict_instantiation(G1, G2) :-

instantiation(G1, G2), \+ instantiation(G1, G2).

[4] alphabetic_variant(G1, G2) :-

instantiation(G1, G2), instantiation(G2, G1).

Notice the use of double negation to avoid variable bindings and the use of the predicate
ground/1 to bind all variables in a term.

The second feature concerns the use of mixed computation, as mentioned in section
7.3.4. Particular predicates can be declared executable. This will be noticed by the 3rd
clause of peval/3, which will execute that predicate using the Prolog interpreter (rather
than partially evaluating it). The effect of this execution will be communicated through
variables shared with other predicates. This technique of mixed computation can signif-
icantly speed up the partial evaluation process. Obviously, only those predicates can be
used for mixed computation whose behaviour at partial evaluation time will be the same
as at run time. In general this means that all input to such a predicate must be avail-
able at partial evaluation time, and that the predicate must be side-effect free. Finally,
notice that the predicate executable/2 which returns the results of executing a goal at
partial evaluation time must return all solutions to that predicate, so that the definition
of executable/2 reads:

executable(Goal, Results) :-

findall(cl(Goal, [], []),

call(Goal), Results).

and not just

executable(Goal, cl(Goal, [], [])) :- call(Goal).

which would just return the first result of Goal, instead of all results.
The third feature of the partial evaluator of appendix A is the way it deals with built-in

(evaluable) predicates. This is done by the second clause of peval/3. The definition of
the predicate evaluable(Goal, Flag) is intended to reflect the conditions under which a
Goal that is a built-in predicate can be evaluated at partial evaluation time, as discussed
in section 7.3.5. The system will bind the Flag argument to one of three different values:

• success_evaluable (the 3rd clause of unfold/3): the built-in predicate could be
executed and succeeded. In this case the predicate is removed from the code (since
any possible output values will have been communicated through shared variables).
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• fail_evaluable (the 4th clause of unfold/3): the built-in predicate could be exe-
cuted and failed. In this case the current branch of the partial evaluation process is
deleted.

• not_done_evaluable (2nd clause of unfold/3): the built-in predicate could not be
executed at partial evaluation time. In this case the predicate is copied into the
resulting code for execution at run-time.

Taking as examples some of the built-in predicates discussed in section 7.3.5, some
clauses for evaluable/2 are:

evaluable(write(_), not_done_evaluable).

evaluable(var(V), fail_evaluable) :- \+ var(V).

evaluable(var(V), not_done_evaluable) :- var(V).

evaluable(X==Y, success_evaluable) :- X==Y.

evaluable(X==Y, not_done_evaluable) :- \+ X==Y.

evaluable(functor(T, F, N), success_evaluable) :-

(\+ var(T) ; (atom(F), number(N))), !, functor(T, F, N).

evaluable(functor(_, _, _), not_done_evaluable).

7.5 Related work in the literature

Much related work has been done in the last few years on partial evaluation and its ap-
plication to meta-programming (e.g. the collections [Bjorner et al., 1987] and [Abramson
and Rogers, 1988]). Some of these papers analyse and discuss the limitations of partial
evaluation in a similar way as we have done in this chapter, and we will discuss two of
these papers in particular.

A well known problem with the use of negation in logic programming is that it is only
sound when applied to fully instantiated goals. If applied to partially instantiated subgoals,
the negation is said to “flounder” [Lloyd, 1984], and produces unsound results. This
problem is particularly severe during partial evaluation. A partial evaluation algorithm
cannot unfold a negated subgoal if it is not fully instantiated. However, due to the lack of
dynamic information at partial evaluation time, many negated subgoals will not be fully
instantiated, thus hampering the performance of partial evaluation. As a result, the partial
evaluation algorithm given in [Lloyd and Shepherdson, 1987] is restricted to either evaluate
negated subgoals completely (if they are fully instantiated), or not at all otherwise. To
solve this problem, [Chan and Wallace, 1988] give two techniques for dealing with negated
subgoals. Their solutions are based on two separate techniques, one for eliminating negation
from a program, and the other for splitting the program up into smaller pieces, so that the
partial evaluation algorithm can optimise larger parts of the source program.

A second paper that explores the limitations of partial evaluation is [Owen, 1988b].
Owen applied partial evaluation to a number of meta-interpreters that were developed for
a particular application, and compared the results of this with hand-coded optimisations
of the same set of interpreters. This careful analysis revealed many problems with the
practical use of partial evaluation, some of which have also been discussed in this chapter:
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• Partial evaluation should not always suspend built-in meta-logical predicates (see
section 7.3).

• Partial evaluation causes significant fruitless branches in the object-level program
(see section 7.2.2).

• Partial evaluation systems always suspend the execution of Prolog’s cut, even when
this is not necessary (see the example about infinitely wide computation in section
7.2.2).

In order to deal with these problems, Owen proposes a number of enhancements to
the partial evaluation algorithm. The most significant of these is what he calls a folding
transformation, which folds a sequence of conjuncts into a new, uniquely named procedure.
This is the opposite of the unfolding operation described in section 7.1. The main goal
of this extra operation is to control the branching rate of the code produced by partial
evaluation. However, the introduction of this new operation makes a partial evaluation
algorithm non-deterministic (the algorithm will have to choose between different possible
operations at each step), whereas this was not the case before. This introduces a search
component in the partial evaluation procedure that was not present without the folding
operation. Further extensions that Owen proposes to the partial evaluation algorithm are
the merging of clauses with identical heads, or with heads that only differ in positions con-
taining local variables, and rules that allow the treatment of cuts under certain conditions
at partial evaluation time. Unfortunately, even with these and many other special purpose
extensions to his partial evaluation algorithm, Owen found the results of partial evaluation
on his meta-level interpreters suboptimal, and it would require open ended theorem proving
and consistency checking to achieve the same results as his hand-coded optimisations.
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Chapter 8

Partial reflection

The previous chapter discussed partial evaluation as a technique for reducing the overhead
incurred by a meta-level interpreter. It was based on the idea of specialising a general
meta-interpreter with respect to a particular object-level theory to obtain a specialised
version of the meta-interpreter. In terms of the classification of meta-level systems given
in chapter 3, partial evaluation does not affect the structure of the meta-level system it tries
to optimise. If the original (unoptimised) system is a meta-level inference system, then
the optimised version of that system is still a meta-level inference system, consisting of a
meta-level interpreter where the inference of the system takes place, with the object-level
inference being simulated at the meta-level.

In this chapter we will discuss an approach to the reduction of meta-level overhead
based on the idea of taking a meta-level architecture of one type in the classification of
chapter 3 (a meta-level inference system), but actually implementing it in terms of another
type of architecture (namely an object-level inference system)1. Such an implementation
of a meta-level inference system as an object-level inference system can be equipped with a
largely hardwired interpreter, and will as a consequence suffer much less from the problem
of meta-level overhead.

Whereas the partial evaluation technique discussed in the previous chapter was based
on a transformation process, namely transforming a general meta-level theory into a meta-
level theory specialised for a particular object-level theory, no such transformation process
will be necessary for the approach discussed in this chapter. A meta-level inference system
is not transformed into an object-level inference system, but rather is implemented as an
object-level inference system. Thus, rather than ascribing one particular architecture to
a system (as we have done so far), we now have to distinguish two architectures for a
system, namely the conceptual architecture, which determines the properties of the system
(as discussed in chapter 3), and the implementation architecture, which determines how the
conceptual architecture is realised in practice. Usually, these two architectures are equated,
and a system with a conceptual meta-level inference architecture is also implemented as a
meta-level inference architecture (the Socrates system described in chapter 5 is an example

1Remember that in chapter 3 we defined an object-level inference system as one where there is no
separate interpreter for meta-level expressions, but only a hard-wired (ie. not explicit) interpreter for
object-level expressions whose behaviour could be influenced in a number of predefined ways by meta-level
statements.
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of this). However, this chapter is based on the idea that the implementation architecture
can be different from the conceptual architecture, and in particular that it is possible to
build a system with a conceptual meta-level inference architecture, but implemented as an
object-level inference architecture.

In chapter 3 we argued that a system with a meta-level inference architecture is to be
preferred over a system with an object-level inference architecture. Obviously, we shall
have to take care not to lose the advantages of a meta-level inference architecture when
we implement it as an object-level inference architecture. In this chapter we will show
how we can achieve this objective by constructing the implementation architecture around
a fixed set of “programmable steps”. A large part of this chapter will be devoted to the
description of these programmable steps.

8.1 Using mixed-level inference systems for reflection

Before we describe in detail how we can implement a meta-level inference system in terms
of an object-level inference system, we will briefly look at the third category of meta-level
systems described in chapter 3, the so called mixed-level inference system. We will argue
why mixed-level inference systems are not suited as an implementation architecture for
meta-level inference systems. Mixed-level inference systems are characterised by the fact
that the activity in the system switches between object-level and meta-level on the basis
of particular criterion (and this criterion varies between the different subtypes of mixed-
level inference system, see chapter 3). In the context of logic-based systems, this process
of switching between object-level and meta-level can be formalised as a reflection step,
as already mentioned in section 2.4.2. Such steps, which link the object-level and the
meta-level are usually stated as follows:

Meta `M prove(“Object”, “P”)

Object `O P
(1)

Object `O P
Meta `M prove(“Object”, “P”)

(2)

where prove is the definition of a meta-level interpreter in the meta-theory Meta, P is
an object-level predicate to be proven in the object-level theory Object, “Object′′ and
“P ′′ are the meta-level names of Object and P in Meta, and `O,M are the derivability
relations at object- and meta-level. For the purposes of reducing meta-level overhead,
the second reflection principle (rule (2)), the so-called downward reflection principle2 is
of most interest. This inference rule says that, in order to prove the meta-level goal
prove(“Object”, “P”) in the meta-level theory we can prove the object-level goal P in the
object-level theory. This inference rule does indeed replace meta-level inference by object-
level inference, and can thus be used as an optimising device which reduces the amount
of meta-level inference. A meta-level interpreter that uses this reflection principle would
contain a clause like:

reflectable(Theory, Goal),

2To call rule (2) downward reflection is motivated by the backward-chaining use of this rule: in order to
prove the meta-level goal Meta ` prove(“Object”, “P”) we have to prove the object-level goal Object ` P .
A forward chaining use of these rules would suggest to call rule (1) downward reflection instead.
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reflect-down(Theory, Goal, Subst)

-> prove(Theory, Goal, Subst)

where reflectable would embody the criteria that decide if a goal is heuristically suitable
for downward reflection. As far as logical criteria are concerned any goal can be reflected
(rule (2) does not state any restrictions on “P”), but in practice we might want to re-
flect down only certain goals, for instance goals which are known to be “easy” in some
sense, and therefore do not need much meta-level guidance for their proofs. The predicate
reflect-down would translate Goal (the meta-level name of an object-level formula) into
the corresponding object-level formula, then call the object-level interpreter for Theory on
that formula, and return the result as the variable binding Subst.

A system embodying this downward reflection principle would correspond to a subtask-
management system as defined in chapter 3. The meta-level interpreter can dispatch certain
subgoals to the object-level interpreter using the downward reflection principle, and wait
for the results to come back. Consequently, such a system would suffer from the same
problems associated with subtask-management systems as discussed in chapter 3, namely
the so called black box effect: the object-level proof started by a downward reflection is
not inspectable and not interruptable by the meta-level interpreter. This means that if the
object-level proof turns out to be harder than expected (as encoded in the reflectable

predicate), the object-level interpreter might get lost in an unpleasant search space for the
reflected goal, without any guidance from the meta-level interpreter. If we want to remedy
this problem, we will have to allow the object-level interpreter to hand back control to
the meta-level interpreter during its execution, in other words, we want to allow upward
reflection (rule (1)), as well as downward reflection. There are two ways of accomplishing
this, but, as argued below, both of these ways turn out to be unattractive.

The first way of allowing upward reflection is to incorporate instructions for upward
reflection in the object-level theory, using a reflect-up predicate. Two problems are
associated with this approach. Firstly, it would force us into adopting an amalgamated
representation language (as discussed in sections 2.4.2 and 3.1.3). After all, reflect-up
is a meta-level predicate, but has to be incorporated into the object-level theory. For
example, if we have an object-level predicate p(X, Z) as follows

p1(X, Y) & p2(Y, Z) -> p(X, Z)

then, if we want to prove p2(Y, Z) by upward reflection, we have to write

p1(X, Y) & reflect-up("p2(X, Y)") -> p(X, Z)

Simply writing

p1(X, Y) & reflect-up(p2(X, Y)) -> p(X, Z)

would not do, since p2 (an object-level predicate) would occur in the position of a function-
symbol, whereas "p2(X, Y)" (the meta-level name of p2(X, Y)) is a constant (of the
amalgamated language), and can occur as an argument of reflect-up. Apart from forcing
us into an amalgamated language, with all its complications of self-reference, another
disadvantage of this approach is that it only allows for upward reflection in statically defined
places in the object-level theory, and not on the basis of dynamically computed conditions,

139



which would be much more desirable. An alternative approach to upward reflection is
to program such conditions into the (hardwired)3object-level interpreter. This will not
force us into an amalgamated language for object-level and meta-level theories, and it will
allow for the possibility of dynamic conditions triggering the upward reflections, but it
will necessarily restrict the set of conditions to the predefined set that is coded into the
object-level interpreter.

Summarising then, we can say that a mixed-level system as an implementation archi-
tecture for a meta-level inference system will either suffer from the black box effect, or force
us into an amalgamated representation language, or hardwire the criteria used for upward
reflection. Given these problems, it seems more attractive to look at the possibilities of an
object-level inference system as the implementation architecture.

8.2 Using object-level inference systems for reflection

In chapter 3 we explained that object-level inference systems performed inference at the
object-level, using an implicit interpreter which cannot be changed by the user. The only
places where the user can affect the behaviour of the interpreter are a fixed number of
points in the computational cycle of the object-level interpreter, where certain decisions
regarding the search strategy of the interpreter are made. We shall call these steps in
the computational cycle that can be affected by the user the programmable steps of an
object-level inference system. An example of such a system was the Prolog system by
Gallaire and Lasserre, discussed in section 2.4.1, where the programmable steps consist of
goal-selection (conjunctive choices) and clause-selection (disjunctive choices). By analogy
to the reflection of mixed-level systems discussed above4, we shall call the computation of
a programmable step partial reflection. “Reflection” because it involves a switch from the
object-level interpreter to the meta-level (and back again), and “partial” because we do
not reflect the whole proof of an object-level formula, as in rules (1)-(2), but only a part
of the computational cycle for the proof of that goal5.

It is to be expected that object-level inference systems do not suffer as much from
the problem of meta-level overhead as meta-level inference systems, since only part of the
computational cycle is performed at the meta-level (namely the computation of the pro-
grammable steps), and the main loop of the interpreter is hardwired, and can therefore be
implemented efficiently at a low level in the system’s architecture. As a further optimisa-
tion of the performance of object-level inference systems, we can provide default definitions
of each of the programmable steps which can also be implemented in an efficient manner.
The user is then allowed to override these default definitions by giving explicit formulations
of alternative behaviour for some of the programmable steps. Obviously, when the user
overrides the default behaviour, the system becomes less efficient, since the description
of the required behaviour must then be explicitly interpreted, rather than executed in a

3The object-level interpreter is by definition hardwired. After all, an explicitly represented object-level
interpreter would be a meta-level interpreter.

4and as a slightly playful reference to “partial evaluation”
5This use of the term partial reflection should not be confused with another use of this term in the

literature. Sometimes partial reflection is used to refer to a situation with partial provability predicates
proven which model the provability relation, but only for formulae of some complexity n: proven(“f”) ` f .
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hardwired form. It is therefore desirable that the user can override certain programmable
steps, while leaving other parts unchanged. This would allow for a gradual degradation
of the systems performance. The more parts of the default strategy the user overrides,
the slower the system becomes. As an example we can again look at the system from
Gallaire and Lasserre, discussed in section 2.4.1. As mentioned above, the programmable
steps of this system are clause-selection and goal-selection. A reasonable default definition
for these steps would be Prolog’s normal top-down, left-to-right strategy, which can all
be hardwired, so that the default version of the system need not run much slower than
a single level, fully hardwired Prolog interpreter. However, it is possible for the user to
redefine either of the two programmable steps, constructing, for instance, a clause-ordering
interpreter. Of course the system need not only have one default behaviour. We can have
a library of hardwired default behaviours. The user can then make variations on each of
these built-in default behaviours by changing one or more components.

In order not to lose the advantages of having a meta-level inference system, it is im-
portant that such a system still satisfies the definition of a meta-level system: is all the
behaviour of the system still represented explicitly (i.e. inspectable and modifiable) in the
meta-level theory? Of the two components of the meta-level theory of a partial reflection
system (the programmable steps and the main computational loop), the programmable
steps are certainly represented explicitly. Their definition is available for inspection as
part of the meta-level theory, and can also be modified by the user, with corresponding
effects on the behaviour of the system. The fact that when these definitions correspond to
a default definition the system does not use the meta-level formulation but rather a low
level implementation of them for execution does not affect their inspectability (because
a high level formulation is still available) nor their modifiability (because the system will
switch to using the high level formulation when it differs from the default version). The
other component of the meta-level theory however, the main computational cycle which
chains the programmable steps together, is available at the meta-level for inspection only,
and cannot be modified by the user, and is thus not explicit according to our definitions.
However, as we will argue in the next section, it is possible to formulate this computational
cycle in such a way that it will never be necessary for a user to modify this part of the
meta-level theory. In other words, the formulation of the main computational cycle we
will give below is so general that (almost) all possible control regimes can be expressed by
only modifying definitions of the programmable steps, without having to modify the main
computational cycle. As a result, the only way in which the system violates the definition
of a meta-level inference system (namely the non-modifiability of the main computational
cycle) is a harmless one, and will not affect any of the properties of the architecture that
were discussed in chapter 3.

Thus, the question that will decide whether object-level inference systems are suitable
as an implementation architecture for meta-level inference systems is the following: is
it possible to design an object-level inference system with a sufficiently general set of
programmable steps, such that it is possible to model the behaviour of a large class of meta-
level inference systems via the programmable steps of the object-level inference system
only? In the following sections we will give a definition of an object-level inference system
based on partial reflection that is indeed general enough to model a large class of meta-level
inference systems.
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8.3 The definition of the partial-reflection interpreter

We will define the partial-reflection interpreter (and more importantly, the set of pro-
grammable steps of the interpreter) in terms of the operation each step of the interpreter
performs on the object-level search tree. Therefore, we will first define the data type
of this search tree. Then we will define the programmable steps of the partial-reflection
interpreter, and finally we will define the overall structure of the interpreter.

We first define the basic data-types:

formula = {meta-level names of object-level formulae}
substitution = {meta-level names of substitutions for object-level

variables} ∪ {nil}
theory = {meta-level names of object-level theories}

Each of these data types are normally regarded as subsets of the set of constants of the
meta-language needed to define a meta-level interpreter, and are therefore quite reasonable
ingredients for our definition of a data type that is to represent an object-level search tree.

We will use the standard or-tree representation for proofs: each node in the tree
represents a choice point in the proof, and contains a list of goals that must be proved
in order to prove the top goal. Proofs generate bindings for variables as their results, so
nodes must also contain a substitution-field to record these results. Given the basic data
types mentioned above, the data-type node can be defined in the obvious way as:

node = formula ?×node ?×substitution

where T? is notation for a (possibly empty) list of elements of type T. The fields of a node

represent respectively:

• the list of open goals at this node in the search tree

• the children of the node in the search tree

• the substitution for object-level variables computed as the result of proving the list
of goals

It will be useful to distinguish the following subtypes of the node type:

leaf = {n ∈ node | children(n) = ∅}
terminalnode = {l ∈ leaf | goals(l) = ∅}
successnode = {t ∈ terminalnode | substitution(t) 6= nil}
failurenode = {t ∈ terminalnode | substitution(t) = nil}

This gives us the hierarchy of types as shown in figure 8.1: terminalnodes are the final
leaves of the tree indicating either success or failure (successnodes and failurenodes re-
spectively). Leaves are nodes at the bottom of the tree, but not necessarily terminalnodes.
They can also be leaves that can further be expanded. As the above definitions show, the

142



node

leaf non-leaf

terminal non-terminal

failurenode successnode

1

Figure 8.1: type hierarchy for search tree

prove(Goal, Theory, Tree, Status) :-

initialise_tree(Goal, Tree),

prove_loop(Tree, Theory, Status).

prove_loop(Tree, Theory, succeeded) :-

succeeded(Tree).

prove_loop(Tree, _Theory, failed) :-

failed(Tree).

prove_loop(Tree, Theory, Status) :-

select_node(Tree, Theory, Leaf),

select_goal(Leaf, Theory, Goal),

expand_goal(Goal, Leaf, Theory, NewLeaves),

filter_leaves(NewLeaves, Theory, FilteredLeaves),

combine_leaves(FilteredLeaves, Leaf, Goal, FinalLeaves),

hookup_leaves(FinalLeaves, Leaf),

prove_loop(Tree, Theory, Status).

Figure 8.2: high level representation of the partial-reflection interpreter

substitution field of a node is used as an indicator of its status (failed or not), depend-
ing on whether its value is a non-nil substitution or not. Together with all the obvious
constructor and destructor functions this defines the search tree as an abstract data-type.

We will now specify all the programmable steps of the partial-reflection interpreter that
act upon this data structure. We specify each of the steps as a predicate, indicating the
type of each argument of the predicate, and whether the arguments are input- or output-
values (using the standard Prolog convention of ‘+’ indicating input- and ‘–’ indicating
output-value):

succeeded(+Node)
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failed(+Node)

select_node(+Node, +Theory, -NonTerminalNode)

select_goal(+NonTerminalNode, +Theory, -Formula)

filter_leaves(+Leaf*, +Theory, -Leaf*)

Although the behaviour of each of these programmable steps can be specified by the user
(to override any possible default definitions), the semantics of each step is constrained to a
certain extent, in order to allow all the separate predicates to be put together to form the
partial-reflection interpreter. The constraints imposed on each of the programmable steps
are described below. However, before we describe the specifications of the programmable
steps, we give the full definition of the partial-reflection interpreter in which these steps
play a role. This will make the description of the programmable steps somewhat easier.
The interpreter is defined as in figure 8.2, and uses the following predicates apart from the
programmable steps listed above:

prove(+Formula*, +Theory, -Node, -Status)

prove_loop(+Node, +Theory, -Status)

expand_goal(+Formula, +NonTerminalNode, +Theory, -Leaf*)

combine_leaves(+Leaf*, +NonTerminalNode, +Formula, -Leaf*)

hookup_leaves(+Leaf*, +NonTerminalNode)

initialise_tree(+Formula, -NonTerminalNode)

These predicates are part of the code of the partial-reflection interpreter that should be
hardwired into the system for efficiency, and can therefore not be redefined by the user.
It must be stressed that figure 8.2 is only written in Prolog notation for readability. For
the architecture to be effective, this interpreter should be implemented at as low a level
as possible, for maximum efficiency. Only the user specified redefinitions of the various
components would be expressed in a logical language, and not the main computation
loop itself. What is important however, is that the user can think of the interpreter as
implemented as in figure 8.2. In terms of the definitions given in chapter 1, the code in
figure 8.2 would be inspectable, but not modifiable.

We will now specify the behaviour of all the predicates that make up the interpreter
of figure 8.2. The descriptions below marked with † are of predicates that are hardwired
into the system, while the descriptions marked with • are the programmable steps men-
tioned above. These •-descriptions are therefore specifications of the behaviour of such a
programmable step, and leave room for a more precise definition to be given by the user.
For the hardwired predicates (marked with †) we will give the full specification.

† Prove(Goal, Theory, Tree, Status) is the top level predicate of the partial-
reflection interpreter. After proving a Goal in an object-level Theory, the output
argument (of type node) will return the search tree in the form of the top level node
of the search tree from where all the other nodes are accessible. The fourth argument
indicates whether the proof has succeeded or failed. We will discuss the success and
failure behaviour of the interpreter in more detail below.

† Initialise_tree(Goal, Tree) takes a Goal as its input and produces a single
nonterminalnode representing the root of the search tree.
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† Prove_loop(Tree, Theory, Status) is the main loop of the partial-reflection in-
terpreter, and distinguishes three cases: when the proof has succeeded, when it has
failed or when the search tree is still open. It may seem as if the last (recursive)
clause of prove_loop never terminates, since the recursive call is the same as the
clause head. However, the underlying data structure for proof trees (as bound to the
variable Tree), is an incomplete data structure, containing Prolog variables which
become (partially) instantiated by procedures called in the body of prove_loop,
thus changing the value of Tree between recursive calls. See [Sterling and Shapiro,
1986, chapter 15] for a further description of incomplete datastructures.

• Succeeded(Tree) and failed(Tree) decide when a proof has finished successfully
or unsuccessfully. These predicates have no output values since they are used only as
tests. A minimal specification of their behaviour is that succeeded can only succeed
if at least one of the leaves is a successnode, while failed must succeed if all
leaves of the tree are failurenodes. However, depending on the particular control
regime, succeed does not have to succeed when one of the leaves is a successnode.
In this way, the partial-reflection interpreter can search for multiple solutions, or
for solutions that satisfy some extra-logical criterion. Similarly, failed can succeed
before all nodes are failurenodes, thereby prematurely aborting the search process,
and making the interpreter incomplete. More on this below when we discuss the
combinatorial soundness and completeness of the interpreter.

• Select_node(Tree, Theory, Leaf) selects the next node in the search tree for
continuation of the proof. Thus, select_node is a function from a search tree to a
leaf of that search tree. It is this predicate that determines, for instance, whether
the partial-reflection interpreter executes a depth first or a breadth first strategy.
Furthermore, this predicate determines the backtrack behaviour of the interpreter.
In other words, by choosing the next node in the search tree (which is an or-tree)
select_node affects the disjunctive choices made by the interpreter.

• Select_goal(Leaf, Theory, Goal) selects the Goal to be used in the next proof-
step from the list of open goals in a node. Thus, select_goal is a function from
leaf to a member of the list of open goals of that leaf. This predicate determines
the order in which subgoals are solved. Thus, select_goal affects the conjunctive
choices made by the interpreter.

† Expand_goal(Goal, Leaves, Theory, NewLeaves) takes the goal as selected by
select_goal and applies all the inference rules of the object-level logic to it. This
produces a list of new leaves, which can contain either success-nodes (if an in-
ference rule established the truth of the goal, for instance because it is an axiom of
the object-level theory), or non-terminal nodes for each inference rule that reduces
the goal to a number of subgoals. If none of the inference rules apply, expand-goal
returns a list containing just a single failure-node. Although the definition of
this predicate is fixed, the user can of course affect the behaviour of this predicate
indirectly by either changing the object-level theory or its inference rules.
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• Filter_leaves(NewLeaves, Theory, FilteredLeaves) takes the output value of
expand_goal (a list of leaves), and filters out unwanted expansions. Thus, the
output value of filter_leaves is always a subset of its input value. This predicate
can be used to implement various search heuristics such as avoiding unpromising
branches in the proof etc.

† Combine_leaves(FilteredLeaves, Leaf, Goal, FinalLeaves) merges the new
goal lists in the or-nodes produced by expand_goal and filter_leaves with the
open goal list of the selected node. For each of the new nodes a goal list is created
which consists of the goal list of the selected node minus the selected goal plus the
new goals found in the new node. This corresponds to the resolution step of a Prolog
system. In this merging process the composition must be computed of the substitu-
tions of the selected node and of each of the new nodes and the result must be stored
in the substitution field of the corresponding output node. If the two substitutions
contain conflicting variable bindings, the result of this process will be a failurenode,
indicating the failure of that branch of the proof.

† Hookup_leaves(FinalLeaves, Leaf) joins the output list of combine_leaves with
the existing tree (by updating the children field of the selected node). Notice that
this action causes the selected node to be no longer a leaf.

An important feature of the partial-reflection interpreter described above is its be-
haviour on either success or failure of the object-level proof. Unlike the interpreters dis-
cussed in other chapters (such as the ones in figure 5.1, of section 5.1.2, and figure 7.2,
of section 7.1) the partial-reflection interpreter does not model failure of the object-level
proof as failure of the meta-level interpreter. Interpreters that do model object-level fail-
ure as meta-level failure are sometimes called piggy-back interpreters, and represent the
widest class of interpreters published in the literature. Instead, the interpreter of figure 8.2
will always succeed, and report the success or failure of the object-level proof in the ex-
plicit Status argument. This makes the partial-reflection interpreter much more powerful
than the ordinary piggy-back interpreters. It allows the user to control the backtrack-
ing behaviour of the object-level proof, rather than relying on the built-in backtracking
behaviour of the meta-level interpreter. This treatment of object-level backtracking also
means that the partial-reflection interpreter can be a completely deterministic program.
Disjunctive choices at the meta-level can be programmed into the programmable step
select_node, which chooses different nodes on different iterations of the interpreter, rather
than choosing different nodes on backtracking, as would be usual in piggy-back interpreters.
Any non-determinate behaviour of select_node is of a “don’t care” nature ( [Kowalski,
1979]). A consequence of this non-piggy-back way of handling object-level backtracking is
that the partial-reflection interpreter will never fail, and similarly, that none of the pred-
icates select_node, select_goal, expand_goal, filter_leaves, combine_leaves and
hookup_leaves need ever fail. Of these, the predicates expand_goal, combine_leaves

and hookup_leaves are hardwired, and can thus be ensured never to fail (as is implicit
in their definition above). The non-failure of the user definable predicates select_node,
select_goal and filter_leaves can easily be automatically checked by the system. One
possibility is of course to allow failure of these user-definable predicates, and to perform
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some hardwired default action when one of these predicates does indeed fail.

8.4 Adequacy of the partial-reflection interpreter

As already mentioned above, an architecture as described in the previous section will
only be useful as an implementation architecture for a meta-level inference system if it is
adequate, in other words, if a sufficiently large class of control regimes can be expressed
through the formulation of the programmable steps. Ideally, we want every control regime
expressible in a meta-level inference system to be expressable in the object-level inference
system described above. Of course, the adequacy of a particular architecture can never be
fully proven, because of the open nature of the phrase “every control regime expressable
in a meta-level inference system”. The best we can do is to argue convincingly for the
adequacy of the partial-reflection interpreter.

In chapter 4, we argued that all the necessary components of a logic-based meta-level
inference system could be summed up as the tuple (O, I,Σg,Σd,Σt, T ), with O the object-
level theory, I the inference rules, Σg,d,t the different heuristics, and the T the object-level
search tree. All these components are indeed explicitly present in the partial-reflection
interpreter: the object-level theory O is explicitly named by the Theory-argument of the
interpreter, the inference rules I are embodied in the predicate expand-goal, the generative
heuristics Σg correspond to the predicate filter_leaves, directional heuristics Σd to the
predicates select_node and select_goal, termination heuristics Σt to the predicates
succeeded and failed, and finally the object-level search tree T is explicitly named by
the parameter Tree. Of course, the fact that all the essential components of a meta-
level architecture are present in the partial-reflection interpreter does not in itself indicate
that the interpreter is indeed adequate for expressing a wide range of control regimes.
For this to be true, it is also necessary that a large number of versions of each of these
components can be implemented in the interpreter. In principle, the full programming
power of Prolog is available for the expression of these predicates, so this will not be
a restriction. The only restriction on the programmability of the components (and in
particular the components SearchG (filter_leaves) and SearchD (select_node and
select_goal)) is their restricted input: they are defined as predicates over sets of leafs,
and they can therefore only express local criteria, ie. criteria that are independent of such
global properties of the proof such as the current depth, the total size of the proof tree,
etc. This potential restriction could be removed by passing the proof tree as an additional
argument into these predicates.

Summarising then, the facts that

• all the necessary components of a logic-based meta-level inference system are pro-
grammable,

• full Prolog is available for programming these components,

• the code for these components has (at least in principle) access to all information
about the current proof and theory
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indicate that the interpreter is indeed adequate for expressing a wide range of control
regimes.

To illustrate the adequacy of the partial-reflection interpreter described above, we will
give a few examples of how different control regimes can be programmed through the
programmable steps of the interpreter.

A depth-first, non-exhaustive control regime for a Horn Clause interpreter can be for-
mulated very easily as follows:

succeeded(Node) :- successnode(Node).

succeeded(Tree) :-

non-leaf(Tree),

children(Tree, Children),

thereis(Child, Children, succeeded(Child)).

failed(Tree) :- failurenode(Tree).

failed(Tree) :-

non-leaf(Tree),

children(Tree, Children),

forall(Child, Children, failed(Child)).

select-node(Node, Theory,Node) :-

non-terminal(Node).

select-node(Node, Theory, Node) :-

children(Node, Children),

member(Child, Children),

select-node(Child, Theory, Node).

select-goal(Node, Theory, Goal) :-

goals(Node, Goals),

member(Goal, Goals).

filter_leaves([], Theory, []).

filter_leaves([Node|Nodes], Theory, [Node|FilteredNodes]) :-

goals(Node, Goals),

(empty-node(Node);

failure-node(Node);

forall(G, Goals, (literal(G);object-level-axiom(Theory,G)))

),

filter_leaves(Nodes, Theory, FilteredNodes).

filter_leaves([Node|Nodes], Theory, [Node|FilteredNodes]) :-

filter_leaves(Nodes, Theory, FilteredNodes).

The criteria for succeeded and failed are simple: a tree counts as succeeded if it is
a successnode or if one of its children contains a successnode. This represents the non-
exhaustive nature of the control regime, i.e. the interpreter halts after finding one solution.
Similarly, a tree counts as failed if it is a failurenode or if all of its children have failed.
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The predicates select-node and select-goal represent the depth-first nature of the in-
terpreter, selecting the first non-terminalnode found on a depth-first descent through the
tree, and picking the first goal on the list of the selected node. The code for filter-leaves
needs some explanation. For Horn Clause logic, the only two object-level inference rules
we need are Conjunction Introduction and Modus Ponens. Because of that, we know that
we can only prove goals that are either literals, or (if they are implications) are part of
the object-level theory. This is a good example of how we can prune branches from the
search tree which are generated by the object-level proof theory, but that we know to be
unprovable, such as branches containing goals like p->q->r (which are unprovable from
any Horn Clause theory).

The above control regime can of course be changed easily to a breadth-first interpreter
for Horn Clause logic, by changing the definition of select-node to be

select-node(Node, Theory, Leaf) :-

select-node([Node], Theory, Leaf).

select-node([Node|Nodes], Theory, Node) :-

non-terminal(Node).

select-node([Node|Nodes], Theory, Leaf) :-

children(Node, Children),

append(Nodes, Children, NewNodes),

select-node(NewNodes, Theory, Leaf).

in other words: we pick the first non-terminalnode found on a breadth-first descent
through the tree.

Similarly, we can change the non-exhaustive nature of the control regime to an exhaus-
tive one by changing the criteria for success and failure:

succeeded(Tree) :-

one-success(Tree),

all-terminal(Tree).

failed(Tree) :-

\+ one-success(Tree),

all-terminal(Tree).

where one-success descends the tree and succeeds when a successnode is found, and
all-terminal descends the tree and succeeds if all nodes visited are terminalnodes.

In a similar vein we could implement other frequently used control strategies such as
iterative deepening, best first search, confirmation or elimination strategies, branch and
bound search, etc.

After having given these definitions for the programmable steps in Prolog, it is impor-
tant to remember that, if the above definitions were default definitions, they would not be
executed using the Prolog formulation but using some equivalent formulation in a more
efficient (lower level) language instead. Only if the user would override the defaults by
altering the above Prolog formulations would the system execute the explicit meta-level
definitions.

One obvious optimisation can be applied to the partial reflection interpreter on the
basis of these formulations of control regimes. As can be seen from the definitions of
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succeeded, failed and select_node, these predicates often have to traverse the whole
tree in order to arrive at the leaves of the tree where they do their real work. In a naive
implementation this would be of exponential cost, thus defeating the purpose of the partial
reflection interpreter (which is to reduce meta-level overhead). An obvious cure for this
problem is to make available a built-in predicate which gives access to the current set of
leaves of the search tree. This can be implemented without repeated traversal of the tree
(for instance incremental updating of the set of leaves after tree expansion), and the user
can then use this predicate in the formulation of control regimes. Taking for instance
the depth-first control regime formulated above, and assuming that leaves(L) will unify
L with the current leaves of the search tree, we can reformulate the control regimes as
follows:

succeeded(Tree) :-

leaves(Ls),

member(L, Ls),

successnode(L).

failed(Tree) :-

leaves(Ls),

forall(L, Ls, failurenode(L)).

select_node(Tree, Theory, L) :-

leaves(Ls),

member(L, Ls),

non-terminal(L).

The definitions of select-goal and filter-leaves remain unchanged.

8.5 Combinatorial soundness and completeness

In chapters 3 and 4 we defined the notions of combinatorial soundness and completeness of a
meta-level system. Combinatorial soundness and completeness referred to whether a meta-
level interpreter produced a subset or a superset of the logical inferences derivable from
the object-level theory. As noted in chapter 5, the meta-level of a system like Socrates
has no facilities for guaranteeing either the combinatorial completeness or soundness of
an interpreter. Because the form of the interpreter in an object-level inference system
as described above is much more constrained than in a meta-level inference system like
Socrates (after all, an interpreter in Socrates could be expressed using the full power of
Horn Clause logic, whereas the basic structure of the partial-reflection interpreter is fixed,
as in figure 8.2), it becomes possible to include automatic checks on the combinatorial
completeness and soundness of the partial-reflection interpreter.

It is obvious from the examples in the previous section that the partial-reflection in-
terpreter is by no means guaranteed to be complete. Any of the predicates select_node,
select_goal, expand_goal and filter_leaves can be programmed not to select some
nodes or not to produce all expansions, or to throw away some of the logically valid infer-
ences. This is of course a desirable feature of the interpreter. In this way we can implement
heuristics that cut out large parts of the search space. This might involve cutting out parts
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of the search space that contain solutions that are too hard to find, or solutions that do
not satisfy certain criteria. However, it is possible to say something about the conditions
under which the partial-reflection interpreter will be complete. This completeness obvi-
ously depends on the behaviour of the programmable components of it. The interpreter
is complete (with respect to the set of object-level inference rules I) if all of the following
conditions are satisfied:

• succeeded succeeds only if all leaves of the tree are terminalnodes (i.e. the inter-
preter does not terminate before all branches are explored).

• failed succeeds only if all leaves of the tree are failurenodes (i.e. the interpreter
does not terminate before all branches are explored).

• filter_leaves returns the complete set of input nodes (i.e. no branches are deleted
from the search tree).

The situation with combinatorial soundness is different. Unlike completeness, sound-
ness is a property we might want to be able to enforce, and it would be useful if we could
guarantee the partial-reflection interpreter to be sound. Apart from the restrictions im-
posed by the typing of the predicates and those described in the definitions of the predicates
given above, the following restrictions ensure the soundness of the interpreter:

• succeeded succeeds only if at least one of the leaves is a successnode.

• failed succeeds if all leaves of the tree are failurenodes.

• filter_leaves returns only nodes that are in the set of input nodes (i.e. no branches
are added to the search tree that are not provable using the object-level inference
rules)

Combining these sets of conditions, we get the conditions under which the interpreter
is both combinatorially sound and complete:

• succeeded succeeds only if all leaves of the tree are terminalnodes and at least one
of the leaves is a successnode.

• failed succeeds if and only if all leaves of the tree are failurenodes.

• filter_leaves returns exactly the set of input nodes (i.e. filter_leaves is the
identity operation).

These criteria are such that it would be very simple to automatically check any of
the above three sets of constraints, thereby ensuring any combination of combinatorial
soundness and completeness of the interpreter.
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8.6 Efficiency of the partial-reflection interpreter

Since the main motivation for the partial reflection interpreter is a reduced overhead for
meta-level interpretation, we should compare its behaviour with the fully explicit bilingual
meta-level interpreter as measured in chapter 6. There we measured both lips(I2, P (n))
and li(I0, I2P (n)), i.e. the number of logical inferences per second performed by the
bilingual meta-level interpreter I2 on some object-level program P with input of length n,
and the number of logical inferences performed by the base-level Prolog system in order to
execute I2 interpreting P (n) (assuming that I2 was expressed in Prolog and could therefore
be interpreted by I0).
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Figure 8.3: li ratings and ratios for I2,3 and I0

If we denote the partial-reflection interpreter described above by I3, we should ideally
measure lips(Ii, P (n)) and li(I0, IiP (n)) for i = 2, 3, and the ratios between these numbers
in order to get an idea of the reduction in meta-level overhead achieved by using I3 instead
of I2. However, a full and efficient implementation of I3 is a significant task, including the
encoding of an efficient unification algorithm for the object-level language and an efficient
representation of the object-level theory. In order to avoid such a major implementation
effort, we have implemented I3 using the definition in Prolog given above in figure 8.2. Of
course we would not want to calculate the logical inferences made by predicates which are
supposed to be hardwired (such as expand_goal, combine_leaves and hookup_leaves),
and in order to avoid this we can count each call to such predicates as a single logical
inference (equating their cost with any built-in predicate). Of course, this simulation
oversimplifies the cost of the hardwired predicates in the partial reflection interpreter to
a single logical inference, and it also make it impossible to mention lips rates, since the
predicates are not actually hardwired, but coded explicitly in Prolog, thus taking up more
time. As a result, we can only measure li(I0, Ii(P (n))) for i = 2, 3. For the purpose
of these measurements the partial reflection interpreter described above was implemented
using the code from figure 8.2, plus additional code to implement the hardwired predicates
expand_goal, combine_leaves and hookup_leaves. For the predicate expand_goal this
required firstly a representation of the object-level theory, which is represented using the
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ground Prolog clauses. These Prolog clauses represent the meta-level names of object-
level clauses, rather than the object-level clauses themselves. For instance, the object-level
sentence ∀x p(x)→ q(x) in object-level theory t1 would be represented as:

object_theory(t1, p(var(x))->q(var(x))).

We then need a unification algorithm for formulae in this representation (i.e. using var(x)

as a variable), returning explicit substitutions for these variables, (as needed to produce
the substitution field of nodes in the search tree), and routines to manipulate these explicit
substitutions (such as composition and application of substitutions). A second prerequisite
for the predicate expand_goal is the representation of the object-level rules of inference,
which are represented as Prolog clauses of the form

infers(Antecedent, Consequent)

with Prolog variables taking the role of meta-logical variables, and lists being used to
represent the meta-logical connective ‘,’. For example, Modus Ponens would be represented
as

infers([P, P->Q], Q).

The results of measuring li(I0, I3(P (n))) using the above implementation for I3 are
shown in figure 8.3. This figure repeats the results for I2 from figure 6.7, and adds the
results for I3, using P = nrev. Notice that figure 8.3b shows only one line since li(Ii, P (n))
has the same value for i = 2, 3 since I2 and I3 execute the same control regime. Figure a
shows that the simulated version of I3 runs an order of magnitude faster than I2. More
importantly, figure c shows that the overhead of I3 does not increase so rapidly with the
size of the input, but is instead a smaller and more constant factor.

8.7 Comparison with Eshghi’s interpreter and conclu-

sions

The meta-level interpreter described in [Eshghi, 1986] is very similar in nature to the
partial-reflection interpreter described above, and in fact served as part of the inspiration
for this chapter. However, there a number of aspects in which the interpreter described
here is more general than the one in [Eshghi, 1986].

Our partial-reflection interpreter is more general in the sense that it allows for a richer
object-level language than just Horn Clause logic. In fact, it is completely independent
from the logical language used at the object-level (using the same relation between object-
level and meta-level language as in Socrates). As a result, both the object-level language
and the set of inference rules for this language can be changed independently of the control
strategy expressed in the partial-reflection interpreter.

In our partial-reflection interpreter the criteria for success or failure are definable by the
user, unlike the hardwired criteria of Eshghi’s interpreter. This allows for extra flexibility
in the formulation of control strategies. Eshghi argues (correctly) that his interpreter is
an extension of the work of [Gallaire and Lasserre, 1982], because their interpreter only
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allows the user to define the clause-selection and goal-selection strategies of the interpreter,
whereas his interpreter also gives the user control of the backtracking strategy. Similarly,
our interpreter is an extension of Eshghi’s, since it includes the termination criteria in the
user definable predicates. In terms of the representation of a meta-level inference system
as a tuple (O, I,Σg,Σd,Σt, T ), Eshghi has no programmable step corresponding to Σt.
programmable steps

Eshghi seems to argue for a system that enforces both combinatorial completeness and
soundness. We disagree with this claim as far as completeness is concerned. As argued
above, an essential feature of practical control regimes is often their incompleteness.

Finally, although Eshghi’s interpreter is much like the one presented above, he gives
no motivation for the set of programmable steps that his interpreter offers, whereas we
have argued that our set of programmable steps is motivated by the analysis of the general
architecture of meta-level inference systems from chapter 4. As a result, we can have some
confidence in the adequacy of our interpreter, whereas Eshghi gives no such argument.

In this chapter we have formulated an object-level inference system with a set of pro-
grammable steps (i.e. programmable by the user in the meta-level language of the system),
that is powerful enough to model a large number of meta-level interpreters (as formulated
in a meta-level inference system), but that can be implemented much more efficiently than
a meta-level inference system through the technique of partial reflection (i.e. we only exe-
cute the programmable steps at the meta-level and provide a hardwired definition for the
main loop of the interpreter). The performance of this system can be made even better
by providing hardwired default definitions for each of the programmable steps, which can
possibly be overwritten by the user.

So far, we have not compared the partial reflection interpreter described in this chapter
with the partial evaluation technique discussed in the previous chapter. Does the partial
reflection technique not suffer from the same problems as partial evaluation? The problems
with partial evaluation all stemmed from the distinction between partial evaluation time
and run-time. The object-level theory might be subject to run-time changes not known
at partial evaluation time, and a number of problems arose from the lack of input known
statically at partial evaluation time instead of dynamically at run-time. In the context of
a partial reflection system, no such distinction between static and dynamic information
exists. There is no pre-runtime transformation stage, and as a result none of the problems
associated with partial evaluation arise with the partial reflection architecture.

Apart from an implementation architecture for meta-level inference systems, the partial-
reflection interpreter defined above has advantages which are quite independent from any
efficiency considerations:

• It does not treat object-level failure as meta-level failure, and therefore allows explicit
control of the backtracking strategy of the object-level proof, instead of relying on
the hardwired backtracking behaviour of the meta-level interpreter.

• It offers the possibility for automatically ensuring combinatorial soundness and com-
pleteness of the interpreter, whereas this task is very hard (if not impossible) in a
meta-level inference system where the formulation of a meta-level interpreter can be
an arbitrarily complex program in a powerful meta-language.
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Except as an implementation architecture for meta-level inference systems, we can look
at the partial-reflection interpreter defined above in a more general way. If it is true
that this interpreter is indeed “adequate” (as discussed above) then a large number of
meta-level interpreters can be reformulated in terms of the programmable steps of the in-
terpreter. Usually, we think of a meta-level interpreter as an arbitrarily complex program
formulated in a powerful meta-language (such as Horn Clause logic), whereas the above
interpreter consists of a small number of clearly defined elementary steps. Each of the
programmable steps might be an arbitrarily complex program in the meta-level language,
but their behaviour is narrowly constrained, and the interpreter itself can be defined in
a very small vocabulary. In fact, because all the predicates involved are total and deter-
minate, we don’t really need the full power of Horn Clause logic to define the main loop
of the interpreter. The 11 predicates making up the definition of the interpreter can be
seen as an elementary language which is powerful enough to define a large set of different
control regimes. This would open up all kinds of possibilities for the automatic manipula-
tion of meta-interpreters, such as proving their combinatorial soundness and completeness,
automatically compiling them into a lower level language, providing uniform debugging
tools for meta-level interpreters etc. All these activities are very difficult to do for
general meta-level inference systems, but become possible using the uniform notation for
meta-level interpreters suggested by the system described above.
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Chapter 9

Conclusions and further work

In this final chapter we summarise the achievements of the previous chapters, and we draw
overall conclusions from these results. As with any research, a number of questions remain
unanswered, and a number of new questions arise. We discuss these open questions, and
briefly describe some possible approaches to their solutions.

9.1 Summary

Chapter 3 used descriptions of a number of meta-level architectures from chapter 2 to
arrive at a classification of the array of architectures reported in the literature. This
classification is based on the distribution of activity between the object-level and meta-
level of a system and on the communications between them. Furthermore, a number of
secondary properties of meta-level architectures were distinguished, such as combinatorial
completeness and soundness, the possibility for partial specifications and the linguistic
relation between object-level and meta-level.

This classification of meta-level architectures allowed us to make a systematic compar-
ison between different types of systems. This comparison led us to argue that one type of
system, which we called bilingual meta-level inference systems, has a number of significant
advantages over the other types of systems.

Chapter 4 took an existing theory of the essential components of any meta-level system,
and applied it to logic-based bilingual meta-level inference systems in particular. This
specialisation to one particular type of system allowed us to refine this theory to a much
greater level of detail, resulting in a number of essential components for any system of this
type. These components were then used to define more precisely some of the properties
initially discussed in chapter 3.

Chapter 5 described in some detail the architecture and implementation of a particu-
lar logic-based bilingual meta-level inference system. The practical experiences with this
system were reported, and a number of essential choices made in this architecture were
discussed. All the components of such a system as described in the theory of chapter 4
could be recognised in the architecture of this system. The main problem hampering the
practical use of this system was its run-time inefficiency, due mainly to the extra level of
interpretation imposed by the meta-level interpreter.
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In chapter 6 we further investigated this problem of meta-level overhead. The first half
of chapter 6 gave a model of the utility of meta-level effort. This was used to show that
after a certain amount of meta-level effort the gain in reduction of object-level inference
will be offset by the increase in cost of meta-level inference. This behaviour was illustrated
in two simple hypothetical systems with different cost/benefit curves.

The second part of chapter 6 investigated the quantitative behaviour of logic-based
mono-lingual and bilingual meta-level inference systems. A comparison was made between
their respective run-time overheads. Two different measures were used, one in terms of
the number of logical inferences needed by the system to perform a certain task, and
one in terms of the number of logical inferences per second that the system can make.
Although these two measurements gave quantitatively different results, their qualitative
behaviour was the same, showing that the overhead problem is indeed of significant size,
and particularly so for bilingual systems.

Chapter 7 investigated partial evaluation, the main technique in the literature for solv-
ing the problem of meta-level overhead. A number of significant problems with this tech-
nique were uncovered, mainly stemming from dynamic changes to the object-level theory
and the lack of static information at partial evaluation time. A number of solutions (often
heuristic in nature) were suggested to solve at least some of these problems.

Chapter8 described another solution to the problem of meta-level overhead. The so-
lution of this chapter called partial reflection, is based on the idea that a system with a
meta-level inference architecture need not necessarily be implemented that way. We showed
that it is possible to implement a meta-level inference system as a particular object-level
inference system in such a way that none (or not many) of the advantages of a meta-level
inference system are lost. By implementing a meta-level inference system as an object-
level inference system, it becomes possible to implement some of the meta-level theory at
a lower, and therefore more efficient level in the system.

9.2 Conclusions

The conclusions we can draw from the work summarised above are as follows:

• The extreme version of a meta-level system, namely the bilingual meta-level inference
system, is the best type of meta-level architecture for realising the goal of an explicit
representation of control knowledge.

• The problem of meta-level overhead is even larger than usually acknowledged. In
particular for bilingual systems, the overhead is not only large but also increases
with the size of the computation.

• The available technique for dealing with the problem, partial evaluation, has a num-
ber of serious problems not usually acknowledged in the literature.

• Although some of the problems with partial evaluation were overcome, and two fur-
ther solutions to the overhead problem were suggested, the problem of meta-level
overhead remains largely an open one, and remains the major obstruction to the use
of meta-level inference systems in practical applications.
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9.3 Future work

In the light of the conclusions above, the problem of reducing meta-level overhead for
bilingual meta-level inference systems remains an important research problem. A number
of immediate tasks arises from the work in chapters 7 - 8:

• Further work remains to be done on improving partial evaluation. In particular the
exponential growth in code size needs to be tackled. Extensions to the partial evalua-
tion algorithm as suggested by [Owen, 1988b] need further study and implementation,
as does the possibility for the automatic generation of specialised stop criteria.

• Implementations are needed of the systems described in chapter8, in order to assess
its behaviour on realistic examples. Our current estimates of the behaviour of this
system is promising but is based on simulated measurements of li-ratings, rather
than on experiments with a proper implementation.

• Other techniques than the ones discussed in chapters 7 - 8 should be pursued. Two
possible approaches that remain unexplored in this work are caching and compilation:

Caching: A typical phenomenon in meta-level inference systems is repeated compu-
tation. Computations based on values that are fixed during the execution of the
system and that are known beforehand (such as lengths of clauses or certainty
values associated with rules) can be removed by partial evaluation. However, it
would be an interesting approach to also store at run-time intermediate results
which are based on dynamic values if they are also often repeatedly computed.
Of course, these cached values can only be used again later in the computation
if none of the input values for that result have changed in the mean time. This
means that some form of consistency maintenance will have to be done in order
to find out when a cached value will have to be recomputed. An example of
such an approach applied to the control of object-oriented systems can be found
in [van Marcke, 1986]. A logic-based system that uses a similar technique (al-
though for object-level and not for meta-level computations) is the prolearn
system in [Priedites and Mostow, 1987]. This approach should not be confused
with Owen’s I1,Lemma interpreter mentioned in section 6.4, since that interpreter
stores object-level results as lemmas, whereas the caching technique would store
meta-level results.

Compilation Perhaps one of the most obvious solutions to the overhead problem
is the translation of the meta-level theory into an executable language at a
lower, and more efficient level. This idea is based on the observation that there
is no reason why the language used to specify a control strategy has to be
identical to the language used to run it. It is possible (and even likely), that
the requirements for a language for the formulation of a meta-level theory by
a user are quite different from the requirements for a system instruction set.
However, all systems described in chapter 2 use the same language for both
purposes: at execution time they interpret directly the specification as it was
given by the user. It is possible to translate the specification given by the user
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into something that can be executed more efficiently. An assumption that has to
be made in this approach is that the control strategy is not subject to run-time
changes. Give the arguments in [Reichgelt and van Harmelen, 1985, Reichgelt
and van Harmelen, 1986] and [Chandrasekaran, 1983, Chandrasekaran, 1985b,
Chandrasekaran, 1985a, Chandrasekaran, 1987], which claim that the control
regime is a function of the type of task that is performed by the system, this
is quite a reasonable assumption to make. The feasibility of this approach
depends on the language that is used to formulate the meta-level theory. The
Socrates system from chapter 5 allowed unrestricted use of Horn Clause logic
for this purpose. For such a general purpose language, only general purpose
compilation of Horn Clause logic can be used, as in general Prolog systems
for instance, and the fact that the compilation concerns a meta-level theory
cannot be exploited. On the other hand, a system such as described in chapter
8 defines a fixed number of predicates in the meta-level theory that are used to
formulate a control regime. As a result, much more elaborate compilation could
be done in such a system, since more is known about the intended meaning
of these predicates. However, this is not to say that the particular predicates
proposed in that chapter are the ideal set, and the problem of compilation is
thus intimately connected to the choice of a meta-level language, which is an
open problem in general (see below).

A number of other questions, not directly connected with the problems of meta-level
overhead, have arisen from previous chapters:

• The choice of a good meta-level language for expressing control strategies remains
open. Widely different languages have been used by the systems described in chapter
2, and although we chose logic as the meta-level language for the Socrates system of
chapter 5, a number of reasons were given why that choice was not ideal (although
there were also a number of advantages). This choice of language for the meta-level
theory will influence many aspects of the system, including efficiency, expressiveness,
explanation and debugging.

• We have argued in chapters 3, 4 and 5, that combinatorial soundness is a desirable
property of a meta-level architecture. Yet of all the systems discussed in chapter 2,
nuprl is the only meta-level inference system which actually enforces this property,
through the typing scheme employed in the meta-level language. Also, the partial
reflection system from chapter 8 enforced this property through allowing a limited
set of meta-level predicates. A systematic investigation of ways of enforcing this
property remains to be carried out.

• A problem arising from the result of the experiments performed in chapter 6 is that
li and li/sec measures were not good measures of the run time complexity of a
logic program. This showed up also in the discrepancies between the quantitative
results obtained using these measures. A better measure would take into account the
unification complexity as well as the run-time complexity, and would count the size
of search trees rather than only proof trees.
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All of these problems would provide interesting topics for further research.
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Appendix A

Code for a partial evaluator

% Based on [Takeuchi & Furukawa, 1986]

% The main data-structures used are:

% - standard lists of goals for conjunctive lists.

% - lists of clause-records for disjunctive lists.

% - a clause-record looks like: cl(Head, Done, ToBeDone)

% where ToBeDone is the original body of the clause,

% before partial evaluation, and Done is the new body

% after partial evaluation.

% Goals get gradually moved from ToBeDone into Done.

% peval(Goal, NewDef): Given a theory stored in the database,

% and partial input as specified in Goal, the database theory

% can be reformulated as NewDef.

%

% First clause just initialises the stack to the empty list.

%

peval(Goal, NewDef) :- peval(Goal, NewDef, []).

% The first three clauses are just to catch special cases:

% - infinite-recursion,

% - evaluable predicates, and

% - mixed computation.

peval(Goal, inf_loop, Stack) :- loop(Goal, Stack), !.

peval(Goal, Success_Flag, _) :- evaluable(Goal,Success_Flag), !.

peval(Goal, Results, _) :- executable(Goal), execute(Goal, Results),!.

% This is where the real work starts:

% get all clauses from the database, convert them into

% clause-records, and hand them on to the next layer of

% computation:

peval(Goal, NewDef, Stack) :-
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clauses(Goal, Cls), !,

translate(Cls, Translated),

peval_clauses(Translated, NewDef, [Goal | Stack]).

% peval_clauses is an intermediate layer between the top-level

% goal and peval_clauses1 where the clauses get expanded.

%

% The first clauses in this intermediate layer catches goals

% that have no defining clauses.

%

% The second clause passes the clauses-to-be-processed on to

% the next layer.

peval_clauses([], fail, _) :- !.

peval_clauses(Clauses, Ans, Stack) :-

peval_clauses1(Clauses, Temp, Stack),

close(Temp, Ans). % close changes [] back to fail.

% This is just cosmetic.

% peval_clauses1 performs the real work:

% for every clause in the clause-list

% do: for every Goal in the body of the clause

% do: peval_goal(Goal);

% move result of this into Done-field

% delete Goal from the ToBeDone-field

% done.

% done.

%

% First clause catches "facts" in the Prolog database

% (clauses with body true).

peval_clauses1([cl(Head, [], [true]) | Cls],

[cl(Head, [], [] ) | Ans],

Stack) :- !,

peval_clauses1(Cls, Ans, Stack).

% Second clause terminates iteration over goals in the

% clause-body: the ToBeDone-field is [], and this final version

% of the clause is passed on into the output argument:

peval_clauses1([cl(Head, Done, []) | Cls],

[cl(Head, Done, []) | NTail],

Stack) :-

peval_clauses1(Cls, NTail, Stack).

% Third clause terminates iteration over clauses in the

% clause-list:

peval_clauses1([], [], _).

% Last clause does the real work: partially evaluate the first

% goal from the ToBeDone-field, unfold the result into
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% or-parallel clauses, and recurse on the result:

peval_clauses1([cl(Head, Done, [Goal | Rest]) | Cls], Ans, Stack) :-

peval(Goal, NewGoals, Stack),

unfold(NewGoals, cl(Head, Done, [Goal | Rest]), NewCls),

append(NewCls, Cls, AllCls),

peval_clauses1(AllCls, Ans, Stack).

% unfold takes the result of partially evaluating a subgoal in

% the body of a clause, and makes a new copy of the clause for

% every possible expansion of the subgoal.

%

% The first clause catches infinitely recursive subgoals: The goal

% is moved from the ToBeDone- into the Done-field without being

% changed.

unfold(inf_loop, cl(Head, Done, [Goal | Rest]),

[cl(Head, Done_plus_Goal, Rest)]) :-

append(Done, [Goal], Done_plus_Goal).

% The second clause catches unexpanded evaluable (built-in)

% predicates: The treatment is exactly the same as for as for

% infinitely recursive goals in the previous clause.

unfold(not_done_evaluable, cl(Head, Done, [Goal | Rest]),

[cl(Head, Done_plus_Goal, Rest)]) :-

append(Done, [Goal], Done_plus_Goal).

% Third clause catches successfully evaluated built-ins: the

% goal disappears from the code. (possible results will have

% registered through the bindings of shared variables).

unfold(success_evaluable, cl(Head, Done, [_ | Rest]),

[cl(Head, Done, Rest)]).

% Fourth clause catches failed built-ins: the processing of this

% clause is aborted.

unfold(fail_evaluable, _, []).

% Fifth clause catches failing partial evaluation. Just like

% failed built-ins above.

unfold(fail, _, []).

% This clause terminates the iteration in the last clause.

unfold([], _, []).

% Last clause does the real work: for every expansion of the

% subgoal ‘Goal’, we return a new copy of the clause, with Goal

% moved from ToBeDone into Done. We make sure that these

% or-parallel clauses don’t share variables.

unfold([cl(G, Body, []) | RestGs],

cl(Head, Done, [G1 | Rest]),

[cl(Head, NewDone, Rest) | RestNew]) :-

copy(cl(Head, Done, [G1 | Rest]), NewClause),
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% We need to take a new copy here, to make sure that or-parallel

% clauses get evaluated in independent environments.

G = G1,

append(Done, Body, NewDone),

unfold(RestGs, NewClause, RestNew).

% Translates the output of clauses/2 into the clause-record format.

% At this stage, the ToBeDone-field is still [].

translate([(Head:-Body) | Cls], [cl(Head, [], Blst) | Tail]) :- !,

conjunction_to_list(Body, Blst),

translate(Cls, Tail).

translate([], []).
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