
Tales from the Crypt: fingerprinting attacks on encrypted
channels by way of retainting

Michael Valkering Asia Slowinska Herbert Bos

Vrije Universiteit Amsterdam

{mjvalker,asia,herbertb}@few.vu.nl

ABSTRACT
Paradoxically, encryption makes it hard to detect, fingerprint and
stop exploits. We describeHassle, a honeypot capable of detect-
ing and fingerprinting monomorphic and polymorphic attacks on
encrypted channels. It uses dynamic taint analysis in an emula-
tor to detect attacks, and it tags each tainted byte in memory with
a pointer to its origin in the corresponding network trace. Upon
detecting an attack, we correlate tainted memory blocks with the
network trace to generate various types of signature. As correla-
tion with encrypted data is difficult, we retaint data on encrypted
connections, making tags point to decrypted data instead.

1. INTRODUCTION
Intended to enhance the security of network communication, en-
cryption also makes it harder to detect and analyse attacks on the
Internet. Strong encryption and pacing on network links lead to
traffic that is more or less uniformly distributed in space and time,
preventing the extraction of useful information. Methods relying on
the observation of traffic characteristics no longer work. Examples
include methods like Snort and Bro that use byte patterns [15, 21],
analysis of executable code in the network [17], static analysis tech-
niques [7,25] when applied in the network, and analysis of protocol
fields [10, 11]. In addition, while advanced honeypot systems like
Vigilante [12], TaintCheck [14] and Argos [18] woulddetectat-
tacks, most common techniques for signature generation cannot be
directly applied. Paradoxically, the very nature of encryption may
turn against the original security goals.

At the same time, the use of encryption is increasing in almost
all network services, including file systems, web servers, VPNs,
databases, p2p, instant messenging, etc. Rather than considering
the fairly narrow set of exploits against encryption libraries them-
selves (like Linux’ Slapper [16], and Windows’ SSL Bombs [1]),
this work is motivated by the larger class of attacks that exploit the
applicationsusingencryption. It is well-known that given a choice
between port 80 (http) and port 443 (https), attackers tend to opt for
443 almost without exception [19]. The reason is that the content of
these channels cannot be so easily inspected by firewalls and virus
scanners.

Instead of providing a NIDS with copies of the servers’ private
keys [13], something administrators may be reluctant to do, we pre-
fer to push fingerprinting to the end-application on the host. On the
other hand, we do not want to code manually a specific solution for
each application. Rather, we are interested in methods for signature
generation that apply to a wide variety of applications.

We emphasise that channel encryption should not be confused with

polymorphism. Even though encryption yields unique network ap-
pearances for all network attacks, the nature of the attacks (poly-
morphic or not) still surfaces after decryption. Phrased differently,
encrypted channels may carry both mono- and polymorphic at-
tacks.

This paper discussesHassle, a honeypot capable of detecting and
fingerprinting monomorphic and polymorphic attacks on SSL-encrypted
channels.Hassleis not application-specific and can be applied to
any process that uses SSL for secure communication. We discuss
both its design and its implementation on an x86 Linux-based ar-
chitecture.

SSL encryption. Encryption can be applied at many layers in the
protocol stack. The most common examples in practice include
the data-link layer (WEP, WPA), the network layer (IPSec), and
the application (SSL). As layer-2 encryption in the NIC reduces
the problem to that of non-encrypted channels at the OS level and
can therefore be handled easily by emulators with dynamic taint
analysis [18], the most interesting design alternatives to consider
in practice concern IPSec and SSL. Without loss of generality, we
opted for implementingHasslefor SSL, as it is supported by many
servers. Nevertheless, the same techniques can be applied at other
layers.

Contribution. To the best of our knowledge, we are the first to
address the problem of signature generation (and attack filtering)
for encrypted communication, while also handling non-encrypted
channels. The techniques we describe are applicable to most types
of encryption and require no modification of the applications that
need protection. In addition, we describe various novel signature
generators that combine withHassle. Besides well-known Snort-
like signatures [21], we generate very accurate signatures forpoly-
morphicbuffer overflows on heap or stack.

The remainder of this paper is organised as follows. Sections 2
and 3 discuss architecture and implementation, respectively.Hassle
is evaluated in Section 5. In Section 6, we discuss related work,
while conclusions are drawn in Section 7.

2. ARCHITECTURE
At the highest level, our system consists of a detection engine, a
signature generator, and a filter, as illustrated in Figure 1. The de-
tector is a honeypot based on a full-system hardware emulator that
provides taint analysis. For this purpose, we modified an existing
honeypot, known as Argos [18].

Assume for now that no encryption is used. All data from the

1
4

decrypted log

dump of tainted
memory

OpenSSL
library

interposer application
using SSL

guest OS

Argos

host OS

signature
generator

application
using SSL

interposerOpenSSL
library

retaint

filter

Linux/Windows/...

network trace

attack detection and forensics signature generation filtering

2

3

5

6

Internet

Figure 1: Interposition, retainting, and signature generation
.

network is logged to a rolling trace file (1©). By means of taint
analysis,Hassletags and then tracks network data throughout the
system (1©), where a tag points to the origin of the data in the net-
work trace. Whenever tainted data is used in a way that violates
the security policy, we raise an alarm. Examples of such behaviour
include attempts to execute tainted data, or loading tainted data in
the x86 EIP register. At that point,Hassledumps as much relevant
data to disk as possible. For instance, for the process or kernel un-
der attack, we save all tainted memory blocks with their tags, the
names of the executable and the libraries used, and the address that
triggered the alert together with its origin.

The signature generator correlates the data dumped byHasslewith
those of the network trace to determine a signature (4©). For in-
stance, one of our signature generators dissects the input stream to
determine which protocol fields were responsible for a buffer over-
flow and computes an upperbound on the combined length of the
protocol fields as a signature. Any message in which the length of
these protocol fields exceeds the upperbound is guaranteed to result
in an overflow. We use the signature to block the attack elsewhere
in the network without needing heavy-weight instrumentation (5©).

Unfortunately, in case of encryption correlation between network
trace and memory dump is not possible as all memory tags point to
seemingly meaningless, uniformly distributed bytes in the network
trace (2©).To solve this we want to restore a meaningful correlation,
albeit not to the network trace directly. For encrypted channels we
retaint the tagged data after decryption (3©). Concretely, we use
library interposition to place a small amount of code between the
application and the encryption library. The interposer requests the
emulator to retaint data using offsets in the decrypted streams as
tags. The decrypted data is stored in a log for future use.

Signature generation (4©) now progresses much like that of non-
encrypted channels, albeit at a higher level in the protocol stack.
When working at this level, well above the transport layer, we can-
not simply dissect the network data stream from the first network
packet onwards to determine the protocol fields that were used in
the attack. Instead, we use the retainted decrypted network stream.
Similarly, the filters that block traffic that contains the signature
also must operate at higher-level protocol units (6©). We imple-
ment them asinterposer filtersthat sit between the SSL library and
the application and flag or drop all traffic towards the application
that matches the signature.

Before we start discussing the precise nature of our signatures, we

mention that as much as possible we focus onexploitsrather than
payloads, for several reasons. First, exploits exhibit fewer opportu-
nities for polymorphism. Second, one exploit is often used for dif-
ferent payloads and stopping it kills multiple birds with one stone.
Third, blocking exploits prevents many attacks from entering the
system altogether.

2.1 Tracking issues
Tagging and tracking conceptually consists of adding meta-data to
every byte in memory. The more meta-data is added, the more
powerful the attack analysis can be. Again, we first consider the
case that no encryption is used, and subsequently address encrypted
channels in Section 2.2.

In Hassle, we allow three types of tagging. The cheapest, (incur-
ring an overhead of approximately 15× on average), but also the
weakest, is known asblack-white taggingand simply indicates for
each byte whether it originated in the network. It provides no clues
as to the origins of tainted data in memory other than that it came
from a suspect source. The tag is a single bit and no immediate
correlation of network trace and memory is possible. It may be
possible to align patterns in memory and network trace by means
of similarity search [10,18], but the margin of error is large.

A more powerful tagging method is known asnet tracking, which
keeps track of the network origin of tainted memory. InHassle,
we have implemented two modes of net tracking:full origin, and
single origin.

Full-origin tracking is the most precise form of net tracking, but
also the slowest (with a slowdown of about two orders of magni-
tude). Whenever data arrives from the network we tag it with a
pointer to the corresponding bytes in the network trace. Whenever
two tainted values are combined (e.g., an addition of two tainted lo-
cations), we retain the tags of both of them. This is implemented by
maintaining a set of origin pointers that refer to the tags of the (one,
two or three) tainted operands that produced this data. By applying
the procedure recursively whenever tainted values are combined,
we construct a tree with leaves pointing into the actual network
trace. In practice, the amount of memory needed for the adminis-
tration is approximately three origin pointers per tainted word. The
overhead of maintaining the origin pointers is also considerable.

In contrast, single-origin tracking retains a single origin pointer
that points to a byte in the network trace directly. If two tainted
values are combined, we pick one of the tags for the destination.

Single-origin tracking introduces some imprecision in the tracking.
In practice, however, we have not seen instances where such impre-
cisely tagged data can be exploited by attackers. The advantage of
single-origin is that it is much more efficient both in memory (one
word per word of tainted data) and in computation (reducing the
overhead to less than 20×). For this reason, we have used single-
origin tracking for this paper. If the nature of applications changes
such that single-origin tracking becomes an issue, we can switch to
full-origin tracking in the future.

The strongest tagging method, known asage-stamped net tracking,
maintains not only (full or single origin) net tracking, but also age
stamps per tainted value. The age stamps serve to separate different
buffers on the stack or the heap. For instance, every function call
results in a new age stamp, and all tainted stores in the function are
associated with that age stamp. As a result, it is easy to separate the
heap or stack data contributing to the attack from stale tainted data
left by a previous function frame.

Besides age stamps, this tagging method tracks a small amount of
additional meta-data. For instance, it inserts red markers just above
and below a buffer allocated on the heap. An overflow of this buffer,
triggers a reaction in the emulator (e.g., to log the buffer contents
for later correlation). In addition, we maintain two bits per tainted
byte to distinguish between different overlapping tainted buffers
with the same age stamp.

The details and analysis of age stamps and related meta-data is
quite complex and beyond the scope of this paper. Interested read-
ers are referred to [23,24]. What is important for this paper, is that
when a buffer overflow attack is detected, the origin pointers, age
stamps and additional meta-data combined allow us to determine
with great accuracy the exact bytes that contributed to an overflow.
The overhead of age stamps in memory consists of an additional
word per tainted address. The computational overhead is mod-
est, less than 20% compared to single-origin tracking without age
stamps in real applications like Apache.

In principle, any tagging method can be used forHassle. However,
as alignment is error prone in black-white tagging, we mostly used
single-origin tracking for our experiments, and age-stamp tracking
where indicated.

2.2 Retainting
Regardless of tagging method, origin pointers are useless in the
case of encrypted channels. The reason is that without the key we
cannot perform the one-to-one mapping between bytes in memory
and bytes in the network trace.

For this reason,Hassleretaints all encrypted data. Rather than
pointing to a specific byte in the encrypted network trace, we make
it point to a specific byte in thedecryptedSSL stream. Of course,
the nature of decrypted streams is different from that of the network
trace. For instance, layer 2-4 headers are not visible and TCP flows
have already been reassembled. As a result, we will have to adjust
the signature generation and filtering components accordingly.

Two implementation issues remain. First, after separating encrypted
and non-encrypted data we must retaint the data right after decryp-
tion in such a way that a tag used for retainting is unique across
all streams. As a result, the tag cannot be a simple offset into any
one particular SSL stream. Second, we should be able to uniquely
identify SSL conversations and associate incoming data with an

SSL stream. In the next two sections, we discuss our solution to
each problem separately.

2.2.1 Determining the tag
As decryption occurs in user space, we employ light-weight in-
terposing libraries between the application and the SSL functions.
Whenever a read is performed on an SSL stream, the data will be
decrypted. At that point the interposer requests a retaint for the de-
crypted data and logs the decrypted data to file. Beyond that, the
interposer serves as a low-overhead relay between the SSL library
and the application.

While the interposer trivially knows the offset of decrypted data in
the corresponding SSL stream, determination of the tag should not
take place there. Given a tainted data item,Hasslemust be able
to identify exactly the decrypted SSL block in which it originates.
In other words, a tag must be unique not only within its own SSL
stream, but across all streams. Doing such retainting in the inter-
poser requires adding a unique SSL stream identifier to each tag,
which is both complex and expensive in memory.

Instead, we perform trivial retainting in the emulator and push all
complexity to detection time. For the remainder of this section, re-
fer to Figure 2 which zooms in on the decrypted data log and shows
a situation where three SSL connections are active; the decrypted
data blocks in the channels are tagged by the emulator.

We maintain, conceptually, a single log for all SSL streams and let
the emulator determine a tag consisting of an offset in this global
log. In reality, we store each SSL stream in separate append-only
logs identified by a unique SSL stream identifier (the nature of
which will be discussed in Section 2.2.2). For instance, the tags
in Figure 2 refer to an offset in the global input. That is, the blocks
that are tagged 0, 10, and 20 indicate that the first block starts at
global offset 0, and since the next block starts at offset 10, the first
block contains 10 bytes. Similarly, the third block starts at offset
20, so the second block also contains 10 bytes. However, while this
is the second block in the global input, it is the first block in SSL
stream 2. For completeness, the figure also shows on the left some
tainted data that has been copied, leading to tag propagation.

In other words,Hassleorders and tracks all updates to the de-
crypted data log in a global order, layering a virtual append-only
global log over the individual SSL stream logs. The log for SSL
stream 1 in Figure 2 contains two data blocks, containing 10 and
20 bytes respectively. The global log, on the other hand, consists
of five data blocks. Blocks 1 and 2 both contain 10 bytes; block 3
contains 50, and so on.Hassletags the decrypted data with an off-
set into the global log, trivially guaranteeing uniqueness. When an
attack is detected, the tags of offending bytes point to a specific
block in the global log. We maintain a simple index to find the
corresponding SSL stream and hence all decrypted data.

Finally, for each SSL stream we also store the original tag of the
first decrypted data block. This tag points to a byte in the encrypted
network trace where it originated. Thus, we are always able to find
the network flow that carried the attack, which in turn enables us to
identify the IP addresses and port numbers of the attack.

In summary, for retainting the interposer asks the emulator to de-
termine a new tag for the data as explained earlier. It then pushes
the decrypted data to the decrypted data log. Currently, this is im-
plemented as a request over a UDP connection to the host OS. As

70
0 10 20

9070
1010

Decrypted Log

globOffset 0 block1 globOffset 70 block2

globOffset 10 block1

globOffset 20 block1 globOffset 90 block2

interposer

tag tag tagcopies of

application
(e.g., Apache)

OpenSSL library

Argos

host OS (Linux)

tainted data

network trace

dump of tainted memory
guest OS (Linux)

SSL1

SSL2

SSL3

SSL1 SSL2 SSL3

Figure 2: Global Offsets in the Decrypted Data Log

UDP is unreliable, we take into account potential reordering and
loss. For the first chunk of decrypted data in the SSL stream, we
also log the association between the decrypted data and the origi-
nal tag, enabling us to recover conveniently the network flow (IP
addresses, ports, etc.) in which an attack originated.

The administration of all other meta-data works in exactly the same
fashion as in the non-encrypted version. In particular, this is true
for the meta-data that is kept for age stamp tracking, such as age
stamps and red markers as described in Section 2.1.

2.2.2 Identifying the SSL conversation
The construction of a unique identifier for a single conversation is
not trivial. Ideally, the identifier should be a unique number derived
from one or more fields of the SSL connection structure. Simply
using the memory address of thessl structure (see Listing 1) will
not suffice, because new conversations may reuse the structures as-
sociated with old conversations.

However, the handshake phase of SSL (version 3) connections in-
cludes the exchange of unique challenges by client and server, which
can be obtained from the SSL structure. Unlike client challenges,
server challenges cannot be influenced by clients, and are thus well-
suited for identifying the conversation. Unfortunately, SSL ver-
sion 2 does not support server challenges. While older versions of
SSL are not our main concern, we decided to add some support for
version 2. For such conversations, we currently resort to a com-
bination of the client challenge with the memory address of the
SSL connection structure and the thread id of the process using the
OpenSSL library. Admittedly a hack, the values of the latter two
are not controllable by any attacker and the combination is pseudo-
unique.

2.3 Interposition details
SSL conversations start with a handshake phase that deals with au-
thentication and creation of a session key. No application data is
transmitted during this phase and we therefore do not monitor it.
This phase also creates the SSL structure for the conversation.

Whenever an application callsSSL read to decrypt and read data,
we intercept the call by way of library interposition. Besides the
call to SSL read , we are interested in a small subset of other
calls, includingSSL shutdown andCRYPTOnum locks and a
few others1. As an example, we show the code for theSSL read
interposer in Listing 1. In the first few lines we find (line 2) and
execute (line 3) the realSSL_read function as requested by the
client. Next, we retaint the data and log the decrypted stream

1In fact, we interposeSSL write also, but the reasons for doing
so are related to attack replaying and beyond the scope of this paper.

using theretaint_netidx and inform_logclient func-
tions, respectively. None of the retaint functions are visible to the
caller, rendering the interposer transparent to the client.

Listing 1: Interposer for ssl read library function
01 i n t SSL read (SSL ∗ s s l , vo id ∗b u f f e r , i n t l e n g t h) {
02 i n t (∗ f unc) () = (i n t (∗) ()) dlsym (RTLD NEXT, ” SSL read ”) ;
03 i n t f u n c r e s u l t = func (s s l , b u f f e r , l e n g t h) ;
04 r e t a i n t n e t i d x (. . .) ; / / now r e t a i n t
05 i n f o r m l o g (. . .) ; / / l og d e c r y p t e d data (Fig . 1)
06 re turn f u n c r e s u l t ; / / r e t u r n o r i g i n a l r e s u l t
07 }

A call to SSL_shutdown simply leads to destruction of state
maintained byHassle. CRYPTO_num_locks is more complex.
OpenSSL uses a number of global data structures that will be im-
plicitly shared when multiple threads use the library. To use the
library in the context of threads safely, we need locks to prevent si-
multaneous access to the global structures andCRYPTO_num_locks
returns the number of locks needed by the library to synchronise ac-
cess. Because our interposing library also implements a global data
structure, the number of locks should be increased by one. So we
interpose this function to make another lock available to protect the
global data structure.

2.4 Hassle calls
Since (re-)tainting is the responsibility of the hardware emulator,
the interposer needs to be able to call the emulator directly. Emu-
lators clearly do not offer such functionality natively. Indeed, from
a hardware emulator’s point of view, it does not make any sense.
We therefore implemented a general-purpose primitive for com-
munication with the emulator ourselves. The mechanism is known
as theHasslecall. By designingHasslecalls exactly like system
calls, we provide familiarity to programmers. Concretely,Hassle
calls use an unused interrupt number (82) to trap to the emulator.
Parameters (including the precise call) are passed via registers. The
mechanism is both convenient and fast.

3. SIGNATURE GENERATION
As illustrated in Figure 1, signature generation is devolved from
detection and different generators can be plugged into the archi-
tecture. We currently support two main classes of generator that
will be referred to aspattern-basedand vulnerability-based, re-
spectively. Pattern-based signatures are widely used in network
intrusion detection systems such as Snort [21] and Bro [15]. They
consist of a basic identification of the type of packet (e.g., TCP
or UDP and port number), together with a byte pattern which is
matched against traffic of the appropriate type.

In vulnerability-based signatures we focus on buffer overflows on

the heap and stack and decouple the signature from the attack’s
content in bytes completely. The signature consist of a bound on
the combined length of a set of protocol fields. Any message where
such fields have a combined length that exceeds this bound will in-
cur an overflow, regardless of their content, so these signatures cater
well to polymorphic attacks. On the surface, they are quite similar
to those of Covers [10], but we will show that they are considerably
more accurate.

Each class of signatures has four variants of generators: (1) en-
crypted vs. non-encrypted, and (2) single-origin net tracking with
age stamps vs. single-origin net tracking without age-stamps. The
main difference between encrypted and non-encrypted channels,
as far as signatures are concerned, is where they are applied. For
non-encrypted channels, we are able to apply signatures in the net-
work before the malicious traffic reaches the host (indicated by5©
in Figure 1). In contrast, encrypted channels require the filters to
be applied at a higher level, i.e., as aninterposer filterin user-space
(indicated by 6©). In addition, an interposer filter must know which
signatures to apply. To do so, the signature generators consults the
network tag that was stored in the decrypted data log to find the
corresponding flow in the network trace. By means of the flow,
we obtain the port numbers used in the attack (and possibly other
network-specific information). Finally, the forensics data generated
by Hasslespecifies details about the application under attack. This
is then used by remote clients to determine which interposer filters
should apply the filter.

3.1 Pattern-based signatures
Our pattern-based signatures handle all buffer overflows and all
code injection attacks (with slightly better signatures for buffer
overflows). Note that while code injection may be caused by buffer
overflows, there also exists exploits for double frees, format strings,
etc. Regardless of exploit,Hassleis able to fingerprint such attacks
also. We distinguish between signature generators with and without
age-stamp analysis.

Single origin net tracking without age stamp analysis (SontNoAsa).
WheneverHassledetects an attack, we determine whether the pro-
gram counter (EIP) register was tainted. If so, we use the origin
pointer of the register to locate the corresponding byte in the net-
work trace. Next, we perform a correspondence search between the
flow content in the network trace prior to this byte and the tainted
data in memory. Whenever the tags point to the appropriate values
in the trace, we include them in the pattern. Pseudo-code for this
naive algorithm is shown in Listing 2.

Listing 2: Naive generator for pattern-based signatures
01 char ∗addr = top of memory l o c a t i o n loaded i n EIP ;
02 s i g t s i g = { ∗addr } ; / / s i g n a t u r e as b y t e sequence
03 whi le (t a g (addr−1) == t a g (addr)−1)
04 s i g = c o n c a t e n a t e (∗−−addr , s i g) ;

Hassleimproves on this naive scheme by taking into account simple
gaps in the tainted memory region and Unicode character encod-
ings. Gaps may occur in tainted buffers for many reasons, e.g., due
to non-tainted assignments to overflown memoryafter the buffer
overflow occurred andbeforethe control flow was diverted. For
instance, consider the (contrived) code snippet in Listing 3.

Listing 3: Tainted data: gaps in tainted data
01 vo id r e a d f r o m s o c k e t (i n t fd) {
02 i n t n ;

03 char u n r e l a t e d 1 [8] ; / / no t v u l n e r a b l e
04 char v u l n b u f [8] ; / / v u l n e r a b l e b u f f e r
05 char u n r e l a t e d 2 [8] ; / / no t v u l n e r a b l e
06 read (vu ln bu f , fd , 3 2) ; / / o v e r f l o w
07 read (u n r e l a t e d1 , fd , 8) ; / / t a i n t e d gap
08 read (u n r e l a t e d2 , fd , 8) ; / / a d j a c e n t b u f f e r t a i n t e d
09 n = 1 ; / / u n t a i n t s 4 b y t e s : gap
10 re turn ;
11 }

While the code is not very realistic, it serves to illustrate a num-
ber of complications that prevent the naive solution from produc-
ing correct results insomecases. Before the attack is detected
(whenreturn is executed), the assignment in line (9) creates an
untainted gap of 4 bytes in the tainted buffer. Similarly, the read
in line (7) creates a tainted gap filled with unrelated data. Finally,
the vulnerable buffer may adjoin another buffer that also contains
tainted data, as demonstrated by the read in line (8).

In the pattern-based signatures generated using SontNoAsa, gaps
are detected by looking at the tags. Gaps either have no tags, or tags
with unexpected values. Gaps are skipped whenever the byte on the
other side of the gap has the appropriate (expected) tag value. In
case there is no such byte, the signature stops here. Unfortunately,
the adjacent bufferunrelated 2 that also contains tainted data
cannot be distinguished from the vulnerable buffer and is therefore
also included in the signature. As a result, SontNoAsa and pattern-
based signature can lead to false negatives.

Hasslecan easily cater to well-known forms of encoding like Uni-
code. Sometimes a network trace carries ASCII data, which is
translated to a Unicode representation in memory, orvice versa.
Either way, the skew between network trace and memory is pre-
dictable. As both gap- and Unicode handling are trivial extensions
to the naive algorithm in Listing 2 we will not show them here.

Single-origin net tracking with age stamp analysis (SontAsa). Ap-
plying age-stamp analysis improves the accuracy of pattern-based
signatures in the case of buffer overflows attacks on heap or stack.
Extended age-stamp analysis directly yields all bytes in memory
that were used in the overflow. By means of single-origin net
tracking we obtain the corresponding network bytes. As we only
identify the relevant bytes, compensating for gaps and Unicode is
no longer necessary, as it is handled automatically. In fact, the
signature generation is considerably more accurate, as age stamp
analysis is also capable of distinguishing buffersvuln buf and
unrelated 22.

Code injection signatures.Not all attacks are overflows. Perhaps
other means were used to divert control to the code injected by the
attacker. Since such code is tainted by nature, the attack is detected
when instructions in the tainted region are executed. On rare occa-
sions, injected code may be executed because of legitimate control
flow (i.e., abona fidejump to a memory area that is tainted). More
commonly, the jump is the result of a control flow diversion by
means of aformat stringattack,heap corruption, or theoverflows
mentioned earlier. Regardless of how the injected code is reached,
we again align memory and network trace to generate a signature.
The only difference is that if the attack is not an overflow, we match
against the injected code.

In case we detect both a buffer overflow and code injection (i.e., the
buffer overflow was used to divert control to the injected code), we

2And indeed more complicated cases. For details, see [23,24].

have to decide whether to use as signature either the match against
the injected code, or the match against the overflow bytes. As
injected code is more likely to be polymorphic than the exploit it-
self, we favour the overflow signature. As a rule of thumb we use
the injected code signature only if (a) it is longer than the overflow
signature, and (b) if the length of the overflow signature is less than
some minimum lengthLmin (e.g.,Lmin == 12).

Limitations.Pattern-based signatures are attractive because of their
simplicity, and their popularity in existing IDSs. Unfortunately,
they are also fairly weak and incur both false positives and false
negatives. In particular, by using the actual content of the attack,
traffic pattern-based signatures are powerless against polymorphic
attacks. They also do not work when multiple tainted buffers are
adjacent in memory.

3.2 Signatures for polymorphic buffer over-
flows

For polymorphic buffer overflow attacks we decouple the signature
from an attack’s content in bytes. Instead, we look at thevulner-
abilities. A message that causes a buffer overflow contains one
or more protocol fields of unusual length that, when copied collec-
tively into a vulnerable buffer, overwrite critical data. Vulnerability-
based signatures establish a maximum lengthL for the field(s).
Any message where the combined length of these fields exceeds
L is sure to overflow the buffer. We first discuss a naive implemen-
tation that is also used by other projects and demonstrate why it is
flawed. Next, we explain how age stamp analysis helps us solve the
problems.

Single-origin net tracking without age-stamps (SontNoAsa). In
this naive implementation, we trace the point of attackX to a byte
N in the network trace and establish what protocol fieldP con-
tains this byte. Doing so is trivial if traffic is not encrypted. In our
case, we reassemble the TCP stream and dissect the higher-layer
protocols with a protocol dissector (we use a modified version of
Ethereal [2]). After locating the protocol field containingN we
generate a signature consisting of an identification of the stream
and application (port numbers, executable name) together with a
boundL on the lengthP , whereL is (N - start ofP). It is likely
that any message withP longer or equal toL results in an overflow
(but not certain, as we shall see shortly).

For encrypted traffic the procedure is a little more complicated
as we cannot start from the network packets to dissect the input
stream. As we start dissecting above the transport layer, how do we
decide which protocol dissector to use? We identify three solutions
for dealing with the problem. First, we may use custom interposers
for specific applications. For instance, we can apply an HTTP in-
terposer for Apache which always assumes HTTP traffic. Second,
we may use the port numbers in the network trace as an indica-
tion of the protocol (e.g., all port 80 traffic will be assumed to be
HTTP). Third, we may use the information about the application as
an indicator for the protocol (if the application is “apache”, we use
the HTTP dissector). Currently, we use hard-coded associations.

In our implementation, we modified the Ethereal protocol anal-
yser [2] to start from higher-level protocols and to work with in-
complete protocol messages. As this signature generator is very
similar to Covers [10], we refer to it asHassle-Covers.

Limitations.Unfortunately, Covers (and thusHassle-Covers) yields
both false positives and false negatives. First, exploits like Apache-

Knacker [22]) use the fact that sometimes multiple protocol fields
are copied in the same buffer to generate an overflow of the buffer
with the content from all these fields. As a result, establishing a
bound on the length of a single field may miss attacks where the
length ofP is small, but the combined length of all fields exceeds
the length the buffer. Similarly, it may misdiagnose a message as
malicious whenP is longer thanL, even though the combined
length of all the relevant fields is less than the buffer size.

The second reason is related, but more subtle. It is also more se-
rious. The dissector used to generate signatures may work at dif-
ferent protocol field granularities than the application itself. For
instance, the dissector may identify subfields in a record-like pro-
tocol field as separate fields, while the application simply treats it
a single protocol field. As a consequence, the two types of mis-
classification described above may occur even if the exploit does
not explicitly use multiple fields. As we generally do not have the
application’s source code, and hence have no knowledge about the
granularity of the application’s dissector, this is a serious problem.

Single-origin net tracking with age-stamp analysis (SontAsa). To
deal with this problem we take into accountall bytes used in the
overflow. A reliable way of establishing which bytes were used in
the exploit is by means of age-stamped net tracking. In the case
of non-encrypted traffic we find those bytes in the network trace
directly. In the case of encrypted traffic those bytes are found in the
decrypted data log using the modified Ethereal protocol dissector,
as described in the previous sections.

To be precise, we find accuratelyall bytes that were used in the
overflow and we do so before a single instruction of the attack is
executed and without the need to replay the attack. Gaps in the
buffer overflow (as explained in Section 3.1), be they tainted or
non-tainted, are duly skipped, and adjacent buffers that are both
tainted but different are separated. In addition, encodings like Uni-
code are automatically handled. The details are complex and be-
yond the scope of this paper. The exact procedure is explained
in [24].

Given the overflow bytes, we then identifyall protocol fields that
were used in the attack and establish an upperboundL on their
combined lengthaccording to our dissector. Whether or not the
application uses a different protocol field granularity is now imma-
terial.

4. FILTERS
Hasslefilters for non-encrypted traffic consist of simple checks,
either matching pattern-based signatures against network packets,
or looking at the length of fields of specific protocol messages for
vulnerability-based signatures. They can be applied in the network
or in the operating system kernel.

For encrypted channels, similar procedures are used, except that
they are applied by means of library interposition in user-space.
Filters should only apply those signatures that apply to the specific
application that uses the SSL library. Currently, this is done by
explicitly associating a separate interposer filter library with every
application we want to protect. Each interposer filter only picks up
the signatures for the application it is protecting. SinceHasslepro-
vides the full name of the executable as part of the signatures, the
association is trivial. For vulnerability-based signatures, the inter-
poser filters again use the modified version of Ethereal for protocol
dissection.

description average standard relative response
(req/s) deviation to native time (ms)

https/native 57.0 0.3 1.0 21
https/Argos 0.6 0.07 95.0 87
https/Hassle 0.55 0.12 103.6 63
http/Argos 38 1.8 n/a 147
http/Hassle 38 1.7 n/a 200

Table 1: Maximum rates for https connections

5. RESULTS
For realistic performance measurements we compare the speed of
code running onHasslewith that of code running without emula-
tion. While this is an honest way of showing the slowdown incurred
by our system, it is not necessarily the most relevant measure, as
we useHassleas a honeypot rather than a desktop machine. To
our knowledge, no automated attacks exist that shun slow hosts,
because they might be honeypots.

It should also be mentioned that encryption is known to be one of
the most challenging applications for dynamic taint analysis, be-
cause decryption requires a large number of tainted operations. For
instance, recent work on demand emulation [6] describes a tech-
nique to speed up emulation-based taint analysis by switching to
fast VM-mode when possible. While many applications incurred
as little as a factor 2 slowdown, SSL incurred a slowdown of 150.

Performance. To quantify the observed slowdown we used the
Apache 2.2.3 web server using the OpenSSL library. The first
simple test consisted of requests to read a 5MB block from the
client to the server, which on top of a vanilla Qemu emulator took
Apache 19.9s to complete (2.06Mbps). OnHassle, the same task
took 23.47s (1.75Mbps), incurring a 15% overhead.

We also evaluated Apache throughput in terms of number of pro-
cessed requests per second and the corresponding average response
time. We usedhttperf 3 for generating requests. The experi-
ments were conducted on a dual IntelTM Xeon at 2.80 GHz with
2 MB of L2 cache and 4 GB of RAM. The system was running
SlackWare Linux 10.2 with kernel 2.6.15.4.

The results for https (using SSL) are summarised in Table 1. The
table lists results for 3 Apache configurations: (i) running natively,
(ii) running on the Argos honeypot, and (iii) running onHassle. We
also show some results for non-encrypted http connections for com-
parison4. The results are the best possible in the sense that at this
rate the webserver was able to keep up fully with the request rate,
while not yet incurring unreasonably long response times. For in-
stance, for all reported rates the response times were below 200ms.
Beyond these rates, response times shot up to many hundreds or
even thousands of milliseconds.

The experiments confirm that SSL is very expensive for dynamic
taint analysis, incurring a slowdown of approximately a factor 100
over native code running SSL, and a factor 70 over non-encrypted
channels using the same (emulated) configuration. Consequently,
dynamic taint analysis for SSL encrypted channels is only viable
on honeypots, and even here the number of connections should
be limited. Note however, that slowness is not really a major is-

3www.hpl.hp.com/research/linux/httperf/
4We were unable to measure reliably the native version for plain
http, because httperf at the client side became the bottleneck

description average rate (req/s) relative to native
https/native with sessions 486 1.0
https/Argos with sessions 31.1 15.6
https/Hasslewith sessions 25.0 19.4

Table 2: Maximum rates for https connections with sessions

sue for a honeypot as long as it is able to serve a request suffi-
ciently fast. Moreover, in most deployments of honeypots like Ar-
gos (e.g., at SURFnet5, Eurecom [9], and in the Noah project6),
a first-pass filter of low-interaction honeypots is used to shield the
high-interaction honeypot from most requests. The second thing
to observe is that there is little difference betweenHassleand the
original Argos (i.e., a honeypot without retainting and logging of
encrypted data).

Probing further, it appeared that most of the overhead is in the con-
nection set-up where SSL uses asymmetric encryption. As a result,
performance improves significantly when use is made of https ses-
sions. For instance, for 100 sessions per connection, the reply rates
for httpsHassleare shown in Table 2.

Micro-benchmarks. Retainting itself is not very expensive. We
measured 200µs on a Pentium M at 1.4GHz with 1GB of RAM,
running Ubuntu Linux 6.0.6. The guest OS ran Ubuntu Linux 5.05
with kernel 2.6.12.9, on top of Qemu 0.8, Argos andHassle. Sim-
ilarly, the overhead of the entire interposition library to do the re-
tainting is modest. We measured performance with and without the
interposition library for both SSL reads and SSL writes for block
sizes ranging from 100B to 16 KB bytes. For writes, the relative
overhead lies between 17.5% for the largest blocks and 26% for
the smallest ones. For reads, the results range from 24.5% for the
largest to 50% for the smallest blocks. Likewise, in our evaluation
the interposer filters that scan SSL streams for the occurrence of a
signature incurred overheads between 2% and 15% compared to a
system without the filters, for the most expensive (pattern-based)
signatures.

Generating a single-origin net tracking signature. In a cursory
evaluation of the signature generator we tested the generators for
pattern-based and vulnerability-based signatures using request sizes
of 170B and 100KB, respectively (representing different amounts
of data to dissect and/or scan). The pattern-based signature was
generated in 1.1ms for the small request, and 14ms for the large
one (median values). Vulnerability based signatures for polymor-
phic attacks required 3.9ms, and 26ms to be completed (assuming
the protocol dissector is loaded already).

6. RELATED WORK
To our knowledge, we are the first to tackle the problem of one-
shot signature generation for communication on encrypted chan-
nels. Dynamic taint analysis, on the other hand, is well-known and
used in TaintCheck [14], Vigilante [12], and Argos [18]. None of
these projects offer signatures for encrypted traffic.

Library interposition as a way of monitoring interaction with li-
braries is used frequently to analyse applications [3] and generate
audit trails [8]. Liang et al. propose library interposition to learn
about program inputs that lead to crashes induced by buffer over-
flows [11]. In essence, they consider library calls made from a
5
http://honey.surfnet.nl

6
http://www.fp6-noah.org/

given program context and raise an alert when an input is signifi-
cantly longer than the maximum input length seen in the past. Inter-
position is also applied at the system-call level either to confine the
application [5], or to monitor the compliance of a sequence of calls
with a predefined application model [4, 20]. In contrast, we inter-
cept library calls to switch to tracking decrypted network streams
by adjusting the tags in dynamic taint analysis.

Several of our signature generators are based on existing work. In
particular, the pattern-based signatures are quite popular in open-
source NIDSs like Snort [21] and Bro [15]. However, the way we
generate the signatures is a little different from existing projects.
This is true for the wayHassleskips gaps and handles Unicode,
and even more so for the age-stamped net tracker that determines
accurately which bytes are used in a buffer overflow.

Similarly, the single-field vulnerability-based signature is already
proposed in Covers [10]. We have demonstrated that such signa-
tures have fundamental flaws and shown how we solved them.

Application-level filtering is performed by virus scanners and Vig-
ilante. Filters in interposing libraries are not very common. While
the paper is a bit vague about it, we suspect that they are also used
in ARBOR [11], although the filters are of a very different nature.

7. CONCLUSIONS
We have describedHassle, a honeypot system that is capable of
generating signatures for communication over both encrypted and
non-encrypted channels. For encrypted traffic we retaint the tainted
data by making the tags point to the decrypted SSL streams. Differ-
ent types of signature generator can be used in the system. Which
one should be used is a tradeoff between simplicity and accuracy.
In our opinion, pattern-based signatures are useful for simple, non-
polymorphic attacks, while vulnerability-based signatures work well
with more advanced, polymorphic exploits. To our knowledge, we
are the first to develop a system capable of fingerprinting attacks
over encrypted channels and cater to both monomorphic and poly-
morphic exploits.

8. REFERENCES
[1] P. Bueno. IIS Exploit released / Gagobot.XZ - SANS

Microsoft Advisories.http://isc.sans.org/
diary.html?date=2004-04-14 , April 2004.

[2] G. Combs. Ethereal network protocol analyzer.
http://www.ethereal.com.

[3] T. W. Curry. Profiling and tracing dynamic library usage via
interposition. InUsenix ATC, Boston, MA, June 1994.

[4] J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive
intrusion detection. In11th Annual Network and Distributed
Systems Security Symposium, San Diego, CA, 2004.

[5] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications. In
Proceedings of the 6th Usenix Security Symposium, San Jose,
CA, USA, 1996.

[6] A. Ho, M. Fetterman, C. Clark, A. Warfield, and S. Hand.
Practical taint-based protection using demand emulation.
SIGOPS Oper. Syst. Rev. (Proc. of ACM SIGOPS EuroSys,
April 2006, Leuven, Belgium), 40(4):29–41, 2006.

[7] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna.
Polymorphic worm detection using structural information of
executables. InIn 8th International Symposium on Recent
Advances in Intrusion Detection (RAID), Sept 2005.

[8] B. A. Kuperman and E. Spafford. Generation of Application
Level Data via Library Interposition. Technical Report
CERIAS TR 1999-11, COAST Laboratory, West Lafayette,
Indiana 47907-1398, Oct. 1999.

[9] C. Leita, M. Dacier, and G. Wicherski. SGNET: a distributed
infrastructure to handle zero-day exploits. Technical Report
EURECOM+2164, Institut Eurecom, France, Feb 2007.

[10] Z. Liang and R. Sekar. Fast and automated generation of
attack signatures: a basis for building self-protecting servers.
In CCS ’05: Proceedings of the 12th ACM conference on
Computer and communications security, pages 213–222,
Alexandria, VA, USA, 2005. ACM Press.

[11] Z. Liang, R. Sekar, and D. C. DuVarney. Automatic synthesis
of filters to discard buffer overflow attacks: A step towards
realizing self-healing systems. InUSENIX Annual Technical
Conference - short paper, Anaheim, CA, April 2005.

[12] M. Costa, J. Crowcroft, M. Castro, A Rowstron, L. Zhou, L.
Zhang and P. Barham. Vigilante: End-to-end containment of
internet worms. InIn Proc. of the 20th ACM Symposium on
Operating Systems Principles, Brighton, UK, 2005.

[13] McAfee. Encrypted Threat Protection - Network IPS for SSL
Encrypted Traffic. white paper, February 2005.

[14] J. Newsome and D. Song. Dynamic taint analysis for
automatic detection, analysis, and signature generation of
exploits on commodity software. InProc. of Network and
Distributed System Security Symposium (NDSS), 2005.

[15] V. Paxson. Bro: A System for Detecting Network Intruders in
Real-Time.Computer Networks, 31:23–24, December 1998.

[16] F. Perriot and P. Szor. An analysis of the slapper worm
exploit - white paper. Technical report, Symantec Security
Response, 2002.

[17] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos.
Network-level polymorphic shellcode detection using
emulation. In R. B̈uschkes and P. Laskov, editors,DIMVA,
volume 4064 ofLecture Notes in Computer Science, pages
54–73. Springer, 2006.

[18] G. Portokalidis, A. Slowinska, and H. Bos. Argos: an
emulator for fingerprinting zero-day attacks. InProc. ACM
SIGOPS EUROSYS’2006, Leuven, Belgium, April 2006.

[19] C. Prosise and S. U. Shah. Hackers’ tricks to avoid detection.
WindowSecurity White Paper,
http://secinf.net/info/misc/tricks.html ,
October 2002.

[20] N. Provos. Improving host security with system call policies.
In 12th USENIX Security Symposium, Washington, 2003.

[21] M. Roesch. Snort: Lightweight intrusion detection for
networks. InProceedings of the 1999 USENIX LISA Systems
Adminstration Conference, 1999. Available from
http://www.snort.org/ .

[22] SecurityFocus. Can-2003-0245 apache apr-psprintf memory
corruption vulnerability.
http://www.securityfocus.com/bid/7723/discussion/, 2003.

[23] A. Slowinska and H. Bos. The age of data: pinpointing guilty
bytes in polymorphic buffer overflows on heap or stack. In
23rd Annual Computer Security Applications Conference
(ACSAC’07), Miami, FLA, December 2007.

[24] A. Slowinska and H. Bos. Prospector: Accurate analysis of
heap and stack overflows by means of agestamps. Technical
Report IR-CS-031,
http://www.cs.vu.nl/ ˜ herbertb/papers/tr_
prospector_age-IR-CS-031.pdf , Vrije Universiteit
Amsterdam, June 2007.

[25] T. Toth and C. Kruegel. Accurate buffer overflow detection

via abstract payload execution. InIn Recent Advances in
Intrusion Detection, Zurich, Switzerland, October 2002.

