
Efficient Replicated Method Invocation in Java

Jason Maassen, Thilo Kielmann, Henri E. Bal
Department of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

jason@cs.vu.nl kielmann@cs.vu.nl bal@cs.vu.nl
http://www.cs.vu.nl/manta

ABSTRACT
We describe a new approach to object replication in Java, aimed
at improving the performance of parallel programs. Our program-
ming model allows the programmer to define groups of objects that
can be replicated and updated as a whole, using totally-ordered
broadcast to send update methods to all machines containinga
copy. The model has been implemented in the Manta high-per-
formance Java system. Performance measurements on a Myrinet
cluster show that the replication mechanism is efficient (e.g., up-
dating 16 replicas of a simple object takes 68 microseconds,only
slightly longer than the Manta RMI latency). Example applications
that use object replication perform as fast as manually optimized
versions based on RMI.

1. INTRODUCTION
Object replication is a well-known technique to improve theper-
formance of parallel object-based applications [3]. Although sev-
eral different forms of object replication have been proposed for
Java [9, 14, 19, 25, 27], no scheme exists yet that transparently and
efficiently supports replicated objects in Java and that integrates
cleanly with Java’s primary point-to-point communicationmecha-
nism, Remote Method Invocation (RMI) [28]. Some systems tem-
porarily cache objects rather than trying to keep multiple copies of
an object consistent [9, 14, 19, 27]. Some proposals have a pro-
gramming model that is quite different from the object invocation
model of RMI [25]. Also, performance results are often lacking or
disappointing. The probable reason for these problems is the inher-
ent difficulty in implementing object replication. In particular, it
is hard to find a good programming abstraction that is easy to use,
integrates well with RMI, and can be implemented efficiently.

In this paper we introduce a new compiler-based approach forob-
ject replication in Java that is designed to resemble RMI as much
as possible. Our model does not allow arbitrarily complex object
graphs to be replicated, but deliberately imposes restrictions to ob-
tain a clear programming model and high performance. Briefly,
our model allows the programmer to define closed groups of ob-
jects, called clusters, that are replicated as a whole. A cluster has
a single entry point, called the root object, on which its methods

are invoked. The compiler and runtime system together determine
which methods will only read (but not modify) the object cluster;
such read-only methods are executed locally, without any commu-
nication. Methods that modify any data in the cluster are broadcast
and applied to all replicas. A single broadcast message is used to
update the entire cluster, independent of the number of objects it
contains. The semantics of such replicated method invocations are
similar to those of RMI.

We have implemented this scheme in the Manta high-performance
Java system [18, 26]. Updating a simple object replicated on16
Myrinet-connected machines takes 68 microseconds, only slightly
longer than the RMI latency in Manta. We have also implemented
two parallel Java applications that use replicated objects, which we
use to illustrate efficiency and ease of programming of replicated
objects in Manta.

The contributions of the paper are as follows:� We propose a new model, similar to RMI, that allows closed
groups of objects to be replicated.� We describe a compiler-based implementation of this model
as part of the Manta system.� We analyze the performance of this implementation on a Myri-
net cluster, using a micro benchmark and two applications,
showing the performance benefits of object replication in Java.

The outline of the rest of the paper is as follows. In Section 2,
we describe our approach to object replication. In Section 3, we
discuss the implementation in the Manta system. In Section 4, we
discuss the implementation and performance of two parallelappli-
cations. In Section 5, we look at related work. Finally, in Section 6,
we present our conclusions.

2. REPLICATION IN MANTA
The primary goal of our object replication mechanism is to pro-
vide a programming model as close as possible to RMI. With RMI,
parallel applications strictly follow Java’s object-oriented model in
which client objects invoke methods on server objects in a location-
transparent way. Each remote object is physically located at one
machine. Although the RMI model hides object remoteness from
the programmer, the actual object location has a strong impact on
application performance.

From the client’s point of view, object replication is conceptually
equivalent to the RMI model. The difference is in the implementa-
tion: objects may be physically replicated on multiple processors.



The advantage of replication is that read-only methods (i.e., meth-
ods that do not modify the object’s data) can be performed locally,
without any communication. The disadvantage is that write meth-
ods become more complex and have to keep the state of object
replicas consistent. For objects that have a high read-write ratio,
replication will reduce communication overhead.

Data replication can be implemented in different ways, influenc-
ing both performance and the programming model. Many systems
that use replication apply aninvalidation scheme where the repli-
cas are removed (invalidated) after a write method. Our experi-
ences with the Orca language, however, show that for object-based
languages anupdateprotocol often is more efficient, especially if
it is implemented withfunction shipping[3]. With this strategy, a
write method on a replicated object is sent to all machines that con-
tain a copy. Then the method is applied to all copies. For object-
based systems, this strategy is often more efficient than invalidation
schemes. Especially if the object is large (e.g., a big hash table),
invalidating it is unattractive, as each machine must then retrieve
a new copy of the entire object on the next access. With func-
tion shipping, only the method and its parameters are sent, usu-
ally resulting in much smaller data transfers than with invalidation
schemes or data shipping schemes, which send or broadcast en-
tire objects. Manta therefore uses an update mechanism withfunc-
tion shipping. To update all replicated clusters in a consistent way,
methods are sent usingtotally-ordered group communication[3],
so all updates are executed in the same order on all machines.

Remote method invocation (RMI) can be seen as a simple form of
function shipping to a single, remote object. This is why we call
our approachreplicated method invocation. As with RMI, the ar-
guments to methods of a replicated object havecall-by-valuerather
thancall-by-referencesemantics. The same holds for return val-
ues. Because methods are executed once per replica, return values
as well as possibly raised exceptions will be discarded on all nodes
except the one on which the method was invoked.

A difficult problem with object replication is that a method invoked
on a given object can also access many other objects, by following
the references in the first object. A write method can thus access
and update an arbitrarily complex graph of objects. Synchroniz-
ing multiple concurrent write methods on different (but possibly
overlapping) object graphs is difficult and expensive. Also, if the
function-shipping update strategy is applied naively to graphs of
objects, broadcast communication would be needed for each object
in the graph, resulting in a high communication overhead. Orca
avoids these problems by supporting a very simple object model
and disallowing references between objects (see Section 5). A sim-
ple solution for Java would be to replicate only objects without ref-
erences to other objects, but this would be far too restrictive for
many applications. For example, it would then be impossibleto
replicate data structures like linked lists, since these are built out of
objects (unlike in Orca).

Our solution to this problem is to take an intermediate approach and
replicate only closed groups of objects, which we callclusters. A
cluster is a programmer-defined collection of objects with asingle
entry point, that will be replicated and updated as a whole. Hence,
a write method on a cluster is implemented using a single broadcast
message, independent of the number of objects in the cluster. The
entry point of a cluster is called itsroot, and it is the only object
that can be accessed by objects outside the cluster. In addition, a
cluster can have other objects reachable from the root, called the

nodeobjects; these node objects, however, cannot be referenced
directly from outside the cluster. As a consequence, only methods
of the root object can be directly invoked in order to manipulate
(read or modify) the cluster. All other method invocations inside
the cluster can only be the indirect result of an invocation on the
root object.

This model is general enough to express all common data struc-
tures like lists, graphs, hash tables, and so on. Also, the model is
restrictive enough to allow a simple and efficient implementation,
as will be discussed later. As the Java object model has no notion
of clustered (or compound) objects, we have defined a new and
simple programming interface in Manta to express this clustering
mechanism. We discuss this interface below.

2.1 Programming interface and example
Object clusters are defined by the application programmer, using
two so-called “special” interfaces to mark cluster objects. This
approach is similar to RMI, where the special interfacejava.rmi.-
Remoteis used to identify remote objects. Root objects are iden-
tified by implementing the interfacemanta.replication.Root, while
node objects implementmanta.replication.Node. The use of these
interfaces allows the Manta compiler to recognize cluster objects
such that replication-related code can be generated (see Section 3).
Furthermore, the Manta compiler has to enforce certain restrictions
on replicated objects in order to maintain replica consistency, as
discussed in Section 2.2.

class StackNode implements manta.replication.Node {
StackNode prev;
int value;

public StackNode(int d, StackNode p) {
value = d;
prev = p;

}
}

class Stack implements manta.replication.Root {
private StackNode top = null;

public void push(int d) {
top = new StackNode(d, top);

}

public int pop() throws Exception {
StackNode temp = top;
if (temp != null) {

top = top.prev;
} else {

// throw exception.
}
return temp.value;

}

public int top() throws Exception {
if (top == null) {

// throw exception.
}
return top.value;

}
}

Figure 1: A replicated stack

To illustrate the use of the two special interfaces, Figure 1shows
a simple example of an object cluster, a replicated stack, imple-
mented as a linear list. Whenever a newStackobject is created, a
new cluster is created using theStackobject as its root. By calling



the pushmethod,StackNodeobjects will be added to this cluster.
Together with the root, these objects form a well-defined closed
group. If the methods of theStackclass would use objects instead
of simple integer values, the call-by-value semantics for parame-
ters and return values ensure that no external references exist to the
objects inside the cluster.

Once a replicatedStackhas been created, a reference to it can be
passed to different machines using normal RMI calls. Manta’s run-
time system on the remote machine will replace this reference by
a reference to its local replica, creating a new one if a localreplica
does not yet exist. From the programmer’s point of view, clusters
are thus passed by reference via RMI, just like ordinary remote ob-
jects. Also, method invocations on replicated clusters aresimilar
to normal remote method invocations, as illustrated by the methods
of theStackclass. As with RMI, the methods generally have to be
synchronized (using Java’ssynchronizedkeyword); in Manta, write
methods of replicated objects are automatically synchronized, read
methods are only synchronized if specified in the program.

2.2 Restrictions on replicated objects
In the RMI model, remote method invocation is not completely
transparent, and some restrictions are applied on remote objects
due to the presence of multiple address spaces. These restrictions
also apply to replicated objects in Manta. For example, justas RMI
disallows direct access to the fields of a remote object via a remote
reference, Manta disallows direct access to the fields of theroot ob-
ject. In addition, Manta has several other restrictions forreplicated
objects, which are necessary to ensure replica consistency. We dis-
cuss these restrictions below. The Manta compiler tries to enforce
them, and produces error messages whenever it detects violations.

No remote references.As a result of our decision to replicate only
closed groups (clusters) of objects, cluster objects cannot contain
references to remote objects. Also, the methods defined for (the
root of) a cluster cannot take remote objects as parameters (but only
scalar data, arrays, and node objects). Because remote objects are
accessed via their remote references, they would be shared by all
replicas of a cluster rather than being replicated themselves. In such
a case, the function shipping approach would cause thenested in-
vocation problem[20], illustrated in Figure 2. On the top,A’s meth
method callsincr on the remote objectB. WhenA gets replicated
(shown on the bottom), function shipping will invokemethon all
replicas, in turn causing all of them to invokeincr onB. This in
general leads to erroneous program behavior that depends onthe
actual number of replicas. Manta avoids this problem by replicat-
ing closed groups of objects, so it disallows references to remote
objects from within a replicated cluster (e.g., the reference fromA
toB is not allowed).

Restrictions on the use of special interfaces.Our programming
interface does not allow a class to implement both the root inter-
face and the node interface, because that would make it difficult to
cleanly separate different clusters from each other. For the same
reason, root and node objects may only contain references tonode
objects. This restriction also rules out references from a node back
to the root object of its own cluster. As all objects in a cluster have
to implement either the root or the node interface, and as remote
references are not allowed inside clusters, classes of rootand node
objects are not allowed to also implement the remote interface.

No static variables.The use of static variables is not allowed in
root and node objects, as static objects may also be accessedand

remote
object

A

A

remote
object

BA incr()

BA

incr()

incr()

incr()

meth()

meth()

Figure 2: The nested method invocation problem

modified from outside the cluster. This would break the call-by-
value semantics which enforce node objects to be private copies of
their cluster.

Only calls to “well-behaved” methods.Inside the methods of the
root and node objects, methods of other classes may be calledgiven
that they are “well-behaved”, deterministically producing identical
results on all machines. Their implementation must not depend on
static variables or methods, random generators, I/O, or thelocal
time.

To summarize, our model deliberately disallows referencesbetween
different clusters or between clusters and remote objects.Also, it
uses call-by-value semantics for the parameters and resultvalues of
replicated method invocations (as RMI does). As a result, a cluster
is a closed group of objects, that can be replicated efficiently, as
discussed in the next section.

3. IMPLEMENTATION
The implementation of Manta’s object replication is partially inside
the Manta compiler and partially in the runtime system. Manta uses
a static (native) compiler, which translates Java programsto exe-
cutables [18]. The compiler generates code wrappers for classes
implementing themanta.replication.Rootand manta.replication.-
Nodeinterfaces, checks the restrictions on both root and node ob-
jects, and most importantly, analyses the methods of root and node
classes to distinguish between read and write operations. The run-
time system establishes object clusters and updates them onall
nodes. It also coordinates the execution of method invocations to
enforce replica consistency.

3.1 Read/write analysis
The advantage of object replication compared to RMI is that meth-
ods which only read objects can be performed locally, without any
communication. Only write operations cause communicationacross
the set of replicas. To distinguish between read and write methods,
the Manta compiler has to analyze the method implementations.
Therefore, the compiler checks if there are any operations in the
method that assign values to class variables, or if there arecalls
to other methods that can be attributed as write methods. If so,
the method is classified as a write method, otherwise it is consid-
ered to be a read method. Also, if a method may execute anotify



or notifyAll operation, it is a write operation. The implemented
analysis is conservative by always classifying methods that contain
assignments as write methods, even if the assignments may only
be executed conditionally. Furthermore, methods of classes other
than for root or node objects are assumed to be free of side effects
(see Section 2.2), and can thus safely be ignored in the read/write
analysis.

Unfortunately, this analysis cannot be performed completely at com-
pile time. Due to Java’s support for polymorphism and dynamic
binding, the method to be invoked depends, in general, on therun-
time type of the object. Since a read-only method of one classmay
be overridden by a write method in a subclass (or vice versa),it
may not be known until runtime whether a given invocation reads or
writes an object. Still, it is important to execute each method in the
correct mode (read or write). If a read-only method would be exe-
cuted as if it were a write method, it would be broadcast, resulting
in much overhead. Even worse, if a write method would acciden-
tally be executed as if it were a read-only method, erroneouspro-
gram behavior would occur. Due to this problem, the final check to
distinguish between read and write operations is performedat run
time. In Manta, wrappers are generated for all methods of root and
node objects in which the current execution mode (read or write) is
checked before actually invoking the object’s method. If the cur-
rent invocation is executed in read mode, and the actual method
requires write mode, the current invocation is aborted and restarted
in write mode. This may, for example, happen during the execu-
tion of a method of the root object when another method of a node
object is to be called. This restart can be performed safely,because
so far only read operations have been executed, and the object state
has not changed yet.

3.2 Code generation
The compiler generates method wrappers for all methods of root
and node objects in order to maintain read or write mode, and pos-
sibly perform restarts. Apart from that, read methods are directly
called on the local replica from within the corresponding wrapper.

Write operations are performed in two phases. First, the method
wrapper broadcasts a call header and the parameters to all repli-
cas, including itself. The broadcast mechanism we use is part of
the underlying Panda layer [3], which handles all communication
between Manta nodes. Panda’s broadcast is totally ordered,so all
machines receive all broadcasts in the same order. This way,all
replicas perform write operations in the same order, causing them
to be consistent with each other.

On each node, a separate thread consecutively processes incom-
ing broadcast messages. The call header and the parameters are
extracted, and a handler method executes the respective method
on the local object replica. For transferring parameter objects, the
standard object serialization method from Manta’s RMI protocol is
used. The serialization code is generated by the Manta compiler
and is highly efficient [18].

Finally, when the method completes, its outcome (result object or
raised exception) is intercepted by the handler. On the invoking
node, the outcome will be forwarded to the original caller. On all
other nodes, the outcome is simply discarded.

3.3 Cluster management
Whenever a new root object is created, a new cluster is implicitly
created along with it. On the invoking process, the root object is

created, and a unique identifier is assigned to it. In turn, the new
cluster is broadcast to all nodes of the parallel application, using
Panda’s totally ordered broadcast mechanism. This ensuresthat
clusters are always created on all nodes before any write operation
attempts to modify them.

Although the replicated clusters are immediately established on all
nodes, the application itself views them as being replicated on de-
mand. Only the process on which the cluster was created gets a
reference to the new cluster. The application code then has to dis-
tribute the reference to other nodes using RMI.

A possible optimization of this scheme would be to replicatea clus-
ter only on those nodes that actually have a reference to it. This
could avoid some overhead of processing write updates on objects
that are not used on some of the nodes. As a drawback, elaborate
group management would have to be implemented. Our current
implementation simply replicates all clusters on all nodes. Our pre-
vious experience with the Orca shared object system indicates that
this approach yields adequate performance [3].

3.4 Wait and notify
The execution model for write methods also has to correctly handle
synchronization forwait, notify, andnotifyAll primitives. When-
ever a broadcast message for invoking a write method is received,
the method will not immediately be executed. Instead, each object
cluster has a queue for incoming broadcast messages, and a thread
waiting for messages to appear in the queue. Whenever a message
appears, the thread takes it out of the queue and invokes the respec-
tive method. All write methods are therefore executed by a single
thread, one at a time, in the order they were received in. Thismodel
ensures that all nodes execute all write methods in the same order.

This single-threaded scheme cannot be used for executing write
methods that may block while callingwait. In this case, no other
write methods will be able to run, including the one intendedto
wake up the blocked method. This problem is illustrated in Fig-
ure 3, which presents the code of aBin object, a simple bounded
buffer with a single data slot. Theget method will block until a
value has been written into the bin, then it empties the bin, and
wakes up other, waiting, methods. Theput method will block until
the bin is empty, it will fill the bin, and then wake up waiting meth-
ods. Bothput andget are write methods (they changefilled and
call notifyAll), and are therefore broadcast to all replicas. On each
node, the corresponding messages are put into the queue. If aget
would block because theBin object is empty, the thread serving the
write method would block and theput that was intended to wake
up thegetwould never be executed.

A simple-minded solution would be to create one thread for each
incoming broadcast message. Unfortunately, the global execution
order could then no longer be guaranteed. Instead, we use a solu-
tion similar to theWeaverabstraction introduced in [23]. A new
thread is created whenever the original thread blocks. Although
this happens in the same order on each node it still has to be guar-
anteed that blocked threads also wake up in exactly the same order
on all nodes, otherwise the total execution order for write methods
would still be violated. Unfortunately, Java’swait/notify mecha-
nism does not guarantee any order in which waiting threads will
wake up. Manta’s runtime system therefore provides specificim-
plementations ofwait, notify, andnotifyAll for replicated objects.
Here, the execution ofnotifyAll on a root or node object causes
waiting threads to be put back into the execution queue in exactly



class Bin implements manta.replication.Root {
private boolean filled = false;
private int value;

public synchronized int get() {
while (!filled) wait();
filled = false;
notifyAll();
return value;

}

public synchronized void put(int i) {
while (filled) wait();
value = i;
filled = true;
notifyAll();

}
}

Figure 3: A replicated Bin object

the global order in which they were invoked. The current thread
servicing the queue will then detect that the head of the queue con-
tains a blocked thread, wake this thread up, and terminate itself.
The woken up thread will then continue to run and wake up the
next thread when it terminates. The last thread will not terminate,
but continue servicing new calls from the queue. This way, all ma-
chines will wake up the threads in the same order and keep the
copies of the object clusters consistent.

The solution presented here is specific to the Manta system. In
Manta, the implementation of thewait, notify, andnotifyAll meth-
ods are aware of object replication. Because the implementations
of these methods in the Sun JDK arefinal (i.e., not overloadable),
we are not allowed to replace them with replication aware versions,
making it harder to implement our scheme in a non-Manta Java
system. A solution would be to offer alternative methods with dif-
ferent names, or to use a preprocessor to replace calls towait, notify
andnotifyAll at compile time.

3.5 Performance evaluation
To evaluate the performance of Manta’s replication mechanism, we
implemented theStackclass from Figure 1 and compiled it with
our Manta system. Our experimentation platform, called theDis-
tributed ASCI Supercomputer(DAS), consists of 200 MHz Pentium
Pro nodes each with 128 MB memory running Linux 2.0.36. The
nodes are connected via Myrinet [5]. Manta’s runtime systemhas
access to the network in user space via the Panda communication
substrate [3] which uses the LFC [4] Myrinet control program.
Myrinet lacks a hardware broadcast facility, but LFC implements
an efficient spanning-tree broadcast protocol inside the Myrinet
network interfaces. The DAS system is more fully described in
http://www.cs.vu.nl/das/.

Table 1 summarizes our results for thepushmethod, writing a stack
object, and for thetop method, reading a stack. For comparison,
we also measured the sequential execution of the methods, and
their invocation via Manta’s standard RMI mechanism. For the se-
quential version, we compiled variants of theStackclasses that do
not implement the replication-related interfaces. The time for the
sequentialpush(3:1 �s) is dominated by the creation of aStack-
Nodeobject. For the RMI version, theStackclass implements the
java.rmi.Remoteinterface. Invoking both methods on such an ob-
ject locally (within the same process), adds about3�s to the pure

sequential times. Calling a remote object on a different machine
adds about50 �s.
The replicatedStackhas been tested using up to 16 machines. The
top read-only method can be performed locally, independent of the
number of replicas. It completes much faster than via a localRMI,
within only 0:5 �s. Broadcasting thepushwrite method to two
machines takes slightly longer than a single RMI (60�s), and in-
creases by less than3 �s each time the number of machines is dou-
bled. With a single process, the Panda layer avoids the actual net-
work communication, saving 50% of the broadcast overhead, com-
pared to using two processes. The times shown for the replicated
pushmethod denote the time from the method invocation until all
processes have completed the operation.

In this micro benchmark, the cost of a read operation on a repli-
cated object is comparable to the cost of its sequential counterpart.
The write operation takes only slightly longer than a singleRMI
call. These results are very promising. In the following section, we
investigate the impact of our implementation on two application
kernels.

Table 1: Completion times of Stack operations on a Myrinet
cluster (microseconds), comparing sequential method invoca-
tion, RMI, and Manta’s replication

cpus push top
sequential 3.1 0.1
RMI, local 6.1 2.7
RMI, remote 55.3 49.2
replicated 1 29.1 0.5
replicated 2 60.0 0.5
replicated 4 62.3 0.5
replicated 8 65.3 0.5
replicated 16 68.0 0.5

4. APPLICATIONS
We evaluated Manta’s replication mechanism with two applica-
tions. For both, we followed the general approach to first imple-
ment a “naive” version that is based on shared-object communica-
tion where the shared objects are accessed via RMI. For compari-
son, we manually optimized the communication behavior of these
versions exclusively using RMI as communication mechanism. Fi-
nally, we implemented versions of the “naive” codes that replicate
their shared objects. For all three versions of an application, we
compare performance and source-code complexity.

4.1 The Traveling Salesperson Problem
The Traveling Salesperson Problem (TSP) computes the shortest
path for a salesperson to visit all cities in a given set exactly once,
starting in one specific city. We use a branch-and-bound algorithm,
which prunes a large part of the search space by ignoring partial
routes that are already longer than the current best solution. The
program is parallelized by distributing the search space over the
different nodes. Because the algorithm performs pruning, however,
the amount of computation needed for each sub-space is not known
in advance. The program therefore uses a centralized job queue
to balance the load. Each job contains an initial path of a fixed
number of cities; a node that executes the job computes the lengths
of all possible continuations, pruning paths that are longer than the
current best solution.



The TSP program keeps track of the current best solution found
so far, which is used to prune part of the search space. Each node
needs an up-to-date copy of this solution to prevent it from doing
unnecessary work, causing it to frequently check the currently best
solution. In contrast, updates to the best solution happen only in-
frequently.

In our implementation of TSP, the solution is stored in an object
of classMinimum. We have implemented three different versions
of the Minimumclass, using a remote object, manually optimized
remote objects, and a replicated object.

Figure 5 shows the speedups for the three versions with 1 up to64
nodes. All speedup values are computed relative to the speedof the
manually optimized version, running on a single node. Thenaive
RMI version implements theMinimumclass using a remote object,
stored on one of the nodes. The other nodes receive a reference to
this Minimumobject. An expensive RMI is needed in order to read
the value of theMinimumobject, resulting in poor performance and
no speedups. The overhead of the very frequent read operations ac-
tually causes a bottleneck at the node owning theMinimumobject,
causing completion times to increase, rather than to decrease, with
the number of nodes. For example with 16 nodes, we counted about1:5 � 108 incoming RMI requests on the node owning theMinimum
object.

To prevent this prohibitive overhead, theoptimizedRMI version
manually replicates the current minimum value to class variables
of the active TSP worker objects. The frequently occuring read op-
erations can now be performed locally, by reading the value from a
variable, even avoiding the overhead of method invocation.When-
ever one node finds a better solution, it performs an RMI call to a
remoteMinimumobject. This object has a vector of references to
all TSP worker objects, which also act asremoteobjects. While
processing aset operation, theMinimumobject in turn performs a
set RMI on all TSP worker objects, updating their minimum val-
ues. Using this optimization, TSP achieves a speedup of 51.8on
64 nodes. However, the implementation of theMinimumclass be-
comes much more complicated as it needs remote references toall
TSP worker objects. Furthermore, the worker objects also have to
provide a method that can be invoked remotely which somewhat
contradicts the “naive” design.

class Minimum implements manta.replication.Root {
private int minimum = Integer.MAX_VALUE;

public void set(int minimum) {
if (minimum < this.minimum) {

this.minimum = minimum;
}

}

public int get() {
return minimum;

}
}

Figure 4: Replicated implementation of theMinimum class

The implementation of thereplicated version of TSP is almost
identical to the naive (original) RMI version. The only difference is
that theMinimumclass is marked as being a root object instead of a
remote object (see Figure 4). Because the object is replicated on all
nodes, all changes are automatically forwarded and each node can

locally read the value of the object. Figure 5 shows that, although
the replicated implementation is just as simple as the naiveRMI
implementation, its performance comes close to the manually opti-
mized RMI version, achieving a speedup of 45.2 on 64 nodes. This
speedup is slightly inferior to the manually optimized RMI version.
The difference originates in the overhead of reading the minimum
value. With 64 nodes, for example, we counted the total number of
invocations of theget operation to be about8 � 108. As shown in
Table 1, invoking a local read operation on a replicated object takes0:5 microseconds, while reading a local class variable needs less
than0:1 microseconds. The difference of the total completion time
is 8 � 108=64 � (0:5 � 0:1) � 10�6 se
onds � 5 se
onds. In fact,
we measured completion times of32:6 seconds for the manually
optimized version and of37:4 seconds for the replicated version,
yielding the speedup values shown in Figure 5.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

TSP

naive
manually optimized

replicated

Figure 5: Speedup for the TSP application

4.2 All-pairs Shortest Paths Problem
The All-pairs Shortest Paths (ASP) program finds the shortest path
between any pair of nodes in a graph, using a parallel versionof
Floyd’s algorithm. The program uses a distance matrix that is di-
vided row-wise among the available processors. At the beginning
of iterationk, all processors need the value of thekth row of the
matrix.

We implemented this communication pattern using a replicated ob-
ject of classMatrix. The processor containing the row for the next
iteration stores it into this object, allowing other processors to read
the row. It is possible for a processor to request a row which has not
been produced yet, causing the call to theMatrix object to block un-
til it is available. As with the TSP problem, we have implemented
three versions of ASP, using a remote object, an optimized remote
object, and a replicated object.

The naive RMI version implements theMatrix class using a remote
object. Each machine has a copy of such an object, used by other
machines to retrieve its rows using RMI. Because each machine
has to fetch each row for itself, each row has to be sent acrossthe
network multiple times, causing high overhead on the machine that
owns the row. For instance, if 64 nodes are used, each row is sent
63 times. Figure 7 shows that the naive RMI version performs well
up to 8 nodes. On more nodes, the overhead for sending the rows
becomes prohibitive, limiting the speedup to 28.5 on 64 machines.
Again, all speedup values are computed relative to the speedof the
manually optimized version, running on a single node.



To prevent the overhead of sending the rows multiple times, the
optimized RMI version uses abinary treeto simulate a broadcast
of a row. When a new row is generated, it is forwarded to two other
machines which store the row locally and each forwards it to two
other machines. As soon as the rows are forwarded, the machines
are able to receive a new row, allowing the sending of multiple rows
to be pipelined. The forwarding continues until all machines have
received a copy of the row. Using this simulated broadcast, the
optimized RMI version performs much better, achieving a speedup
of 58.9 on 64 machines.

class Matrix implements manta.replication.Root {

private int[][] tab;
private int size;

public Matrix(int n) {
tab = new int[n][];

}

public synchronized int [] get_row(int i) {
while (tab[i] == null) {

try {
wait();

} catch (Exception e) {
// Handle the exception.

}
}
return tab[i];

}

public synchronized void put_row(int i,
int [] row) {

tab[i] = row;
notifyAll();

}
}

Figure 6: Replicated implementation of theMatrix class.

The replicated ASP implementation uses a single, replicated Ma-
trix object, shown in Figure 6. Whenever a processor writes a row
into theMatrix object using theput row method, the new row is
forwarded to all machines, using the efficient broadcast protocol
provided by Panda and LFC. Each processor can then locally read
this row using theget row method. The replicated implementation
is as simple as the naive version. Figure 7 shows that it performs
even better than the manually optimized RMI version, achieving a
speedup of 60.9 on 64 machines. This is due to Panda’s broadcast
which performs better than the RMI-based broadcast tree. Inad-
dition, by using Panda’s broadcast, parameter objects onlyhave to
be serialized once per broadcast, rather than multiple times in the
application-level forwarding tree.

As with TSP, the implementation of thereplicatedversion of ASP
is very similar to the naive implementation. In contrast, the opti-
mized version contains a large amount of extra code to implement
the binary tree, making the source code more complex and more
than twice as big as the naive version.

5. RELATED WORK
Our approach to object replication in Manta follows the samefunc-
tion-shipping update strategy as in the Orca system [3] and also
uses the same underlying communication system (Panda). Still,
there are many important differences with Orca. Orca was de-
signed specifically to allow object replication. In particular, its
object model is very simple: it supports only methods onsingleob-

0

10

20

30

40

50

60

0 10 20 30 40 50 60

sp
ee

du
p

cpus

ASP

naive
manually optimized

replicated

Figure 7: Speedup for the ASP application

jects and it does not even allow references between objects.Hence,
Orca is not object-oriented, and its programming style is closer to
Distributed Shared Memory [3]. Orca programs read and writeone
object at a time, much like DSM programs read and write memory
locations one at a time. Java and Java RMI support a quite different
(object-oriented) programming model, and were not designed with
object replication in mind. Implementing replicated objects in Java
therefore is much harder. We introduced a clustering concept to
allow replication of object graphs (something that cannot even be
expressed in Orca, since it lacks references between objects). Also,
synchronization in Orca is much more restrictive than in Java and
only allows methods to block initially, but not halfway during their
invocation. We addressed this problem by imposing a consistent
ordering for Java’swait, notify, andnotifyAll primitives. Another
difference between Java and Orca is that Orca can do the read/write
analysis of methods entirely at compile time, as Orca does not sup-
port polymorphism. For Java, the analysis has to be done partially
during runtime.

An alternative to replication is to use a Distributed SharedMemory
(DSM) system. Several DSM systems for Java exist, which provide
a shared memory programming model instead of the RMI model,
while still executing on a distributed memory system. In these sys-
tems, no explicit communication is necessary, all communication is
handled by the underlying DSM. Java/DSM [30] and DOSA [11]
implement a JVM on top of the TreadMarks DSM [13].

Hyperion [19], Jackal [27], and cJVM [2] are examples of Java
systems thatcacheobjects. In these systems, a processor can get a
temporary copy of an object. These copies are invalidated (deleted)
at synchronization points by broadcasting an invalidationmessage
to all copies. In Manta, on the other hand, the replicas of an ob-
ject are continuously kept coherent, by broadcasting writemethods
in a totally-ordered way. These broadcast messages alreadycon-
tain the information to refresh the replicas, eliminating the need
for further communication. In combination with function shipping,
update messages are typically very short, comparable to thesize
of invalidation messages. Also, a replication scheme can benefit
from the availability of an efficient low-level broadcast mechanism
(LFC, in our case). The actual performance of the two schemesof
course also depends on application-specific communicationchar-
acteristics.



The VJava [17] system offers caching using a scheme called Ob-
jectViews. With ObjectViews, threads can have differentviewsof
a shared object. The system can determine at compile time if it is
safe to access the object concurrently through two different views.
It uses this information to reduce the number of invalidation mes-
sages sent.

The Java system described in [14] also supports object caching, and
uses a reliable multicast protocol to send invalidation messages.
The performance of this system, however, suffers from the ineffi-
ciencies of the RMI system (Sun JDK 1.1.5) on which it is based.
For example, reading a locally cached copy of an object (i.e., with-
out any communication) costs 900 microseconds (measured ona
Sun Ultra 2). In comparison, Manta can update 16 remote copies
of an object in 68 microseconds.

The Javanaise system [9] uses clusters of objects in a way similar
to Manta, but relies on object caching. Processors can fetchread-
only copies of a cluster from a centralized server. Those copies
will be invalidated when a processor requests write permission on
the cluster, causing considerable overhead with updating large clus-
ters. Manta’s replication mechanism is thus much more efficient.
In the clustering mechanism of Javanaise, aclusterobject (corre-
sponding to Manta’sroot object) serves as the entry point to the
cluster. Programmers have to annotate its methods as read orwrite
operations, a task automatically performed by the Manta compiler.
Finally, Javanaise has no notion ofnodeobjects and any serializ-
able object can be part of a cluster, burdening a significant part of
guaranteeing replica consistency onto the programmer.

There are many other research projects for parallel programming in
Java [1, 6, 7, 10, 12, 14, 15, 21, 22, 24, 29, 30]. Most of these sys-
tems, however, do not support object replication or caching. Sev-
eral systems (e.g., [12, 22]) support object migration. TheKan
Java-based distributed system [16] supports recovery, object migra-
tion, and replication as means for achieving fault tolerance. Manta’s
focus is on implementation efficiency for parallel applications.

With the Message Passing Interface (MPI) language binding to
Java [8], communication is expressed using message passingrather
than remote method invocations. Processes send messages (arrays
of objects) to each other. Additionally, MPI defines collective op-
erations in which all members of a process group collectively par-
ticipate; examples are broadcast and related data redistributions,
reduction computations (e.g., computing global sums), andbarrier
synchronization. Object replication roughly correspondsto MPI’s
broadcast operation. An integration of MPI’s other collective oper-
ations into Java’s object model could complement expressiveness
and efficiency of object replication.

6. CONCLUSIONS
In this paper, we presented a new and efficient approach to object
replication in Java. We adopted our previous work on the Orca
shared object system [3] which combines an update protocol with
totally ordered broadcast and function shipping. For integrating
Orca’s replication mechanism into Java’s object model, we intro-
duced a notion of closed groups of objects, calledclusters, which
serve as the unit of replication. Furthermore, we added support for
Java’s polymorphism as well as for the synchronization mechanism
based onwait andnotify, which may cause replicated method in-
vocations to block in the middle of their execution. Our goalwas
to keep the programming model as close as possible to standard
RMI. To achieve this, objects are declared to become replicated by

implementing one of two new special interfaces.

Our implementation partially is inside the Manta compiler,and par-
tially in the runtime system. The compiler performs consistency
checks, generates code for replicated method invocation, and ana-
lyses the methods of cluster objects to distinguish betweenread
and write operations. The runtime system establishes and updates
object clusters on all nodes of a parallel application. It also coor-
dinates the execution of method invocations to enforce replica con-
sistency. Read operations on replicated objects can be performed
locally (without communication) and take about0:5 microseconds
on our platform. Write operations for updating 16 replicas take68
microseconds, only slightly longer than a single RMI call.

We have shown that our approach provides efficient object repli-
cation for Java with a programming model close to standard RMI.
Object clusters allow complex data structures to be replicated with-
out sacrificing runtime performance. We evaluated our system with
two application kernels and showed that Manta’s object replication
model actually allows implementation of straight-forward, shared-
object applications, while yielding performance close to manually
optimized versions based on individual RMI calls.

We are currently evaluating our replication model. Although the
model is restrictive, it was strong enough to express the twoappli-
cation kernels described in Section 4. Furthermore, we are cur-
rently evaluating our system with other, more irregular applica-
tions, as well as on top of our wide-area Java platform [26].

Acknowledgments
This work is supported in part by a USF grant from the Vrije Universiteit.
The DAS system is an initiative of the Advanced School for Computing and
Imaging (ASCI). We thank Rob van Nieuwpoort, Ronald Veldema, Rutger
Hofman, and Ceriel Jacobs for their contributions to this research. We thank
Kees Verstoep and John Romein for keeping the DAS in good shape.

7. REFERENCES
[1] A. D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheiman.

SuperWeb: Research Issues in Java-Based Global Computing.
Concurrency: Practice and Experience, 9(6):535–553, June 1997.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: a Single System
Image of a JVM on a Cluster. InProc. of the 1999 Int. Conf. on
Parallel Processing, Aizu, Japan, Sept. 1999.

[3] H. Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen,
T. Rühl, and F. Kaashoek. Performance Evaluation of the Orca
Shared Object System.ACM Transactions on Computer Systems,
16(1):1–40, 1998.

[4] R. Bhoedjang, T. Rühl, and H. Bal. User-Level Network Interface
Protocols.IEEE Computer, 31(11):53–60, 1998.

[5] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A Gigabit-per-second LocalArea
Network.IEEE Micro, 15(1):29–36, 1995.

[6] F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, E. Akman, and
D. Gannon. Java RMI Performance and Object Model
Interoperability: Experiments with Java/HPC++ Distributed
Components. InACM 1998 Workshop on Java for High-Performance
Network Computing, Santa Barbara, CA, Feb. 1998.

[7] S. Brydon, P. Kmiec, M. Neary, S. Rollins, and P. Cappello.
Javelin++: Scalability Issues in Global Computing. InACM 1999
Java Grande Conference, pages 171–180, San Francisco, CA, June
1999.

[8] B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. Fox. MPI for
Java: Position Document and Draft API Specification. Technical
Report JGF-TR-03, Java Grande Forum, November 1998.



[9] D. Hagimont and D. Louvegnies. Javanaise: Distributed Shared
Objects for Internet Cooperative Applications. InProc.
Middleware’98, The Lake District, England, Sept. 1998.

[10] T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, K.-S. Kim,
P. Sheethalnath, and C.-H. Youn. The Gateway System: Uniform
Web Based Access to Remote Resources. InACM 1999 Java Grande
Conference, pages 1–7, San Francisco, CA, June 1999.

[11] Y. Hu, W. Yu, A. Cox, D. Wallach, and W. Zwaenepoel. Runtime
Support for Distributed Sharing in Strongly Typed Languages.
Technical report, Rice University, 1999. Online at
http://www.cs.rice.edu/˜willy/TreadMarks/papers.html.

[12] M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an Environment for
Parallel, Distributed and Mobile Java Applications. InACM 1999
Java Grande Conference, pages 15–24, San Francisco, CA, June
1999.

[13] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel. TreadMarks:
Distributed Shared Memory on Standard Workstations and Operating
Systems. InProc. of the Winter 1994 Usenix Conference, pages
115–131, San Francisco, CA, Jan. 1994.

[14] V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, G. Riley,
B. Topol, and M. Ahamad. Efficient Implementations of Java RMI.
In 4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’98), Santa Fe, NM, 1998.

[15] P. Launay and J.-L. Pazat. The Do! project: Distributed
Programming Using Java. InFirst UK Workshop Java for High
Performance Network Computing, Southampton, Sept. 1998.

[16] S. Y. Lee.Supporting Guarded and Nested Atomic Actions in
Distributed Objects. Master’s thesis, University of California at Santa
Barbara, July 1998.

[17] I. Lipkind, I. Pechtchanski, , and V. Karamcheti. Object Views:
Language Support for Intelligent Object Caching in Parallel and
Distributed Computations. InProc. of the 1999 Conf. on
Object-Oriented Programming Systems, Languages and
Applications, pages 447–460, October 1999.

[18] J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal, andA. Plaat.
An Efficient Implementation of Java’s Remote Method Invocation. In
Seventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’99), pages 173–182, Atlanta, GA,
May 1999.

[19] M. W. Macbeth, K. A. McGuigan, and P. J. Hatcher. Executing Java
Threads in Parallel in a Distributed-Memory Environment. In Proc.
CASCON’98, pages 40–54, Missisauga, ON, 1998. Published by
IBM Canada and the National Research Council of Canada.

[20] K. Mazouni, B. Garbinato, and R. Guerraoui. Building Reliable
Client-Server Software Using Actively Replicated Objects. In Proc.
International Conference on Technology of Object Oriented
Languages and Systems (TOOLS), Versailles, France, Mar. 1995.
Prentice Hall.

[21] C. Nester, M. Philippsen, and B. Haumacher. A More Efficient RMI
for Java. InACM 1999 Java Grande Conference, pages 153–159, San
Francisco, CA, June 1999.

[22] M. Philippsen and M. Zenger. JavaParty—Transparent Remote
Objects in Java.Concurrency: Practice and Experience,
9(11):1225–1242, Nov. 1997. Online at
http://wwwipd.ira.uka.de/JavaParty/.

[23] T. Rühl and H. E. Bal. Synchronizing operations on multiple objects.
In Proceedings of the 2nd Workshop on Runtime Systems for Parallel
Programming, Orlando, FL, Mar. 1998.

[24] L. F. G. Sarmenta and S. Hirano. Bayanihan: Building andStudying
Web-Based Volunteer Computing Systems Using Java.Future
Generation Computer Systems, 15(5/6), 1999.

[25] B. Topol, M. Ahamad, and J. T. Stasko. Robust State Sharing for
Wide Area Distributed Applications. In18th International
Conference on Distributed Computing Systems (ICDCS’98), pages
554–561, Amsterdam, The Netherlands, May 1998.

[26] R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmann, and
R. Veldema. Wide-area parallel computing in Java. InACM 1999
Java Grande Conference, pages 8–14, San Francisco, CA, June 1999.

[27] R. Veldema, R. A. F. Bhoedjang, and H. Bal. Distributed Shared
Memory Management for Java. Technical report, Vrije Universiteit
Amsterdam, Nov. 1999.

[28] J. Waldo. Remote procedure calls and Java Remote Method
Invocation.IEEE Concurrency, 6(3):5–7, July–September 1998.

[29] K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit,
A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Colella, and
A. Aiken. Titanium: a high-performance java dialect. InACM 1998
workshop on Java for High-performance network computing, Feb.
1998. Online at http://www.cs.ucsb.edu/conferences/java98/.

[30] W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous
Computing.Concurrency: Practice and Experience,
9(11):1213–1224, Nov. 1997.


