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Abstract—Data-intensive scientific workflows are composed of
many tasks that exhibit data precedence constraints leading to
communication schemes expressed by means of intermediate files.
In such scenarios, the storage layer is often a bottleneck, limiting
overall application scalability, due to large volumes of data
being generated during runtime at high I/O rates. To alleviate
the storage pressure, applications take advantage of in-memory
runtime distributed file systems that act as a fast, distributed
cache, which greatly enhances I/O performance.

In this paper, we present scalability results for MemFS,
a distributed in-memory runtime file system. MemFS takes
an opposite approach to data locality, by scattering all data
among the nodes, leading to well balanced storage and network
traffic, and thus making the system both highly performant and
scalable. Our results show that MemFS is platform independent,
performing equally well on both private clusters and commercial
clouds. On such platforms, running on up to 1024 cores, MemFS
shows excellent horizontal scalability (using more nodes), while
the vertical scalability (using more cores per node) is only limited
by the network bandwith.

Furthermore, for this challenge we show how MemFS is able
to scale elastically, at runtime, based on the application storage
demands. In our experiments, we have successfully used up to
1TB memory when running a large instance of the Montage
workflow.

I. INTRODUCTION

Nowadays, many scientific computations (e.g. bioinformat-
ics, astronomy applications) are expressed as scientific work-
flows, or, to a broader extent, as many-task computing (MTC)
applications [1]. Such computations often exhibit inter-task file
dependencies, leading to communication by means of files as
opposed to the traditional message passing mechanisms. Thus,
in such scenarios, communication must be achieved through
an underlying distributed/shared file system. Therefore, the
application performance and scalability are determined by the
storage layer. As data-intensive scientific workflows generate
large amounts of data during their runtime, traditional dis-
tributed disk-based storage systems are unable to cope with
their I/O rates, limiting the overall application performance
and scalability.

To alleviate the storage pressure, state-of-the art proposes
in-memory distributed file systems that store runtime generated
data [2], [3]. Although memory is still seen as a scarce re-
source, the DRAM capacity of physical machines is increasing
at a fast pace. For example, Amazon allows users to rent
compute instances optimized for in-memory computing, with
a RAM capacity of up to 244 GB. A common trend for
implementing in-memory storage systems is to co-design them
with schedulers such that applications can take advantage of
data locality. In this way, tasks are scheduled where the data

resides and issue only local reads/writes, thus utilizing the high
I/O bandwidth of local memory.

However, this locality-based approach is not entirely suited
for scientific workflows, leading to performance and scalability
bottlenecks. First, because usually tasks read multiple input
files, which may have been generated by different nodes,
schedulers have a difficult job in placing tasks where data
resides. Thus, only a subset of the input can be read locally,
while the complementary subset has to be read remotely,
leading to a performance penalty. Second, in the case of
data aggregation tasks, where individual nodes gather large
amounts of data, the locality approach generates large storage
imbalances. Considering that memory is still a scarce resource
compared to current disk sizes, the data-locality imbalances
lead to nodes being overwhelmed by the generated data and
render them incapable of running subsequent tasks, e.g., due
to swapping and system thrashing. Moreover, workflows might
also employ data partitioning stages, with many nodes reading
data from a single source node. In this case, the source node
becomes a bottleneck as the the many-to-one communication
pattern saturates its network bandwidth.

Finally, current in-memory distributed file systems are stat-
ically deployed onto a fixed number of nodes, lacking the
flexibility of scaling elastically during the application run-
time. Although, elasticity is provided by in-memory caching
solutions [4], [5], these solutions lack support for automatic
scaling and load balancing. Such a capability, as introduced by
MemFS, has two important advantages. First, the user does
not need to estimate the size of data generated at runtime,
which is a difficult task at times. In a static deployment, if
the user is overestimating the application demands, resource
utilization is poor. Conversely, in case of underestimation, the
application would be unable to finish its execution or it will
have high performance degradation. Second, when running
scientific applications, users usually want to make trade-offs
between execution speed and cost, and schedulers provide
mechanisms that dynamically scale the application’s resource
demand to meet such objectives [6]. Integrating an elastic in-
memory file-system with the scheduler leads to more accurate
and flexible schedules. Even though elastic mechanisms exist
for production file systems such as HDFS [7] or Ceph [8], the
process is not automated and thus its applicability is limited.

To overcome these limitations, we introduce MemFS [9],
[10], a highly scalable, in-memory runtime file system with
symmetrical data distribution. The novelty of MemFS is given
by its locality-agnostic design, which uniformly distributes
data across all storage nodes (by means of file striping) and



Fig. 1. Architecture of MemFS.

uses consistent hashing to access the files. Thus, the limita-
tions of the data locality approach for scientific workflows
are solved: (1) tasks are guaranteed equal performance for
reading all input files, irrespective of data placement; (2) data
aggregation stages do not generate storage imbalances as data
is uniformly spread over all nodes; (3) data partitioning stages
do not cause network traffic imbalance as all nodes engage in
a many-to-many communication pattern. These features allow
MemFS to scale to larger problem sizes than a locality-based
approach, due to its balanced storage, and to exhibit better
horizontal and vertical scalability, due to a more efficient use
of the aggregate network bandwidth. Another important fea-
ture of MemFS is its elastic scalability, which enables MemFS
to scale out dynamically, based on application demands while
maintaining a uniform data distribution. Furthermore, MemFS
is scheduler-agnostic and it can be integrated with a large
variety of data processing platforms, resource managers or
schedulers. Because it provides a POSIX-based API, MemFS
can also be used as a data storage for a variety of applications
without changing their code.

In this paper we present a scalability study of MemFS.
We prove that MemFS is able to achieve better performance
and scalability in running larger problem sizes than a state-
of-the-art locality-based storage system. We also show that
our approach is platform independent and performs equally
well on both clusters and commercial clouds. Finally, as a
demo for this challenge, we show that MemFS not only scales
well horizontally and vertically, but it is also able to scale
elastically, improving the cluster resource utilization.

II. MEMFS

Figure 1 gives an overview of MemFS. MemFS consists of
worker nodes and a Central Manager that gathers worker node
statistics and orchestrates elastic reconfigurations. Further-
more, the Central Manager applies a load balancing scheme

for rebalancing the system after reconfigurations, i.e., node
additions or removals. The worker nodes run a FUSE file
system client, which provides a POSIX-like I/O interface to
applications, and a Local Manager, which gathers resource
statistics, e.g., memory utilization, and forwards it to the
Central Manager.

To achieve a balanced storage and network traffic, reducing
the performance and scalability penalties, MemFS stripes files
uniformly across system nodes based on a hash function.
To optimize the data movement due to reconfigurations, e.g.,
nodes are added or removed, MemFS uses a consistent hash-
ing [11] scheme. Consistent hashing guarantees that in a
system that stores K objects on N nodes, when a node is
added, at most O(K/N) objects need to be rehashed.

MemFS implements consistent hashing through a 2-layer
hashing scheme that maps file stripes to partitions, and parti-
tions to nodes. In this way, file stripes are not directly mapped
to nodes, but rather to partitions. Each node holds multiple
partitions, such that, when reconfiguring the file system, only
partitions are migrated, thus avoiding rehashing the file stripes.
The mapping of stripes to partitions is achieved using the
xxhash [12] algorithm. We have chosen this non-cryptographic
algorithm because it is optimized for 64-bit CPUs, leveraging
up to 13GB/s throughput. This algorithm hashes an input string
to a 64 bit number. Applying a modulo scheme, we then decide
which partition stores the given file stripe. The mapping of
partitions to nodes is kept in a table, called the partition-
node table. This table is stored on each worker node and it
is updated by the Central Manager at each reconfiguration.
Thus, to read or write a file stripe, MemFS first determines
the id of the partition responsible for the file stripe, then the
node responsible for the partition, and then the query is sent
directly to that node, achieving O(1) look-up.

Throughout the application runtime the number of partitions
is constant. The total number of partitions sets the upper bound
on the number of nodes to which the elastic distributed file
system can scale out to. The size of each partition is limited
by the node’s memory capacity. When running on a small
number of nodes with many partitions, the partition size will
be small. When the number of nodes is increased, a subset
of the partitions will be migrated to the newly added nodes,
allowing all the partitions to grow in size.

We implemented the MemFS partitions using Redis [13].
Each partition is represented by one Redis process. Migrating
the Redis processes follows a cold migration scheme: we first
dump the database to a file; then, this file is copied to the
remote node; the database file is reloaded into a new Redis
process on the remote node.

A. Load Balancing

To compute the number of partitions each node stores,
MemFS adapts the partition distribution algorithm proposed in
Y0 [14]. We have chosen this algorithm because it achieves
load balance even with heterogeneous nodes. The load im-
balance factor of Y0 is at most 3.6, while DHTs usually
generate a load imbalance in the order of O(logN). However,



in this paper we do not present experiments on heterogeneous
systems. Therefore, the load imbalance achieved by Y0 on our
target platforms is approximately 1 (perfect load balance).

B. Elastic Reconfiguration

For this paper we configured MemFS to use a simple policy
to scale dynamically based on its current memory utilization.
MemFS scales out when its current memory utilization is close
to maximum, and scales in (reduces the number of nodes)
when the memory utilization drops below 50%; in both cases
the number of nodes added or removed is a constant defined
by the user, e.g., 25% from the current capacity. This policy
is used only for demonstrative purpose. MemFS’ behaviour
can be further extended to consider other metrics, e.g., to
minimize resource usage or cost, or to guarantee a certain
I/O throughput, and use more advanced scaling policies, e.g.,
adjusting the number of nodes based on the rate at which
memory utilization increases/decreases.

The reconfiguration process is as follows. The Central
Manager collects utilization metrics from the worker nodes’
Local Managers and based on them it decides the new number
of nodes. Then, the worker nodes’ Local Managers are notified
that a reconfiguration follows and, to avoid invalid requests,
they suspend the I/O requests from running application pro-
cesses. After the I/O is suspended, the Local Managers send
back to the Central Manager an acknowledgement message to
notify that it is safe to start the reconfiguration. The Central
Manager allocates new nodes and re-runs the Y0 algorithm to
determine how many partitions need to be migrated among the
nodes. The partitions are then migrated and a new partition-
to-node mapping is computed. Finally, the Central Manager
broadcasts the new partition-to-node mapping to all nodes and
notifies them that it is now safe to resume I/O requests.

III. SCALABILITY AND ELASTICITY EVALUATION

We evaluate the vertical and horizontal scalability of
MemFS on our local hardware infrastructure, DAS4 [15],
and in a virtualized environment, on the Amazon Elastic
Compute Cloud (EC2) [16]. By scaling vertically, we analyze
the system behaviour on a fixed number of nodes, while
gradually increasing the number of compute cores used for
task processing. Conversely, by scaling horizontally, we an-
alyze the system behaviour while gradually increasing the
number of compute and storage nodes. We show that on DAS4
MemFS outperforms a state-of-the-art in-memory file system,
that uses locality-based data management [17], and that in
a virtualized environment its scalability is only limited by
the available network bandwith. Then, we show how MemFS
scales elastically based on current application data storage
demand, using up to 1TB of memory.

A. Evaluated Environment

To evaluate MemFS on a hardware infrastructure, we use
the local DAS4 cluster. The 64 compute nodes of DAS4 are
equipped with dual-quad-core Intel E5620 2.4 GHz CPUs and
24GB memory. The nodes are connected using a commodity

1Gb/s Ethernet and a premium Quad Data Rate (QDR) In-
finiBand providing a theoretical peak bandwidth of 32Gb/s.
For our experiments we use the IP over InfiniBand (IPoIB)
interface of the latter, which achieves approximately 1GB/s
bandwidth.

When running on the Amazon EC2 cloud, we use 32
c3.8xlarge virtual machine (VM) instance types. These in-
stances feature 32 virtual compute cores, 60GB of memory
and are connected with 10G Ethernet links. Our iperf test
shows that the achievable bandwidth between c3.8xlarge EC2
instances is approximately 1GB/s. We chose this specific
instance type because its virtualized 10G Ethernet network
link achieves similar bandwidth to our DAS4 cluster nodes.

We divided the memory of each node as follows. We reserve
4GB for running the applications and the operating system.
The remaining memory is used by the file system for storing
the data generated by the applications. In all of the following
experiments, the compute nodes, which run the application
tasks, also operate as storage nodes for the evaluated MTC
file-system.

B. Applications

We use two the well-known scientific workflows, Montage
[18] and BLAST [19]. Montage is an astronomy application
that, given a set of input images of a galaxy, builds a mosaic.
Montage is composed of a series of jobs containing many
parallel tasks, i.e., mProjectPP, mDiffFit and mBackground,
and serial jobs, which perform data aggregation and parti-
tioning. BLAST is a bioinformatics application that searches
for specific nucleotide sequences in a given database and is
composed of two jobs containing parallel tasks, formatdb and
blastall. According to [20], [21], the two applications feature
different resource utilization. Montage exhibits low memory
and CPU utilization, but high I/O. In contrast, BLAST shows
high CPU utilization but only medium memory and I/O usage.

C. Vertical and Horizontal Scalability Results

First, we compare the performance and scalability achieved
by MemFS to AMFS [17], a state-of-the-art in-memory MTC
file system which uses a locality-based approach for data
management and task scheduling. For better understanding the
results, it is important to note the difference between AMFS’
locality-based and our locality-agnostic approach.

AMFS improves the application performance by issuing
only local writes and uses the AMFS Shell scheduler for exe-
cuting compute tasks on those nodes that actually store needed
files to improve read performance. AMFS Shell, however, can
only guarantee that one file per job achieves data locality.
Nevertheless, representative workflows, as the ones from our
experiments, read multiple files per task and expensive remote
reads become necessary. One could argue that, by using AMFS
collective operations, all needed files could be made available
in advance to all compute nodes. However, this is not always
feasible since the output of one workflow stage could be in the
order of hundreds of GB, and even higher, and could easily
saturate each node’s main memory.



The MemFS design guarantees equal performance for any
file read operation, independent of actual task placement. Due
to the file striping, better performance can be achieved by
using the aggregate bandwidth of all nodes storing requested
stripes, belonging to one or more files needed by a task. We
show next that for the Montage workflow this assumption
holds.

To compare MemFS and AMFS, we chose to run a 6 × 6
Montage mosaic (Montage 6) centered on the M17 galaxy.
It features 2488 input files that sum up to 4.9GB of data.
The volume of data generated during runtime is approximately
50GB. We also used a larger mosaic of 16×16 (Montage 16)
which has an input size of 34GB and generates at runtime
approximately 450GB. However, we show the results only for
the first mosaic, as AMFS does not scale to the data amount
generated by the second one. For the BLAST application, our
evaluation scenario follows the pattern from [21]. However, we
use the largest database available online, the NCBI nt database
(57GB size) which is split offline into several fragments by
using the fastasplit program. These fragments are copied at
runtime into the file system (either AMFS or MemFS). The
generated data volume is approximately 200GB.

Figure 2 shows the vertical scalability of MemFS and
AMFS. The results were determined on 64 nodes, using
gradually 1, 2, 4, and 8 compute cores each. We notice that
MemFS shows good scalability up to 512 compute cores (8
compute cores per node), while AMFS only up to 256 compute
cores (4 compute cores per node).

Figure 3 depicts the horizontal scalability of the two file
systems. We scaled out the systems from 8 to 64 compute
nodes. Because the vertical scalability results (Figure 2a)
showed that AMFS could not scale up to 8 compute cores
per node in the 64 node scenario, in the horizontal scalability
graph we decided to show both the 8 compute core scenario,
together with the 4 compute core scenario which achieves
best performance on 64 nodes. For all configurations, when
benchmarking MemFS we used 8 cores per node. The results
show that while both file systems achieve good horizontal
scalability, the performance achieved by MemFS is superior
to the AMFS performance.

This behaviour is given by AMFS’ inability to scale up to
8 compute cores per node (Figure 2b). While in the 1 and 2
compute core per node case, MemFS is only about 18% faster
than AMFS, in the 4 and 8 compute core per node case, the
difference becomes much higher. This performance difference
also leads to faster completion times when scaling horizontally
from 8 to 64 nodes. An interesting observation is that when
increasing the number of nodes, AMFS’ performance degrades
when more tasks are run per node: in the 8 and 16 node setups,
AMFS performed the best when running 8 tasks per node,
while in the 32 and 64 node setups, AMFS performed the
best with 4 running tasks per node. This can be explained by
the fact that in setups with larger number of nodes, AMFS
read operations are more expensive, as more data needs to be
transfered among nodes.

Further, we assessed MemFS vertical scalability on larger
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Fig. 2. Vertical scalability of MemFS vs. AMFS for two applications.
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problem sizes and when running in a virtualized environment.
We ran Montage 16 and BLAST using gradually 4, 8, 16 and
32 virtual cores on each of our 32 c3.82xlarge VMs. Our
largest setup uses 1024 virtual compute cores, twice as many
cores as used on the DAS4 cluster. Figure 4 shows MemFS
scalability, translated in application execution time, on 32 VMs
using up to 1024 cores. For Montage, the mProjectPP stage is
CPU-bound, while mDiffFit and mBackground are I/O-bound.
For BLAST, formatdb is CPU-bound and blastall is I/O-bound.
This is why for mProjectPP and formatdb MemFS shows
better vertical scalability. To investigate the scaling behaviour
of the I/O-bound stages of the workflows, we monitored the
network activity of the EC2 virtual machines. Figure 5 shows
the network bandwidth usage for our two applications per
node. Our results show that the I/O-bound stages saturate the
network bandwidth (of approximately 1GB/s) when running
from 16 to 32 cores per VM. Thus, the vertical scalability of
MemFS is only bound by the network bandwidth.

D. Elasticity Results

To demonstrate MemFS’ ability to scale elastically, based
on application demands, we run a 20 × 20 Montage mosaic
that generates a maximum load of 1TB data on our DAS4
cluster. While for the vertical and horizontal scalability ex-
periments we only report the performance achieved by the
workflow parallel stages, for this experiment we report the
entire application runtime. During the runtime, our scheduler
removes data that is not needed, acting like a garbage collector,
i.e., after the mProjectPP stage the input is deleted, and after
the mBackground stage all the data previously generated.
Removing data enables MemFS to scale in, i.e. decrease the
number of nodes.

For this experiment, we designed two policies to show
how MemFS could be used to optimize resource utilization
in private clusters. Policy 1 runs the application starting with
32 nodes. When the aggregate node memory utilization is
approximately 90%, MemFS scales out by adding 16 nodes.
Conversely, when the node memory utilization drops below
50%, MemFS scales in by removing 16 nodes. Policy 2 is
more conservative: MemFS starts using 16 nodes, scaling out
by 16 nodes, while scaling in is done in increments of 8 nodes.

Figure 6 shows the difference between the memory alloca-
tion and utilization, i.e., the data generated by the application,
of our two policies. During a static run, the memory of all
64 cluster nodes is allocated for the entire runtime of the
application, to fit the maximum generated data amount. Our
results show that elastically scaling MemFS based on the
application demand can largely improve the cluster’s resource
utilization. This comes at the cost of having slightly longer
execution times than for a static run, due to reconfiguration
overheads and because parallel stages are executed with less
worker nodes. Table I shows a more in-depth comparison
betwen the static run and our two elastic scaling policies.
Compared to the static run, for a performance overhead of 13
to 23%, the elastic scaling policies exhibit 55 to 63% better
resource utilization efficiency, i.e., the difference between
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TABLE I
COMPARISON WITH STATIC MONTAGE RUN

Resource usage
improvement

Performance
overhead

Time half of the cluster
is free

Policy 1 55.8% 23% 52.9%
Policy 2 63% 13% 53.23%

allocated memory and used memory during runtime. Thus,
for more than 50% of the runtime, MemFS does not use 32
nodes (half of our cluster size). This enables other users to run
their jobs concurrently with MemFS tasks, leading to shorter
queue times and better general cluster resource utilization.

IV. CONCLUSION

Data-intensive scientific computations, like MTC appli-
cations, or more specifically, scientific workflows can take
advantage of in-memory storage systems to store their run-
time generated data, thus improving their performance and
scalability. However, current in-memory storage solutions use
a locality-based approach, in which the file-system is co-
designed with the scheduler, to place the application tasks on
nodes on which the data reside. This approach is not suitable
for scientific workflows, which might exhibit data aggregation
and partitioning stages, and moreover, tasks accesing multiple
files simultaneously.

In this paper we introduced MemFS, a highly scalable
in-memory distributed runtime file-system. The novelty of
MemFS comes from its locality-agnostic and elastic design,
which distributes application data among different nodes in a
load-balanced way, even when reconfiguring the number of
nodes to adapt to a dynamic data storage demand. Our results
show that MemFS outperforms locality-based file-systems by
providing better application performance and running larger
problem sizes. We also show that MemFS performs equally
well on different infrastructure types, both clusters and clouds.
Finally, MemFS scales elastically, according to the dynamic
data storage demands of the application. This opens up the
path to future research on integration with application sched-
ulers and in designing algorithms to provide users trade-
offs between performance, resource utilization, energy and
monetary costs.
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