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Abstract

By combining the Open Kernel Environment, a Click-like software model known as
Corral and basic concepts of active networking, we allow third-party code to control
the code organisation of a network node at any level, including kernel and network
card. We show how an active network environment was implemented and how this
environment allows slow active code to control the code organisation of the fast
path. The underlying code is structured much like components in a ‘Click’-router
that may be connected or disconnected at runtime. Not only are active packets
permitted to reconfigure predefined native components in the networking code, by
using the safe programming model of the open kernel environment they are also
able to load and link their own native components at any place in the datapath and
at any level in the processing hierarchy.
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1 Introduction

For reasons of safety, programmability of a node by third party code (e.g, for
purposes of network monitoring or active networks) tends to be implemented
by sandboxing such code in user space. Moreover, the code is often interpreted
in a virtual machine. Even in non-active environments interpreters are frequently
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used, especially when application-specific code is loaded in the kernel. A well-
known example is packet filtering in BPF, where the packet filters consist of
expressions in a special-purpose language that is known to be safe and that is
interpreted in the kernel [MJ93].

Interpreted solutions, however, tend to be slow. Moreover, in this paper we
argue that better alternatives exist. In previous work, we have already shown
how the open kernel environment (OKE) allows fully optimised native code to
be loaded in a Linux kernel by parties other than root in a safe manner [BS02a].
The OKE provides a safe, resource-controlled programming environment: code
can be restricted in stack, heap and CPU usage, as well as in the access
to kernel functions and memory. The amount of restriction depends on the
privileges given to the code-loading party in the form of credentials. Sample
applications in the field of packet transcoding showed that carefully-written
OKE code significantly outperforms implementations that filter packets in the
kernel while processing them in userspace.

In this paper, we describe the implementation of the OKE Corral (Code
Organisation and Reconfiguration at Runtime using Active Linking), an environment
that allows one to extend and modify a node’s software configuration in all
processing levels (e.g. kernel, userspace) at runtime. As a practical example, it
is shown how the OKE Corral was used to build a high-speed active network
(AN). We emphasize that ANs serve only as an example target domain. The
framework can be used in any situation where safe and convenient programming
of the kernel for purposes of fast packet processing is required.

The contribution of this work is that three novel technologies in the field of
networking and open systems (the OKE, a Click-like software model and active
networks) are combined to provide a platform for fast programmable packet
processing with explicit separation between control and data flow. Since our
first presentation of the OKE Corral in [BS02b], we have extended the system
to make it both more open and more extensible. This paper describes the
current state. In the OKE Corral high-speed packet processing is managed by
slow-speed control code. The key features are summed up as follows:

(1) We borrow the LEGO-like software organisation that is advocated in
the ‘Click’ router project [CM01] both to build fast data-paths and to
implement paths for control traffic. This component is known as the
‘Corral’ and, as will be shown later, differs from Click in various aspects.

(2) Currently, one of the components on the control path is an AN runtime in
user space (if required, the control path can also be used for data packets,
but because the control path is fairly slow, this is much less efficient).

(3) Configuration and implementation of all remaining control and data path
components can be initiated both by active packets or remote parties.

(4) The OKE is used to ensure that kernel-level implementations of the path
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components are safe.

The idea is that slow-speed third parties can configure the software configuration
of a host’s fast path by replumbing a Corral configuration (e.g., by employing
active packets). Moreover, the third parties may cause new elements to be
introduced in a running configuration. Such elements consist either of unrestricted
C code or of resource controlled code running in the OKE. Which type of
code should be used when depends on the programmer’s privileges and on the
potential harm that can be caused by the element.

Although many of the individual components are not new, to the best of
our knowledge there does not exist any system that provides the following
combination of features in a commonly used operating system: (a) full programmability
of both kernel and user space with optimised native code, (b) while still
providing resource control and safety with respect to memory, CPU, available
API, etc., (c) in addition to flexibility in the amount of programmability
permitted on a node, and (d) where control over fast native code components
is exercised by slow-speed active applications (AAs), (e) by means of a simple
’Click-like’ programming model. The more recent RBClick project of the
University of Utah has similar goals as the OKE Corral, but differs in important
aspects, as explained in Section 5.

The OKE Corral described in this paper has been fully implemented and a
prototype implementation has been evaluated (see Section 4). Both the OKE

and the Corral can be downloaded from http://www.liacs.nl/∼herbertb/

projects/{oke,corral}. We stress, however, that not all issues concerning
the use of the OKE for active networking are addressed in this paper. In
particular, we have not considered the question of heterogeneity (shipping fully
compiled and optimised code in a highly heterogeneous environment), or the
question of scaling the trust relationships to networks as large as the Internet
(as the OKE relies on trusted compilers, the issue of whether and under what
circumstances to trust compilers in a remote domain is non-trivial). A possible
solution to both problems might be to ship the code in source format and trust
only local compilers.

The remainder of this paper is organised as follows. The OKE Corral architecture
is discussed in Section 2, and the prototype implementation of the architecture
in Section 3. The protoype is evaluated in Section 4. Related work is discussed
in Section 5, and conclusions are drawn in Section 6.
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2 Architecture

As indicated by the numbers in Figure 1, the OKE Corral implementation
as discussed in this paper builds on three technologies: (1) the open kernel
environment, (2) one or more AN runtimes, and (3) the Corral, i.e., packet
channels that implement control and data paths and link the various components
seen by the packets as they traverse the network node (e.g., processing elements
and queues, represented by the black boxes in Figure 1). The details of all
elements of Figure 1, as well as the way in which they interact will be explained
below. We should mention that the configuration in Figure 1 is an example
configuration only. As the OKE Corral provides an environment to build
efficient packet processing environments (such as active nodes), rather than
a full-fledged active node in its own right, the configuration of engines and
queues may vary from application to application (and indeed from active
network to active network). And so while we stress that the OKE Corral

can be applied in many different domains, for clarity we will assume in the
remainder of this paper that the application domain is ANs. To the right of
our example AN architecture in Figure 1, we have indicated an approximate
mapping of OKE Corral components on the DARPA reference architecture
of an active node. By necessity this is only an approximation. For instance,
depending on the configuration the kernel may or may not be dynamically
programmed (i.e., run AAs in its execution environment).

Fig. 1. Overview of the OKE Corral (example configuration only).

2.1 Corral terminology

Before discussing the architecture in detail, we need to introduce some of the
terminology. While the terminology is intuitive and coincides to a large extent
with that of the Click router project, there are some differences.
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Processing elements in the OKE Corral are known as ‘engines’ and ‘queues’.
Queues, such as FIFOs and stacks, are static: they only function as queues
and wait for data to be pushed to and pulled from them. Engines, on the
other hand, are active elements and implement a run() method. An example
is the pump element described below. Engines and queues have multiple input
and output ports that may be logically attached to other elements to form
connections (drawn as arrows in Figure 1). By adding or deleting elements
and connections in a running system, a Corral application can be changed at
runtime. Both the framework and the elements are implemented in ANSI C
in an ‘object-oriented’ fashion. A connection between two elements is possible
only when the output from the source port and the input from the destination
port are of the same type. The type can be a simple type (e.g., an integer, or
a float), or a complex type (e.g., a struct, or a packet). Different ports of an
element can be used for different types. For instance, an element that receives
IP packets on one of its input ports and sends them out on output port 1,
may use output port 2 to report the (integer) packet count. Connections are
point-to-point only.

Data transfer

Elements exchange data over the connections. A data transfer whereby the
source element takes the initiative is called a push operation, while a transfer
initiated by the destination is called a pull operation. Connections are always
either of the push or the pull type. Elements are normally also either ‘push’
or ‘pull’, but hybrid forms, known as pumps and queues are also possible. A
pump is a ‘pull-to-push’ element, i.e., it pulls data from a source element and
pushes it to a destination element. Thus a pull is changed into a push.

The inverse of a pump is a queue. A queue accepts pushes (of data items) on
its input, and pulls on its output. Most queues may be filled and emptied by
more than one element. As shown in Figure 1, elements are connected and
disconnected at runtime via control operations.

The path followed by a particular packet is known as a “channel”. In Figure 1,
for example, the path formed by the entry engine, the two boxes on the right
of the entry element, and the exit element is a channel. Channels consist of
“subchannels”, which start at an engine and end either at a queue, or at the
packet exit element. For example, the channel from the packet entry engine
via the execution environment to the packet exit engine consists of at least the
following two subchannels: (1) from entry to queue, and (2) from the engine
in user space all the way to the exit engine. Subchannels are either push or
pull. In order to reduce complexity in configurations with many elements, we
are currently working on aggregation at the level of subchannels, i.e., treating
entire subchannels as a single element with a unique identifier. However, this

5



is not yet fully implemented.

Element classes

All elements in the Corral are instances of element ‘classes’ that exist in the
Corral. If an element class does not exist at a specific host, an element of that
class cannot be instantiated. It will be shown later that element classes can
be loaded and unloaded at runtime. Elements can hold data and memory to
hold this data is generally allocated when the element is instantiated. Different
instances of element classes are independent; they use the same functions, but
do not share data (although data sharing can be easily programmed into an
element class).

Code domains

In contrast to the Click approach, elements may reside in the kernel, on
a network processor, in user space, or even on remote machines. Wherever
they reside is known as the element’s “domain”. Similarly, they may exist
either inside the OKE (in which case they are subject to checks and resource
limits, as explained later), or as native, unprotected code. Even the execution
environment (EE) which is shown outside the OKE box could easily be moved
inside the OKE. In other words, Figure 1 only serves as a high-level overview
of one of many possible configurations.

The packet classifier in the figure determines which packets will be relegated
to the AN’s channels. It is really part of the OKE environment setup code
(ESC) for the AN, but we will see that it lies beyond the reach of the AN and
this is why it is drawn outside of the OKE’s box.

2.2 OKE, Corral and AN runtime interaction

When an AN runtime is instantiated, it is initially provided with a channel
consisting of two engines: the packet entry engine and the packet exit engine.
All the AN’s packets are first pushed to the entry engine, which pushes them
to the exit engine, from where they are transmitted onto the network. Each
of the pushes is implemented as a function call, and is executed immediately
and in the same thread of control.

The AN is allowed to disconnect the two engines, reconnect them, or connect
them to new components inserted between these engines, all at runtime. For
example, a trivial AN implementation might take the following steps to receive
all packets in its runtime: (1) disconnect the two engines, (2) reconnect the
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entry engine to queue (which is a standard component in the OKE Corral,
which can be used as much as the AN’s resource limits allow), (3) implement an
engine’s interface for the runtime (essentially making the runtime a userspace
domain engine itself which ‘pulls’ packets from the queue and pushes them up
into the runtime), and (4) implement the runtime’s send operation as a push
to the exit engine. From that moment onward, all incoming packets classified
as AN traffic are automatically pushed onto the queue, and from there pulled
up into userspace.

Standard element classes and new ones

The AN is given a set of standard components (engines and queues) with
which to build channels, subject to the privileges given to the AN. Depending
on their tasks, these standard components can be highly optimised and may
incur few (if any) safety checks at runtime. Besides such standard components,
the AN is able to load entirely new components at any level of the processing
hierarchy, including the kernel. There are two possibilities for loading code in
the kernel.

‘Normal’ elements First, given the appropriate privileges (in the form
of credentials), users may load ‘normal’ element classes, written in C and
compiled by any C compiler. For safety, rhe Corral provides fine-grained
admission control. For example, credentials may specify that only certain
classes can be loaded by a user (elements and element classes are uniquely
identified by their MD5 or SHA-1 checksums), and that instantiations of a
class may only be connected to specific other elements that are also owned
by this user, and so on. Credentials are signed by an ‘authority’ and may be
delegated. In other words, a host’s local policy P may permit a user U1 to
perform all operations in set S1. U1 may now create a credential C1 for user
U2 to perform all operations in S2 ⊆ S1. U2 may in turn create a credential
C2 for U3 to perform operations in S3 ⊆ S2. As long as U3 presents both C1

and C2, he/she will be able to perform all operations in S3. Using the identity
of S3 and the unforgeable credentials generated by S1 and S2, the admission
control system is able to check that the request complies with P .

In general, the ability of a party to load such ‘non-sandboxed’ elements in the
kernel should depend on the extent to which this party is trusted and on the
potential harmfulness of the code. For instance, it is probably acceptable to
provide most users with credentials for loading a well-known and safe packet
counter, to be connected to other elements owned by this user. On the other
hand, the permission to load completely unknown elements should only be
given to highly privileged users, such as the system administrator.
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OKE elements Second, in the OKE Corral, even unknown native code
from an untrusted party can be loaded in the kernel as long as the OKE is
used. The OKE is able to restrict code according to the code-loading party’s
privileges. Privileges are again communicated in the form of credentials. In
OKE terminology, a client’s credentials determine its role. In this way, a
highly untrusted party may be allowed to load code with very few privileges
and many dynamic checks, while a highly trusted party (e.g., the system
administrator) may benefit from a much more relaxed security policy. The way
this is implemented in the OKE will be discussed in more detail in Section 3.1.

2.3 Control and data channels

Using the above techniques, an AN is able to build fast channels where processing
is done in optimised native code and where the next processing stage is always
just a function call away. At the same time channels are also used to implement
slow-speed control paths which commonly lead to AN runtimes in user space
(or even on remote hosts) and which are used to carry the active packets.
The active packets contain the control code. Given the appropriate privileges
they are able to replumb, or add new elements to, the data-path. Using OKE

and privileges in the form of credentials, the amount of programmability that
is allowed on the data-path is configurable, which is useful if programmable
networks are to scale to the size of the Internet.

3 Implementation

In the following three subsections, we will discuss in detail the main components
that make up the OKE Corral.

3.1 The Open Kernel Environment

Allowing third-party code into the kernel normally jeopardises security constraints
as the code can ‘do anything’. From a performance perspective, on the other
hand, it would be useful. In the OKE, instead of asking whether or not a party
may load code in the kernel, we ask: what is such code allowed to do there?
Trust management is used to determine the privileges of user and code, both
at compile time and at load time. Based on these privileges a trusted compiler

may enforce extra constraints on the code (over and above those imposed by
the normal language rules). As a result, the generated code, once loaded, may
incur dynamic checks for safety properties that cannot be checked statically.
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Recently, the OKE mechanisms were tested on network processors [BS03]. The
complete system allows third parties to load code not only in the kernel, but
also on the microengines of an IXP1200 network processor.

In this paper we only give a high-level overview of the kernel version of OKE.
A detailed explanation is presented in in [BS02a] and the work on network
processors is described in [BS03]. For the present discussion, two components
of the OKE are essential: (1) the code loader, which loads a user’s code in the
kernel, and (2) the bygwyn compiler, which compiles user code according to the
rules corresponding to the user’s privileges. Both are also shown in Figure 1.

3.1.1 Codeloader

The existing Linux code loading facilities have been extended with a new
code loader (CL) which accepts object code, together with authentication and
credentials, from any party. Anyone with the right credentials for the code is
allowed to load it into the kernel, so there is an (implicit) record of who is
authorised to load what modules. The CL checks the credentials against the
code and the security policy and loads the code if they match. The CL is used
for loading both ‘normal’ and ‘OKE’ Corral element classes. The process is
illustrated in Figure 2.

The trust scheme and authorisation checks are implemented using KeyNote [BFIK99]
and the OpenSSL library. At start-up time, the CL loads a security policy,
which contains the public keys of the clients that are permitted to load kernel
modules. The CL and ‘trusted’ clients are then able to delegate trust to other
clients as described in Figure 2. Privileges are encoded in credentials containing
the public keys of both the authoriser and the licensee, as well as the ‘rights’
granted by the authoriser to the licensee. For example, an authoriser may grant
the right to ‘load a module of type X or type Y, but only under condition Z’.
A ‘type’ here denotes the privileges given to the code, e.g., to access certain
kernel data structures, to use a certain number of cycles and a certain amount
of memory, etc. The ‘condition’ may contain environment-specific stipulations,
e.g., that loading rights are only valid during office hours. A module type is
instantiated when source code corresponding to the type is compiled. The
trusted OKE compiler generates an unforgeable ‘compilation record’ which
proves that module M (identified by its MD5 or SHA-1) was compiled as type
T by this compiler.

3.1.2 Language issues

When loading third-party code in the kernel, problems arise when it is allowed
to follow arbitrary pointers, call arbitrary functions, use unrestricted amounts
of CPU time, etc. It is crucial that we guard against malicious or buggy code.
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Kernel

User

module A

module B

module C

Code Loader

module C

"credentials"
user

Fig. 2. User loads module in the kernel

What we have tried to avoid, however, is the definition of yet another safe
language which is only useful for implementing filters, say, and/or runs inside
an interpreted environment. The problem with such ‘little languages’ is that
they necessarily restrict towards the lowest common denominator, while we
would like to have a single language that is automatically restricted on the
basis of explicit privileges. A single language is preferable for many reasons,
e.g., consistency, learnability, maintainability, flexibility (new requirements
can be catered to by the same language), etc. Moreover, the interaction with
the rest of the kernel is an issue. All users benefit from using a language like
C to facilitate the interfacing of their code to the rest of the kernel.

We therefore allowed a C-like programming language to be restricted in such
a way that, depending on the client’s privileges more or less access is given to
resources, APIs and data (and/or more or less runtime overhead is incurred).
As C itself is not safe and the possibilities of crashing or corrupting a kernel
using C are endless, we opted for Cyclone, a type-safe version of C which
ensures safe use of pointers and arrays, offers fast, region-based memory protection,
and inserts few runtime checks [JMG+02]. However, for true safety and speed,
we needed both more and less than what is offered by Cyclone. For example,
safe usage of dynamically allocated memory in Cyclone depends on the use
of a garbage collector, which we had to reimplement completely to make it
work in a Linux kernel. Many of the really hard problems (such as resource
limitation, module termination, and the sharing of memory/pointers with the
rest of the kernel) are also not solved by Cyclone. We therefore created our
own dialect of the Cyclone programming language, known as ‘OKE-Cyclone’.

3.1.3 The Bygwyn compiler

The restrictions are enforced by a trusted compiler, known as bygwyn 1 . Bygwyn

is customisable, so that in addition to its normal language rules, it is able to
apply restrictions on resource usage. If restriction X is applied, a program is
subjected to the compiler’s default rules plus the additional rules corresponding

1 Incidentally, the name derives from: ‘You can’t always get what you want, But
You Get What You Need’, by the Rolling Stones, which seems appropriate.
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to restriction X. The restrictions may include language constructs. For example,
some language constructs may be removed from the language entirely. If after
such a restriction the compiler encounters the forbidden construct, it generates
an error. Moreover, the OKE controls the resource usage of the module at
runtime (e.g., in terms of CPU, stack and memory usage, APIs, etc.)

The key idea is that the resource restrictions to be used for a user’s program
depend on the user’s role. In other words, users present their credentials to the
compiler, and the credentials determine which customisations are applied. This
is illustrated in Figure 3. Customisation types have unique identifiers, called
customisation type identifiers (CTIDs). After compilation, bygwyn generates
a signed compilation record containing both the CTID and the MD5/SHA-1
of the object code, explicitly binding the code to a type. Observe that the
compilation rights are similar to the loading rights, but that the two policies
are decoupled, so that, theoretically, users may generate code that they will
not be able to load. Given this, we allow security policies to be specified of the
form ‘a user with authorisation X is allowed to load code that is compiled with
customisation Y’. Once loaded, the code runs natively at full speed, containing
as many or as few runtime checks as necessary for this role.

module C

user
kernel
module

Bygwyn

"credentials"

extra rules
for this user

compile and ’sign’

CTID  C’s MD5

Fig. 3. User compiles kernel module

3.1.4 Kernel level access

Depending on the users’ roles, they get access to other parts of the kernel
directly, or via an interface to a set of routines which they may call (e.g.,
students in a course on kernel programming may get access to different functions
than third-party network monitors). The routines are compiled and linked
with the user code and reflect the role that is played by the kernel module. In
other words, such routines are used to encapsulate the rest of the kernel, as
illustrated in Figure 4. In the figure, some function calls (foo) are relegated to
a wrapper, while others (bar) may be called directly. Access to data structures
is regulated similarly.

We now briefly mention some of the mechanisms we implemented for making
the OKE-Cyclone dialect safe for use in the kernel.

(1) We perform (limited) global analysis of the code to decrease the number
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module X

foo_wrap(char *p)

bar()

foo(char *p)

KERNEL

Fig. 4. The kernel is encapsulated behind an interface

of dynamic checks.
(2) Environment setup code (ESC) which contains the customisations is

automatically prepended. It declares kernel APIs and other functions
and variables and leaves the untrusted code with only the safe API
(wrappers mostly). It also provides wrapper code for resource cleanup and
safe exception catching. All functions in the OKE module that may be
called can be wrapped automatically. The ESC configures this wrapping
using a new wrap extern construct: bygwyn detects all potential entry
points to the untrusted code and automatically wraps these functions
using wrapper code declared by the ESC.

(3) Certain language constructs can be automatically removed from the language
available to the programmer using a new forbid construct (examples
include: forbid extern "C", forbid namespace X, and forbid catch Y).

(4) A unique, randomly generated namespace is opened for the untrusted
code to prevent namespace clashes and to prevent unauthorised imports
of symbols from other namespaces.

(5) The stack usage of untrusted code can be restricted to a usage limit
defined in the ESC.

(6) The OKE is also able to limit CPU usage by using a modified timer
interrupt. When a module has not finished within its allocated time, an
exception is thrown and the module removed. Code misbehaving in other
ways is likewise removed.

(7) We extended the region-based memory protection mechanism in Cyclone
with a new kernel memory region ‘kernel, to distinguish between kernel-
owned and Cyclone-owned memory regions and implemented a simple
mark-and-sweep garbage collector which ensures that pointers from the
OKE modules to kernel memory are memory safe, and that freeing of
module memory is handled correctly.

(8) Specific fields of kernel structures shared with untrusted code can be
statically protected by making the structure members locked. Such members
cannot be used in calculations, and cannot be cast to another type. Also,
no other type can be cast to it, no pointer dereferences can take place,
and no structure members can be read. Basically, locked types are limited
to copying, and they cannot be read. This technique drastically reduces
the need to anonymise data at run-time.
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3.2 Corral

The concept of clicking kernel components together to create new functionality
is a tried and useful practice. The x-Kernel, first proposed in the late 80s,
provided mechanisms to statically stack network protocols in this way [HP91].
Similarly, the STREAMS abstraction, proposed even earlier, allowed protocol
stacks to be composed dynamically [Rit84]. This work was influenced by all
such approaches and in particular, as mentioned earlier, by the Click software
router. The Corral elements all have simple interfaces that are implemented in
either C or OKE-Cyclone (see Section 3.1) and have been carefully designed
in what is essentially an object-oriented fashion. For example, each channel
element carries pointers to its own state, as well as to implementations of
the pull and push operations. In this section we describe only a simplification
of the main features of engines and queues. In essence, queues and engines
communicate solely by pulling and pushing chunks of data from and to each
other. A push or pull connection is typed, so that only specific items may be
pushed or pulled on a connection between specific engines and queues. The
types range from simple types such as integers, and chars to composite types
(e.g., IP packets).

3.2.1 Queues, engines and their connections

In the default implementation there are only two types of queues: FIFOs
and stacks. The default queue is a simple FIFO with producer/consumer
functionality on a circular buffer. More complex queueing schemes can be
constructed using multiple FIFOs, or by providing an implementation of custom
push and pull functions.

Queues are passive elements. They respond to push() and pull() operations,
but they never initiate action themselves. In contrast, engines are active
elements and hence have more methods in their interfaces. In addition to
push(), and pull(), all engines provide a control/management interface (e.g.,
with connect() and disconnect()methods to link to and from other elements),
and a run() method which is called when it is scheduled. An element’s
connect() method is very simple: it is provided with (among other things)
the name of the element that it should be connected to, as well as the port
and the port direction (input or output). If the ports are of the same type, a
connection between the elements is established.

Engines and queues can be connected and disconnected at runtime. As such,
the connections between them are not built into their logic. Instead, the
control API allows explicit replumbing of the components. While it may seem
dangerous to replumb an element when it is active (e.g., about to push a packet
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to the destination one wants to disconnect), these activities are protected so
that connections are always able to ‘drain’. While this is happening the two
elements may already have been disconnected, i.e., only the pipe itself needs
to be kept while it is emptied - the source element itself may even already
have been destroyed.

3.2.2 Crossing the domain barriers

Engines and queues are tied to a domain. Currently, possible domains are:
userspace, kernel, and remote. A preliminary implementation of Corral domain
‘IXP1200 network processor’ has also been written and will be discussed in
Section 3.4. Elements in the same domain communicate by pushing or pulling
simple types directly (call by value), or complex types by passing pointers (call
by reference). As such communication takes place within the same address
space, interaction within a domain is quite efficient.

It is also possible to place engines and queues in different domains. For this
purpose we use simple marshalling techniques similar to those used in remote
procedure calls. For example, if engine E in domain D1 wants to push a
network packet to queue Q in domain D2, it really calls the push operation
on a local proxy Qproxy (also known as ‘stub’). Qproxy is initialised with a set
of routines that enables it to connect to the remote implementation of Q. It
marshalls the packet and initiates a ‘remote’ procedure call to push the packet
on the ‘remote’ queue (note that ‘remote’ here means a different domain, which
could easily reside on the same host). A push to a remote domain leads to the
destruction of the data item on the local side.

Default proxies and marshalling routines have been written which are expected
to suffice for almost all applications. The scheme can be easily extended,
however, by writing new procedures for connecting to remote domains and
for marshalling the data.

3.2.3 Corral extensibility

Even ignoring the OKE, the Corral is extensible in the sense that new element
classes can be loaded and instantations of these classes can be created at
runtime. Element classes to be loaded are specified by a URL which points
to a file in an element class repository. The repository can be hosted on any
machine reachable via HTTP or FTP. Providing a repository is as simple as
hosting a webserver of FTP server, as the repository itself performs no access
control or security. All admission checks are devolved and all users with write
access to a repository can make their element classes available to other users.
The corral uses the libcurl library for downloading the element classes. The
following control actions are subject to (local) admission control:
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• loading and unloading of element classes;
• instantiating an element of a class;
• deleting an element;
• connecting two elements;
• disconnecting two elements

Without the appropriate credentials, none of these operations are permitted.
Loading an element class also fails if the class is already loaded, or cannot
be found at the specified repository. Unloading an element class fails if the
class is not present at the Corral site, or if there are still instances of this
class running in the Corral. Obviously, the implementations of class loading
in domains ‘kernel’ and ‘user space’ are somewhat different.

For example, for userspace the dynamic library operations dlopen(), dlsym(),
etc., are used. In essence, this means that a new element class is implemented
as a dynamically loadable library. For the kernel, new Corral classes are
implemented as kernel modules and we rely on the dynamic linking of such
modules that is already present. Again, the codeloading facilities of Linux are
wrapped so that ordinary users are only able to load modules that have been
approved by the admission check in the code loader.

For each of the control operations above, certain conditions may be specified
(e.g., by the system administrator) and these will be checked when the user
attempts to perform the operation. These conditions are specified in the
credentials presented by the user. For instance, a condition may specify that a
specific user may only load an element in one specific domain (say, ‘userspace’).
Examples of properties that may be checked in conditions are:

• user identity: a user is identified by his/her public key (a nonce challenge
is used to ensure this request came actually came from this user and is also
not a replay);

• host: maybe an operation is only permitted on certain hosts;
• domain: some actions may be allowed only in a specific Corral domain;
• class identity: certain rights may pertain only to specific element classes;
• number of loaded classes: a limit may be set on the number of classes a

user is allowed to load;
• number of class instances: a limit may be set on the number of instances

of classes a user is allowed to create;
• ownership: some operations may only be permitted on the user’s own

instances;
• class loading party: one may for instance specify that a class can only be

unloaded by the party that loaded it;

Furthermore, there is a whole set of properties that can be used in conditions
that pertain to creating and deleting connections. These include, for instance,
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KeyNote-Version: 2

Comment: Within the application ’Corral’, the

authorizer grants the licensee the right

to load and unload a pkt_counter class.

Local-Constants: LKEY = "rsa-base64:FAKE_KEY_USR"

Authorizer: "rsa-base64:FAKE_PUB_KEY_AUTHORIZER"

Licensees: LKEY

Conditions: app_domain == "Corral" &&

corral_Host == "corralhost.liacs.nl" &&

(corral_action == "load" ||

(corral_action == "remove" &&

owner == LKEY)) &&

element_class_name == "pkt_counter" &&

((domain == "user" &&

sha1sum == "704a5c879cb4711f9a55") ||

(domain == "kernel" &&

sha1sum == "68a45f3209b3c4c7f621"))

-> "true";

Signature: "sig-rsa-sha1-base64:FAKE_SIGN_AUTHORIZER"

Fig. 5. Example of a Corral credential

name, host, domain and port number of the source or destination elements. All
of the properties can be tested. Together they provide fine-grained admission
control. An example of a credential with mock keys, checksums and signature
is shown in Figure 5. The static Corral admission control is complementary
to the even finer-grained static and dynamic resource control of the OKE.

3.2.4 OKE Corral packet traversal

Once a packet is classified (by the classifier in Figure 1) as belonging to the
AN, it will be pushed on the AN’s entry engine and follow the data-path
determined by the AN’s engines and queues. If necessary, some of the fields in
the packet may be protected against read and write access violations using the
locked keyword described earlier (note that locked fields cannot be pushed
across domains). The entry engine pushes the packet to the next engine and
so on, until one of the following three events has occurred: (1) the packet is
dropped, (2) the exit engine is reached and the packet has been sent, or (3)
an intermediate queue has been reached.

3.3 The Active network

The AN runtime used in the example setup is derived from a home-grown
active network, capable of supporting either a Java or Tcl execution environment.
For the OKE Corral implementation we have limited ourselves to the Tcl
implementation. The goal of the runtime is to provide a very simple environment
for AN experiments. Loading code onto the runtime can be done either out-
of-band (using an explicit load operation), or in-band (capsules).

The runtime consists of an interpreter and a fairly extensive set of operations
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that are specific to the AN. This is called the core set of operations, all of which
are implemented in C. The core set contains elementary operations, e.g., a
repertoire of functions for convenient access to received packets and for finding
the load on specific links, etc. It also contains a send operation for pushing
a packet out onto the network. Packets are stored in packet buffers, of which
there is a fixed number. One of the buffers is designated the ‘current’ buffer
and this is used for receiving the next packet. A small number of operations
in the core set is responsible for managing the buffers, e.g., to set the current
buffer, to execute safe memcpy and memmove operations, etc. Finally, there is
an additional library that is fully implemented in Tcl. This package contains a
large number of functions that are commonly used, as well as wrappers around
the functions around the core set.

3.3.1 AN and channels

The runtime back-end was modified to sit on top of the OKE Corral. More
correctly, by implementing the engine interface, the runtime really becomes
an engine ER itself. ER initialisation code disconnects the packet entry and
exit engines assigned to it and reconnects the entry engine to a kernel-domain
queue. It also connects ER to the other end of the queue for inbound traffic
and to the packet exit engine for outbound traffic.

After initialisation, it is the active code in the runtime that is responsible for
the management and control of the engines and queues in its channels. For
example, operations were added to the AN’s repertoire to allow it to connect
or disconnect all elements under its control. Depending on the AN, bootstrap
kernel modules containing pre-installed Corral engines and queues may be
loaded at initialisation. The components in the modules can be freely used
by the AN to construct new data-paths. They may be highly efficient, e.g.,
written in C and containing few runtime checks.

There are also commands to enable the active code to add entirely new
components (engines and queues) to the data-path. In the following discussion
we will assume that the target domain for the new components is the kernel,
since this presents the most severe security risks. For the purpose of loading
data-path components, the active code is allowed to pull a module containing
them from a remote webserver. Similarly, it is allowed to refer to a webpage for
the credentials. The module together with the credentials is then offered to the
OKE codeloader. Provided the credentials are valid, the codeloader pushes the
module into the kernel. At that point the codeloader is able to manage the new
engines and queues in exactly the same way as the pre-installed components.
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3.3.2 Discussion

When loading unknown new components in the data-path on behalf of third
parties, as discussed in the previous section, safety was guaranteed by the
OKE. This means not only that the code must be written in OKE-Cyclone,
but also that the compiler that compiled this code prior to loading must
be trusted. We have not addressed the issue of whether and under what
circumstances compilers in remote domains can be trusted. We call this the
‘trust propagation’ problem. One possibility is to have a well-known group of
trusted compilers that can be used to generate object code with compilation
records that are accepted by many sites (the “VeriSign model”). Alternatively,
we could store the code in source format and have a local (and presumably
trusted) compiler generate the object code anew just prior to loading it.

3.4 The IXP1200 network processor

We built a prototype implementation of the Corral on the Intel IXP1200
network processor which will be described presently. We stress that, while
functional, this code is still very much ‘proof-of-concept’ and not geared for
speed.

The IXP1200 contains on-chip one StrongARM control processor, and six
independent data processors called microengines clocked at 200-232 MHz. In
addition, each of the microengines has four hardware contexts, a dedicated
instruction store of 1K instructions and a fairly large set of registers. The
IXP1200 has 4KB of on-chip scratch memory that is shared by all microengines
and the board that was used in these experiments contains off-chip 8MB of
SRAM and 256MB of SDRAM.

In previous work, we have described how to provide the OKE mechanisms on
the IXP1200 and we will not repeat that explanation here [BS03]. Instead, we
sketch how the Corral elements are implemented. Each microengine corresponds
to one CORRAL element. The StrongARM is responsible for starting, stopping,
and loading individual microengines (and thus the corral elements).

Unlike with its successor the IXP2400, a microengine on the IXP1200 has very
limited capabilities of communicating with its neighbouring microengines. As
a result, part of the 4KB of scratch memory is used to keep track of connections
between the different elements in a simple array. Because an element cannot
call a function from another element directly (as it resides on a different
microengine) it writes a message in scratch, in the space corresponding to
this connection, and sends a signal to the target element. The sending element
waits until the receiving element removes the message. Every connection holds
space for one message at any time. The implementation details are hidden from
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the users, who issue push() and pull() operations, exactly like they would
do on the host processor.

Because the StrongARM can read and write scratch memory directly, it is
used to connect and disconnect the elements residing on the microengines.
Additionally, it can directly write to the message passing space, thus allowing
for elements on the StrongARM (either in the kernel or in userspace) to send
data to elements on the microengines. Since the microengines cannot directly
pass signals to the StrongARM, sending data from a microengine element to
a StrongARM element can only be accomplished by having the StrongARM
side monitor the relevant message passing space in scratch memory.

The IXP and the host computer communicate by sharing memory, and by
sending messages over the PCI bus. While it is fairly simple to use the doorbell
interrupt for this purpose, as an initial solution we have used shared memory
communication with explicit polling on both sides (StrongARM and host
processor). As a result, it is not currently possible to push or pull data to
or from the microengines directly from the host, bypassing the StrongARM.
The connections between StrongARM and host computer work analogous to
those between StrongARM and microengines, i.e., the host computer polls the
relevant space in memory to obtain messages passed by the StrongARM.

To facilitate use of the IXP1200, we implemented the elements as templates
that can be easily extended by users who need not worry about complex
matters such as pushing and polling via scratch memory, etc. All the complexity
is hidden behind boilerplate code provided by the Corral framework. By adding
code to a template new classes can be created that can subsequently be loaded
and instantiated like any other class.

The implementation of the OKE Corral in microengines, kernel and userspace
later inspired the development of FFPF [BdBC+04]. FFPF has no notion
of operations like push and pull that can be executed by the elements, but
implements a fairly static dataflow machine instead. On the other hand, it fixes
many of the problems that were left as loose ends in the Corral implementation
on the IXP (e.g., it reduces copying, offers various communication channels
across the PCI bus, etc.).

4 Results

We do not think that the number of packets per second that can be handled
is a relevant measure in evaluating the OKE Corral, for two reasons. First, at
high speeds, such numbers generally say more about the implementation of
the traffic capture than about packet processing. For example, on a software
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router as implemented in the Click-router the number of packets per second
varies greatly depending on whether the packet capture is interrupt-driven
or polling [ST93,SOK01] 2 . Second, we are really more interested in how the
Corral compares to typical AN implementations and this concerns primarily
the nature of the code execution: in-kernel native code, versus interpreted code
(often executing in userspace). Readers interested in the performance in terms
of packets per second that potentially can be achieved with a channel-based
system should refer to [CM01].

Instead, we evaluate the OKE Corral by measuring the performance of the
data-path components and by comparing the results with alternative implementations.
All measurements described in this section were taken on a PIII 1GHz PC
running a Linux-2.4.18 kernel. The overhead of a push from entry engine to exit
engine without any processing takes approximately 250 nsecs (this includes all
locking and sanity checks). The applications used for the comparison are in
the domains of transcoding (application T ) and monitoring (application M).
Both applications are considered components on the data-path. In the OKE

Corral version of the experiment, they are implemented in OKE-Cyclone, and
dynamically loaded in the kernel by the active control code in userspace. M

implements a packet sampler which is meant to push 1% of all packets on a
queue which can be read by a monitoring application in userspace (in this
case, this is the AN) using a pull operation. On (pull) request, it will also
report the total number of bytes of all packets that passed through M since
the last report. T resamples audio packets to a lower quality (containing half
the bits) and thus works on the entire payload. For this reason, T also requires
a recalculation of the checksums in both the IP and UDP header. In previous
work, we discussed a forward error correction transcoder and showed that its
performance in the OKE is only marginally worse (10% overhead in the worst
case) than that of a pure C implementation [BS02a].

In the current experiment, both types of applications may operate on the
same packets. In fact, there are 4 types of packet, all of which are UDP
with destination ports p0, p1, p2, and p3. The experiment is illustrated in
the leftmost illustration of Figure 6. Packets for port p0 are subject to both
transcoding and monitoring. Packets for p1 are subject to transcoding but
not to monitoring, i.e., they are pushed directly to the exit engine by the
transcoder engine. Destination p2 packets will pass through the transcoder,
but are not touched by it. Instead they are moved straight to the monitoring
engine. Packets for p3 are neither resampled nor monitored, but do pass
through the entry engine, the transcoder and the exit engine.

We evaluate 3 different implementations: (A) all components in OKE, (B) all

2 The NAPI patch for Linux turns an interrupt-driven kernel into a polling one,
whenever the load goes up.
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Fig. 6. The three implementations of the applications

components in AN runtime, and (C) all Corral components in in-kernel C, as
shown in Figure 6. All three versions are possible in the OKE Corral, but we
are most interested in solution (A), as it provides maximum flexibility while
still running natively in the kernel. We measure time between packet entry at
the Linux netfilter hook to the time that we send the packet (or queue it for
userspace).

The results are shown in Figures 7(a)-7(c). As expected, we see in all figures
that the overhead for p0 and p1 type packets is strongly dependent on the
packet size. The p2 and p3 on the other hand are basically flat, as there is
not even a need to recalculate checksums if the packet doesn’t change. Also
notice that in the Tcl implementation the effect of monitoring is no longer
visible due to the enormous overhead introduced by the Tcl interpreter and
our (admittedly fairly inefficient) context switching.

For none of these solutions have we attempted any manual optimisation.
Moreover, it is clear that there exist much faster AN runtimes than the Tcl
environment that we have used. However, in previous work we measured that
a copy from kernel to userspace using a direct ioctl pipe to the kernel takes
approximately 2 µs in the best possible case, and considerably longer if we use
libipq (we measured 8 µs on average for a copy from kernel to userspace). If a
copy to userspace is needed, it will be difficult to optimise away this overhead.
A copy back to the kernel takes approximately the same amount of time,
so regardless of the speed of the C code, we lose 4 µs, just on the copies. As
shown in Figure 7(a), this overhead alone exceeds the total time needed by the
OKE-Cyclone implementation. Even so, we are currently investigating faster
userspace implementations. The copy overhead can be avoided if queues are
memory mapped to userspace. Even in this case, the cost of context switching
remains. Moreover, coordination between kernel and userspace becomes more
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complex. In the network monitoring framework known as FFPF, we have taken
exactly this approach [BdBC+04]. However, as far as coordination is concerned
(pure) monitoring is much simpler than what is done in the Corral, as packets
only travel ‘up’ and are never injected into the lower levels again.

In Figure 7(d) we also plot the relative overhead of performing the transcoding
application in the OKE instead of native C. Concretely, the figure plots the
ratio computed by (

TCyclone

TC
∗ 100 − 100) for the p1 packet times shown in
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Table 1
Overhead of pushing to and pulling from the microengines on the IXP1200

Operation Cycles

Push to empty element 53

Pull from empty element 59

Push to element with 4B data transfer to buffer and simple counter 71

Figures 7(a) and 7(c). It is interesting to note that the overhead per byte
decreases as the packet size increases. This is caused by the fact that the
fairly substantial one-time overhead is ammortised over a large number of
bytes. The overhead of the implementation with the AN in the datapath is
orders of magnitude and therefore not plotted.

For now, we conclude that the difference in performance between the AN
implementation and either of the other two implementations is orders of
magnitude. Between the OKE and the ‘pure C’ implementation the difference
is approximately 25%. The results suggest that a substantial gain in performance
can be achieved by employing something like the OKE in ANs. If the speed
of pure C is required, active code is still able to control and manage these
components, and to build new applications by clicking together elements from
a predefined set. Given the appropriate credentials it may even load new (but
known to be safe) element classes.

As shown in Table 1, pushing to and pulling from microengines on the 232MHz
IXP1200 takes several tens of cycles. Whether this overhead is acceptable
depends on the rate at which these elements process packets and how often
they need to push or pull. For instance, for network processing at 1Gbps and
minimum sized packets we have roughly 120 cycles available per packet per
microengine (significantly more for larger packets). If the load is shared by
a number of microengines (and indeed by a number of threads) these speeds
allow sufficient cycles for significant work to be done by the elements on the
microengines. Still, we stress that so far the Corral on IXP implementation is
only a proof-of-concept to see whether we can make network processors fit in
the easy-to-use corral framework.

5 Related work

Organising AN software in a hierarchical fashion is advocated in many active
network projects, e.g., SwitchWare [AHK+98]. Such approaches differ from
the OKE Corral in that they are mostly concerned with (interpreted) user
space code for all loadable extensions. Clicking components together to form
channels is equally common in ANs. A good example is CANEs, which allows
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extensions to be injected in predefined locations on the data-path [MBC+99].
A third aspect, the separation of control and data path in programmable
networks has also been advocated in other projects, e.g., SwitchWare at UPenn [AHK+98].
The router plugins developed at the University of Washington [JJH02] provided
the ability to load code dynamically, but did not address the safety issue.

Running code in the kernel of an operating system is fairly common in packet
filtering. The original packet filter provided support for a stack-based filtering
language [MRA87]. McCanne and Van Jacobson argued that stack-based languages
had inferior performance on modern processor compared to register-based
language and developed the BSD Packet Filter which has become one of
the best-known packet filter approaches in the kernel. A more recent project,
known as FFPF, implements a framework that is language neutral and explicitly
addresses the safety problem [BdBC+04]. In the current implementation it
supports BPF, C functions and a new packet processing language known as
FPL-2. Moreover, like the Corral it is capable of pushing processing elements
to an IXP1200 network processor [CdBB05]. However, memory handling in
FFPF is more efficient than in the Corral. For instance, there is no more
copying between kernel and userspace.

Many projects target safety in operating systems (OSs). These include language-
based approaches such as BSD Packet Filters [MJ93], proof carrying code [NL96]
and software fault isolation[WLAG93], as well as OS-based approaches such as
Nemesis [LMB+96], ExoKernels [EKO94], and SPIN [BSP+95]. Trust management
combined with module thinning in ANs was introduced in the Secure Active
Network Environment [AHK+98]. A three level architecture that resembles
that of the OKE Corral is proposed both by Alexander and Smith in [AS99]
and by the first author in [Bos99]. The combination of trust management and
AN code loading was also discussed in [HK99]. An exhaustive discussion of
these projects is beyond the scope of this paper. In short, the OKE provides
a more complete safety model than SFI while it is simpler than PCC and
distinguishes itself from such approaches as Nemesis, Exokernels and SPIN in
that it is implemented on a commonly used OS. Interested readers are referred
to the discussion in [BS02a].

In the remainder of this section, we will compare our work briefly with a
number of other systems that support the loading of native code in the kernel
of an operating system, by looking at how well they support the following ten
features targeted by the OKE Corral (and as described in this paper):

(1) The system explicitly supports 3rd party code in the kernel.
(2) The kernel is fully programmable, although if needed, we are able to

restrict access to specific APIs, data, etc., at compile time.
(3) Resource control is enforced for CPU, memory, etc.
(4) Safety is enforced in the sense that a module is not able to crash, dereference
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Table 2
OKE Corral features mentioned in the text compared with other systems. Symbols:
‘+’ = strong support, ‘-’ = weaker, ‘+/-’ = partly, ‘0’ = not applicable to this system.

SILK ANN PromethOS SPIN FLAME Click RBClick OKE Corral

1 ++ -- - ++ ++ -- ++ ++

2 +/- +/- + ++ - +/- - ++

3 + - - + + - ++ ++

4 -- - - ++ + -- ++ ++

5 + - - - - ++ ++ ++

6 ++ + + ++ + - ? ++

7 ++ - ++ 0 + + ++ ++

8 - - - 0 0 0 ++ ++

9 ++ + ++ 0 ++ + ++ ++

10 ++ ++ ++ -- ++ ++ -- ++

NULL pointers, inadvertently free kernel memory it points to, etc.
(5) Data channels are composed of LEGO-like components (like in Click).
(6) Configuration of these channels is possible at runtime.
(7) Data and control are explicitly separated.
(8) AAs in the form of capsules are able to configure the data channels to

the point of loading and connecting new native code components.
(9) Out-of-band loading of AAs in the kernel is supported.

(10) The system is implemented on a common OS.

Note that we do not aim for a true comparison of these very different systems.
We only look at how well other approaches support some of the more attractive
features of the OKE Corral. The results of the comparison (using the same
numbering of features as above) are shown in Table 2. Below we discuss the
projects mentioned in the table.

We have been strongly influenced by the Click-router project which uses a
simple LEGO-like organisation of forwarding code to build a high-performance
router in software [CM01]. Although we didn’t use the Click code directly, we
implemented a very similar system (in C). However, whereas Click components
are assumed to reside in the same domain (e.g., the kernel), we permit them
to be distributed at will over kernel, user-space and even remote machines.

The OKE Corral was first described in [BS02b]. Our processing hierarchy
resembles that of the ‘extensible router’ [SPB+02]. In particular, SILK also
provides fast kernel data-paths with support for resource accounting. However,
it does not provide safety. The code loading in our work somewhat resembles
that of ANN [DPP99]. In ANN active code is replaced by references to modules
stored on code servers. On a reference to an unknown code segment in a node,
the native code is downloaded, linked and executed. Similarly, a recent project
called PromethOS, supports kernel plugins with explicit signalling for plugin
installation [KRGP02]. Neither approach targets safety as aimed for by the
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OKE. In a sense, the OKE is providing a safe environment for allowing third-
party kernel plug-ins in addition to the pre-defined ones. More recent than the
OKE Corral is RBClick from the University of Utah which takes an approach
similar to the OKE [PL03] and also builds on Click and active networking
technology. It differs in various important ways from the OKE Corral. For
example, in RBClick, the language itself is severely restricted (e.g., no normal
loop constructs). Also, there is no full interaction with the rest of the kernel
as found in the OKE, and it is not implemented on a commonly used OS..

SPIN, which builds on the safety properties of Modula-3, is close in spirit to
the work presented here. However, unlike the OKE, SPIN does not control the
heap used by ‘safe’ kernel additions. Additionally, it is also not a commonly
used OS.

Early work on the use of Cyclone for kernel work and KeyNote for policy
control was demonstrated in FLAME [AIM+02] which is similar to the OKE

and a good example of how similar principles are used for different goals.
FLAME is aimed at safe network monitoring and not on fully programmable
kernels. In contrast, the OKE provides the necessary features for general-
purpose kernel extensions, with a focus on customisability. FLAME provides
little flexibility in the restrictions placed on a module, and full interaction
between the module and the kernel (e.g., using pointers) is not allowed. While
essential to the OKE, neither of them are needed in FLAME.

6 Conclusions

In this paper, we have presented the OKE Corral, an environment that allows
users to develop fast packet processing architectures. It builds on a set of
technologies recently developed in the research community to achieve high-
speed programmable packet processing. The Corral, a model similar to that
of the ’Click’ router was used to construct highly efficient data-paths of which
the components can be loaded and controlled by slow-speed code at runtime.
While the OKE Corral is generic and can be used in many target domains,
we developed a high-speed active node (ANode) to demonstrate its usefulness.
In contrast with most ANode implementations, the active code can be loaded
anywhere in the processing hierarchy, from the runtime to the kernel (and
even network processors). The open kernel environment ensures safety in such
a way that even fully compiled and optimised code can be loaded into the
kernel. In the OKE Corral the ‘active code’ running in the AN runtime plays
the role of control and management software and operates at a much slower
speed than the fully compiled code in the data-path. Both the control and the
data plane use the same OKE channel mechanism to construct their flows.
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The performance of the ANode that was implemented on top of the OKE

Corral varies with the amount of programmability. At one extreme, only
the control and management is programmable, while the data-path consists
of predefined and highly optimised ‘standard’ components based on which
custom data-paths can be constructed. At the other extreme, there is the
‘capsule’ approach advocated in some other ANode projects. Between these
two extremes, but closer to the former extreme, we have the OKE channels
approach. For maximum flexibility, the different kinds of programmability
may be mixed and matched, so that ‘capsules’, pre-defined and third-party
components all interact to build data and control flows. Open issues include
the problem of heterogeneity, as well as that of trust propagation. These are
the topics of ongoing research.
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