Evolutionary Computing and Autonomic
Computing: Shared Problems, Shared Solutions?

A .E. Eiben

Vrije Universiteit Amsterdam

Abstract. The purpose of this paper is to present evolutionary com-
puting (EC) and to identify a number of issues where EC and autonomic
computing, a.k.a. self-*, are mutually relevant for each other. We show
that Evolutionary Algorithms (EA) form a metaheuristic that can be
used to tackle the problem of self-optimisation in autonomic systems
and suggest that an evolutionary approach can also help solving other
challenges in autonomic computing. Meanwhile, an evolving system can
be seen as a special case of an autonomic system. From this perspective,
the quest for parameterless EAs can be positioned in a broader context
and it can be expected that some solutions invented within autonomic
computing can be transferred to EC.

1 Introduction

This position paper is aiming at linking evolutionary computing and autonomic
computing. Autonomic computing is assumed to be known, therefore it is not
reviewed here. Evolutionary computing is discussed emphasizing those facets
that are most relevant to make the main points about the mutual relevance of
the two areas.

We argue that the evolutionary mechanism is inherently capable of optimising
a collection of entities. This capability comes forth from the interplay of three
basic actions: reproduction, variation, and selection. Whenever the entities in
question reproduce they create a surplus, variation during reproduction amounts
to innovation of novel entities', and finally selection takes care of promoting the
right variants by discarding the poor ones. This process has led to the Homo
Sapiens on Earth and to numerous superior solutions of engineering and design
problems in evolutionary computing [6]. Technically, an evolutionary process can
be perceived as a generate-and-test search algorithm regulated by a number of
parameters and it has two very interesting properties from a self-* perspective.
First, evolution is able to evolve itself, that is, to tune its own parameters on-
the-fly. Second, it is able to adapt itself to changing circumstances, that is, to
track optimal solutions after the objective function is changed.

We also argue that evolutionary computing is one of the key technologies that
can help meeting some of the grand challenges of autonomic computing. EC is
widely applicable, it requires almost no assumptions about the problem to be

! That is, in our case reproduction is not simply cloning.



solved, an evolutionary solver can be usually developed with limited efforts and
it produces good quality solutions at acceptable computational costs under a
wide range of circumstances. To illustrate our point we describe an evolutionary
approach to self-optimisation in a distributed system. Our example is a problem
concerning web services offered to a large number of users via a (possibly large)
number of servers. The quality of service is the key measure to be optimised and
re-optimised if the circumstances change, for instance, if the behaviour of the
users changes over time. The key to our approach is to have each user session
regulated by a number of parameters and allow variations in these parameters.
Adding selection based on the quality of service belonging to given parameter
values introduces survival of the fittest and makes the system evolutionary.

The paper is organised as follows. In Section 2 a general introduction to EC is
given. Section 3 provides more details on a specific type of EAs, evolution strate-
gies, and illustrates how self-adaptation works in EC. Thereafter, in Section 4,
an example application is described and an evolutionary approach is presented
to realise self-optimisation in the system. Besides specifying a concrete EA to
solve this problem, we also consider general properties of an evolutionary ap-
proach in such a context. The paper is concluded by Section 5, where we discuss
how and why developments in these two fields can be expected to help solving
great challenges in the other field.

2 Evolutionary Computing in a nutshell

Evolutionary Computing encompasses a variety of so-called evolutionary algo-
rithms [2,5, 6] that all share a common underlying idea: given a population of
individuals, the environmental pressure causes natural selection (survival of the
fittest), which causes a rise in the fitness of the population over time. The main
principle behind evolution, be it natural or computer simulated, can be sum-
marised as follows. If a collection of objects satisfies that

— they are able to reproduce,

their offspring inherits their features,

these features can undergo small random, undirected variations
these features effect their reproduction probabilities,

then the features of these objects will change over time in such a way that they
will fit their environment better and better.

In a formal setting, the environment is represented by a given quality func-
tion to be maximised.? The population is created by randomly generating a set
of candidate solutions, i.e., elements of the function’s domain, and the quality
function is used as an abstract fitness measure — the higher the better. Based on
this fitness, some of the better candidate solutions are chosen to seed the next
generation by applying recombination and/or mutation to them. Recombination

2 Handling minimisation problems only requires a trivial mathematical transforma-
tion.



is an operator applied to two or more selected candidates (the so-called parents)
and results one or more new candidates (the children). Mutation is applied to
one candidate and results in one new candidate. Executing recombination and
mutation leads to a set of new candidates (the offspring) that compete — based
on their fitness (and possibly age)— with the old ones for a place in the next
generation. This process can be iterated until a candidate with sufficient quality
(a solution) is found or a previously set computational limit is reached.

In this process there are two fundamental forces that form the basis of evo-
lutionary systems:

— Variation operators (recombination and mutation) create the necessary di-
versity and thereby facilitate novelty.

— Selection acts as a force pushing quality. As opposed to variation, selection
reduces diversity.

Based on the biological analogy one often distinguishes phenotypes and geno-
types of candidate solutions. The phenotype of a candidate is its “outside”, the
way it looks and/or acts. The genotype denotes the code, the “digital DNA”, that
encodes or represents this phenotype. It is an important to note that variation
and selection act in different spaces.

— Variation operators act on genotypes. Mutation and recombination never
take place on phenotypical level, for instance, changing a leg into a wing.
Rather, variation effects on the level of genes that determine the phenotype.

— Selection acts on phenotypes. A gene is never evaluated directly, it has to
be expressed as a physical feature or behaviour and it is this feature or
behaviour that gets evaluated by the environment and influences the survival
and reproduction capabilities.

The combined application of variation and selection generally leads to im-
proving fitness values in consecutive populations. It is easy (although somewhat
misleading) to see such a process as if the evolution is optimising, or at least “ap-
proximising”, by approaching optimal values closer and closer over its course.
Alternatively, evolution it is often seen as a process of adaptation. From this
perspective, the fitness is not seen as an objective function to be optimised, but
as an expression of environmental requirements. Matching these requirements
more closely implies an increased viability, reflected in a higher number of off-
spring. The evolutionary process makes the population increasingly better at
being adapted to the environment.

It is important to note that many components of such an evolutionary process
are stochastic. During selection fitter individuals have a higher chance to be
selected than less fit ones, but typically even the weak individuals have a chance
to become a parent or to survive. For recombination of individuals the choice of
which pieces will be recombined is random. Similarly for mutation, the pieces
that will be mutated within a candidate solution, and the new pieces replacing
them, are chosen randomly. The general scheme of an evolutionary algorithm
can is given in Fig. 1 in a pseudocode fashion.



BEGIN
INITIALISE population with random candidate solutions;
EVALUATE each candidate;
REPEAT UNTIL ( TERMINATION CONDITION is satisfied ) DO
1 SELECT parents;
2 RECOMBINE pairs of parents;
3 MUTATE the resulting offspring;
4 EVALUATE new candidates;
5 SELECT individuals for the next generation;
0D
END

Fig. 1. The general scheme of an evolutionary algorithm in pseudocode

It is easy to see that EAs fall in the category of generate-and-test algorithms.
The evaluation (fitness) function represents a heuristic estimation of solution
quality, and the search process is driven by the variation and the selection op-
erators. Evolutionary algorithms possess a number of features that can help to
position them within in the family of generate-and-test methods:

— EAs are population based, i.e., they process a whole collection of candidate
solutions simultaneously.

— EAs mostly use recombination to mix information of more candidate solu-
tions into a new one.

— EAs are stochastic.

Example: The Travelling Salesman Problem

In the Travelling Salesman Problem (TSP) the task is to find a tour (Hamil-
tonian circle) through n given locations with minimal length. An evolutionary
approach considers tours as phenotypes that are evaluated by their length, the
shorter a tour the higher its fitness. An appropriate genotype can be for instance
a permutation of n location IDs with the obvious genotype-phenotype mapping.
The essence of designing an EA for the TSP is to specify appropriate varia-
tion and selection operators (followed by defining the initialisation procedure,
termination condition, etc). To keep things really simple one could decide to
use mutation as the only variation operator and chose to mutate a permuta-
tion by swapping the values on two randomly chosen positions. As for selection
—remember, it is independent from what genotypes we use— one can use fit-
ness proportional random drawing. Whenever a good individual needs to be
selected from a population of m, any candidate ¢; is selected by a probability

pi = fitness(c;)/ > v, fitness(c;)

As mentioned before there are different EA variants. The most important
types, or “dialects”, are (in alphabetical order) evolution strategies, evolution-



ary programming, genetic algorithms, and genetic programming [2, 5, 6]. These
dialects differ only in technical details. For instance, the representation of a
candidate solution is often used to characterise different streams. Typically, the
candidates are represented by (i.e., the data structure encoding a solution has
the form of) strings over a finite alphabet in genetic algorithms (GA), real-
valued vectors in evolution strategies (ES), finite state machines in classical
evolutionary programming (EP), and trees in genetic programming (GP). These
differences have a mainly historical origin. Technically, a given representation
might be preferable over others if it matches the given problem better; that is, it
makes the encoding of candidate solutions easier or more natural. It is important
to note that the recombination and mutation operators working on candidates
must match the given representation. Thus, for instance, in GP the recombina-
tion operator works on trees, while in GAs it operates on strings. As opposed
to variation operators, selection takes only the fitness information into account;
hence it works independently from the actual representation.

Technically, an EA has numerous parameters. The precise list of parameters
and the way they are set are depending on the type of EA at hand. However,
in all cases one has to arrange the population, selection, and variation. The
following list illustrates some common parameters.

— Population size: the number of candidate solutions (typically kept constant
during a run). A small population allows faster progress but increases the
risk of getting stuck in a local optimum because it can only maintain fewer
alternatives, hence less diversity.

— Selection pressure: the extent of bias preferring the good candidates over
weak ones. High selection pressure causes faster progress but increases the
risk of getting stuck in a local optimum by being too greedy. Zero selection
pressure degrades evolutionary search into random walk.

— Mutation magnitude®: the parameter regulating the influence of mutation,
e.g., how often, how big, etc. Using more/larger mutation speeds up the
search but can prevent fine tuning on the optimum.

In the early days of EC it has been claimed that EAs have robust parame-
ters, i.e., that EAs are to a large extent insensitive to the exact parameter values.
Later on this claim has been revised and the contemporary view acknowledges
that using the right parameter values can make a big difference in algorithm
performance. The effects of setting the parameters of EAs has been the subject
of extensive research by the EA community and recently there is much attention
paid to self-calibrating EAs. The ultimate goal is to have a parameter-free algo-
rithm that can calibrate itself to any given problem while solving that problem.
For an extensive treatment of this issue [4] and [6, Chapter 8] are recommended,
[1] provides an experimental comparison between EAs using different levels of
self-calibration.

3 Mutation magnitude is not an established technical term in EC. It is used here as an
umbrella term covering the commonly used ones, like mutation rate, mutation step
size, etc.



3 Evolution strategies and self-adaptation

In this section we outline evolution strategies. Hereby we present a member
of the evolutionary algorithm family in details and illustrate a very useful fea-
ture in evolutionary computing: self-adaptation. In evolutionary computing self-
adaptivity means that some parameters of the EA are varied during a run in a
specific manner: the parameters are included in the chromosomes and co-evolve
with the solutions. This feature is inherent for evolution strategies, i.e., from the
earliest versions ESs are self-adaptive, and during the last couple of years other
EAs are adopting self-adaptivity.

Evolution strategies are typically used for continuous parameter optimization
problems, i.e., functions of the type f : IR" — IR, using real-valued vectors as
candidate solutions. Parent selection is done by drawing A individuals with a
uniform distribution from the population of i, where A > p (very often /A is
about 1/7). After creating \ offspring and calculating their fitness the best
of them is chosen deterministically either from the offspring only, called (u, \)
selection, or from the union of parents and offspring, called (p + A) selection.
Recombination in ES is rather straightforward, two parent vectors @ and v create
one child w, where

wi — { (u; +v;)/2 in case of intermediary recombination (1)
¢ u; or v; chosen randomly in case of discrete recombination

The mutation operator is based on a Gaussian distribution requiring two
parameters: the mean, which is always set at zero, and the standard deviation
o, which is interpreted as the mutation step size. Mutations then are realised by
replacing components of the vector T by

where N(0,1) denotes a random number drawn from a Gaussian distribution
with zero mean and standard deviation 1. By using a Gaussian distribution here,
small mutations are more likely then large ones. The particular feature of muta-
tion in ES is that the step-sizes are also included in the chromosomes. In the sim-
plest case one o that acts on each z;, in the most general case a different one for

each position ¢ € {1,...,n}. A typical candidate is then (z1,...,2n,01,...,0%)
and mutations are realised by replacing individual (x1,...,2n,01,...,0,) by
(@,...,2h,00,...,00), where
o =c- eT»N(OJ) (3)
x, =xz; + 0" - N;(0,1) (4)

and 7 is a parameter of the method.

By this mechanism the mutation step sizes are not set by the user, they
(the & part) are co-evolving with the solutions (the Z part). To this feature it
is essential to modify the o’s first and mutate the x’s with the new o values.



The rationale behind it is that an individual (Z, 5) is evaluated twice. Primarily,
it is evaluated directly for its viability during survivor selection based on f(Z).
Secondarily, it is evaluated for its ability to create good offspring. This happens
indirectly: a given ¢ evaluates favourably if the offspring generated by using it
turns viable (in the first sense). Thus, an individual (Z,&) represents a good T
that survived selection and a good & that proved successful in generating this
good T.

Observe that using self-adaptive mutation step sizes has two advantages: 1)
the user does not have to bother about it, the EA does it itself, 2) parameter
values are changing during the run. In general, modifying algorithm parame-
ters during a run is motivated by the fact that the search process has different
phases and a fixed parameter value might not be appropriate for each phase.
For instance, in the beginning of the search exploration takes place, where the
population is wide spread, locating promising areas in the search space. In this
phase large leaps are appropriate. Later on the search becomes more focused,
exploiting information gained by exploration. During this phase the population
is concentrated around peaks on the fitness landscape and small variations are
desirable.

There are various techniques in evolutionary computing to adjust algorithm
parameters (also called strategy parameters) on-the-fly [6, Chapter 8]. Self-
adaptivity is one such technique, where the parameters are changed by the algo-
rithm itself with only minimal influence from the user. In case of self-adaptation
of parameters the algorithm is performing two tasks simultaneously: It is solv-
ing a given problem and it is calibrating (and repeatedly re-calibrating) itself
for solving that problem. While in theory this implies a computational overhead
that could lead to reduced performance, the practice of ES —and many other
EAs adopting self-adaptive features— show the opposite effect.

A convincing evidence for the power of self-adaptation is provided in the
context of changing fitness landscapes. In this case the objective function is
changing and the evolutionary process is aiming at a moving target. When the
objective function changes, the present population needs to be re-evaluated, and
quite naturally the given individuals may have a low fitness, since they have
been adapted to the old objective function. Often the mutation step sizes will
prove ill-adapted: they are too low for the new exploration phase required. The
experiment presented in [8] illustrates how self-adaptation is able to reset the
step sizes after each change in the objective function without any user interven-
tion. Fig. 2 shows that the location of the optimum is changed after every 200
generations (z-azes) with a clear effect on the average best objective function
values (y-azis, left) in the given population. Self-adaptation is adjusting the step
sizes (y-azes, right) with a small delay to larger values appropriate for exploring
the new fitness landscape, thereafter the values of o start decreasing again once
the population is closing in on the new optimum.

Over the last decades much experience has been gained over self-adaptation
in ES. The accumulated knowledge has identified necessary conditions for self-
adaptation:



1.0l }

0.001

le-04

1e-05

1e-10

200 400 600 800 1000

) 200 400 600 800 1000 1efOGO

Fig. 2. Moving optimum ES experiment on the 30 dimensional sphere function. See
text for explanation.

— > 1 so that different strategies are present

— Generation of an offspring surplus: A > pu

— A not too strong selective pressure (heuristic: \/u =7, e.g., (15,100))

— (u, A)-selection (to guarantee extinction of misadapted individuals)

— Recombination also on strategy parameters (especially intermediate recom-
bination)

4 The web service example

In this section we show how an evolutionary approach can be used to build
autonomic computing systems, or at least how EC can be utilized to solve some
of the key problems raised within autonomic computing, in particular that of
real-time self-optimisation. To this end, we introduce an example problem that
serves to illuminate the matter. Note, that the point is not to solve the example
problem, but to show how the generic “evolutionary trick” can be applied to
solve challenges in autonomic computing.

4.1 The web service example: the optimisation problem

Let us assume some web service to a large number of visitors. Without loss
of generality we can also assume that the service is provided by a number of
service units, e.g., M web-servers offering the same service through the same
URL such that the visitors do not even notice whether their session is conducted
by unit A or unit B. The main task here is to maximise the service level g. We
can assume that the service level g is defined as some combination of the time
spent with obtaining the service (shorter session, higher service level) and the
degree to which a request could be satisfied (higher degree, higher service level).
Furthermore, we postulate that each session conducted with a visitor of the given



web site is regulated by a parameterized procedure, using a parameter vector
p. This parameter vector can consist of values encoding, for instance, colour,
arrangement, etc. of the web pages used, the (type of) messages presented to
the visitor, applied pricing strategy, the sub-page hierarchy, subroutines used in
a session, ordering of databases consulted in a session, etc. Formally, the values
within p can be Booleans, integers, reals, or even a mixture of them and we have
a parameter optimization problem, since we want to use those p vectors that
maximise g, that is, we want to conduct sessions that maximise service level.
In the following we will illustrate how this can be done in self-* style using an
evolutionary approach.

4.2 The web service example: individuals, population, fitness

The basis of this evolutionary approach is to consider a given p as an individual
whose fitness is ¢g(p) and to set up a system where a population of individuals
undergoes variation and selection.

To introduce a population we must allow that different values of p are used
simultaneously, i.e., visitor 1 can be serviced by using a procedure belonging to
P1, while the interaction with visitor 2 can take place by using po. After finishing
a session the quality of the parameter p used in the session can be determined by
calculating the corresponding service level g(p). It can be argued that calculat-
ing g(p) should be based on more than one sessions with p. Technically, this is a
simple extension having no influence for the present discussion. Having specified
parameter vector p and the utility function g we have the most fundamental re-
quirement for an evolutionary process: an evaluation function or fitness function
applicable to a population of individuals. Then, at all times we can maintain a
set of N parameter values (and call N the population size). Invocation of param-
eter values, that is assigning some p from the given population to a new session,
must be also regulated in some way, but these details are not important for the
present discussion either. What is important is the distinction between the pool
of service units (consisting of M elements) and the pool of N p values, being the
population to be evolved. The key to real-time self-optimisation of the system
consisting of the service units is to evolve this population of parameter values.
Technically this requires variation and selection operators.

4.3 The web service example: variation

Variation can be handled in a rather straightforward way: using common muta-
tion operators from EC we can specify small random perturbations to a given
value p, yielding p’. Alternatively, if there are no appropriate off-the-shelf muta-
tion operators, one can design application specific mutation — this is mostly not
too difficult. For a well-defined procedure we also have to define when to apply
variation. A simple heuristic for this is to create a child p’ to p as soon as p gets
evaluated, i.e., g(p) is calculated. Of course, there is no need to restrict ourselves
to mutation only, and also recombination can be used to create new individ-
uals. Here again common recombination operators from EC can be applied to



two parent vectors p; and po, or designed for the specific needs. (This might be
more difficult than inventing mutation operators.) Depending on the operator
the result can be one or two new vectors. For specifying when recombination is
applied we can use a heuristic similar to that concerning mutation.

4.4 The web service example: selection

Selection is a bit more complicated than variation in our case. To begin with
parent selection, we can keep it very simple and unbiased, that is, not related
to the fitness of the individuals (utility of the parameter vectors). This can be
achieved by the heuristic mentioned above and mutate every individual after it
gets evaluated, regardless to its fitness. As for recombination we can apply this
heuristic too but we also need to specify how to select a second parent ps, for a
given p;. Here we can use a random choice based on the uniform distribution,
giving every other individual in the population an equal chance.

Concerning survivor selection we will consider two options: local competition
and global competition. The basic idea behind local competition is that each
newborn child competes with its parent(s) directly. In this case each new p’
must be used in a session as soon as possible after its “birth” to calculate its
utility, that is, its fitness value. This might imply a requirement for the invoca-
tion procedure, but we do not discuss this aspect here. What is important for
meaningful selection is that a parent p is kept in the population (and probably
used again) until its offspring p’ gets evaluated. When ¢(p) and g(p’) are both
known then we select either of them based on g and delete the other one. This
selection can be deterministic (keep the winner) or probabilistic giving the win-
ner a higher chance to survive. Note that some form of additional population
management might be required here if we allow that a waiting parent (a given
P whose offspring p’ is not evaluated yet) can be invoked and used in a session.
This extra bookkeeping is needed to ensure that no individual is being deleted
too early, yet minimising the period during which parents and offspring under
evaluation co-exist.*

Global competition is based on the idea to let parents and children co-exist
for a while and consequently to let populations grow. During such a predefined
period of growth, called epoch, no individual is deleted. The length of an epoch
can be specified as a given number of fitness evaluations (parameter vector in-
vocations), successful sessions, wall-clock time, etc. Children born in this period
are added to the population without restriction and are being used to seed ses-
sions, thereby getting evaluated. At the end of an epoch, the population size can
be reset to its initial value N by selecting N individuals for survival based on
their fitness. Here again, the selection can be deterministic (keeping the best N)
or probabilistic giving better individuals a higher chance to survive.

4 Notice that such a co-existence would mean that the population size is not constant.



4.5 The web service example: system review

Our web service application has a number of properties worth further consid-
eration. From the perspective of the whole system, it is an example of self-
optimisation. Starting with a set of randomly generated or manually engineered
session handling strategies (that is, a population of vectors p), the system is
continuously improving the service level (optimising ¢(p)). In principle, the sys-
tem is also able to cope with changing circumstances, for instance changes in
the types of visitors requiring new strategies to provide high quality service.
Population-based search methods, like EAs, are in general capable of tracking
moving optima, although for applications where coping with time varying ob-
jectives is essential specific extensions might be required to boost this property,
cf. [3] and [6, Chapter 13.4].

From an evolutionary computing perspective we can observe that the EA
as described above has no selection pressure (i.e., positive bias towards fitter
candidates) during parent selection, only during survivor selection. This is, in
principle, no problem. To prevent degradation to random walk, an EA must
have selection pressure somewhere, either in parent or in survivor selection, but
not necessarily in both. Many common EAs have fitness-related bias only in
one selection procedure, e.g., generational GAs have no survivor selection (all
children survive), while evolution strategies “lack” parent selection. It would not
be difficult, however, to add bias when selecting parents in our system. We could
simply require that invocation of a vector p from the population for a new session
be based on fitness information (the utility function g).

As opposed to regular EAs, where population updates are neatly arranged
consecutively, here we have a completely asynchronous process, where at a given
time some individuals might undergo evaluation (by being used in a user session),
some others might be mutated (because their session has just been finished), and
yet others might be being deleted. For this reason, the evolutionary process in
our example shows more resemblance with natural evolution than most EAs do.
Technically, we could say that our EA is performing distributed optimisation
in the sense that different candidate solutions are processed independently (in
different sessions), possibly on different machines (web servers). A good solution
found in some “corner” of the system, however, can quickly proliferate — in an
evolutionary system highly fit individuals will always dominate weaker ones and
spread over time.

Another aspect where our system is more “natural” than many other EAs is
the behaviour based evaluation. In most EA applications the problem at hand
can be modelled in such a way that the fitness function is a straightforward
input-output mapping, a formula. Think, for instance, of the TSP example in
Section 2 of this paper, where we only need a simple sum of distances of the
edges represented by a permutation to calculate its fitness. In the web service
example application a candidate solution has to do something, rather than just
be something. A trivial consequence of this is that fitness evaluations can take a
long time, in our case a whole session with a visitor of the web site. In general,
this implies that relatively few candidates can be evaluated in a given amount



of time. In other words, evolution will be relatively slow. Large populations
and/or many generations are usually advantageous for getting good results, but
in our case these might not be feasible. This might cause progress at a slow
rate and necessitate special (application dependent) tricks to obtain satisfactory
performance.

Last, but not least, let us note that there is no self-adaptation, or any other
mechanism, in this EA to change its own parameters on-the-fly. The EA is ap-
plied for real-time (self-)optimisation of the system providing the web services
without optimising itself. This shows that self-adaptation on EA level is not a
requirement for self-optimisation on system level.

5 Links between evolutionary and autonomic computing

From the self-* perspective we can summarise the most important properties of
evolutionary algorithms as follows:

1. EAs form a (meta)heuristic that can be used to solve optimisation problems.
By the presence of a population of candidate solutions EAs are inherently
suited to cope with time varying optimisation objectives.

2. EAs need to be optimised themselves, in particular, their parameter settings
have to be determined appropriately for maximum performance. Because
evolutionary search consists of different stages, optimal parameter values
depend on time.

3. EAs are capable to perform real-time self-optimisation. To this end, self-
adaptation is a particularly successful technique that is able to determine ap-
propriate algorithm parameters following the progress of the search process,
thus handling time dependency of optimal parameters given a stationary
problem. Furthermore, it can also deal with changing objectives, resetting
and re-optimising parameters automatically, without any user intervention.

4. EAs are inherently distributed and parallelisable because different members
of the population can be naturally allocated to different processors.

It is rather clear from this list that evolutionary computing in general, and
existing techniques within evolutionary computing in particular, can be used
to meet some canonical challenges in autonomic computing, for instance, self-
optimisation. Additionally, the evolutionary paradigm can serve as a source of
inspiration, or let us say as a generic approach, to achieve other self-* properties,
like self-configuration or self-healing. There exists related work also advocating
population based approaches, such as multi-agent systems and ant-colony opti-
misation [9, 7].

To see the relevance of autonomic computing to evolutionary computing let
us recall the problem of parameter control in EC. During the last decade it
become increasingly clear within the field that the numerous EA parameters
have a complex relationship with each other, or more precisely, a combined, non-
linear influence on algorithm performance. Since non-linear problems with many
interacting parameters belong to the niche of EC, it is a natural idea to use an



evolutionary system to optimise itself on-the-fly, cf. [4] and [6, Chapter 8]. Self-
optimisation or self-configuration has thus became one of the great challenges
of evolutionary computing. Existing techniques, like self-adaptation of mutation
step-sizes, can solve this problem partially, but a completely parameterless EA
requires much more, for instance regulating selection pressure, population size,
mutation and recombination parameters simultaneously. From this perspective,
an evolving system can be seen as a special case of an autonomic system and it
can be expected that some solutions invented within autonomic computing can
be transferred to EC, meaning indeed that the two fields would share solutions
to common problems.

Acknowledgement

I am grateful for M. Jelasity for the discussions about a suitable application
example.

References

1. T. Béck, A.E. Eiben, and N.A.L. van der Vaart. An empirical study on GAs “without
parameters”. In M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, J.J. Merelo,
and H.-P. Schwefel, editors, Proceedings of the 6th Conference on Parallel Problem
Solving from Nature, number 1917 in Lecture Notes in Computer Science, pages
315-324. Springer, Berlin, Heidelberg, New York, 2000.

2. T. Béck, D.B. Fogel, and Z. Michalewicz, editors. Fwvolutionary Computation 1:
Basic Algorithms and Operators. Institute of Physics Publishing, Bristol, 2000.

3. J. Branke and H. Schmeck. Designing evolutionary algorithms for dynamic opti-
mization problems. In A. Ghosh and S. Tsutsui, editors, Advances in Evolutionary
Computating: Theory and Applications, pages 239—-262. Springer, Berlin, Heidelberg,
New York, 2003.

4. A.E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolutionary
algorithms. IEEE Transactions on Evolutionary Computation, 3(2):124-141, 1999.

5. A.E. Eiben and M. Schoenauer. Evolutionary computing. Information Processing
Letters, 82:1-6, 2002.

6. A.E. Eiben and J.E. Smith. Introduction to Evolutionary Computing. Springer,
Berlin, Heidelberg, New York, 2003.

7. Luca Maria Gambardella. Engineering complex systems: Ant colony optimization
to model and to solve complex dynamic problems. In SELF-STAR: International
Workshop on Self-* Properties in Complex Information Systems. Bolgna, Italy, June,
2004.

8. F. Hoffmeister and T. Back. Genetic self-learning. In F.J. Varela and P. Bourgine,
editors, Toward a Practice of Autonomous Systems: Proceedings of the 1st European
Conference on Artificial Life, pages 227-235. MIT Press, Cambridge, MA, 1992.

9. Gerald Tesauro, David M. Chess, William E. Walsh, Rajarshi Das, Alla Segal, Ian
Whalley, Jeffrey O. Kephart, and Steve R. White. A multi-agent systems approach
to autonomic computing. Technical Report RC23357 (W0410-015), IBM research
Division, October 2004.



