Efficient Replicated Method Invocation in Java

Jason Maassen, Thilo Kielmann, Henri E. Bal
Department of Mathematics and Computer Science, Vrije &fsiteit, Amsterdam, The Netherlands

jason@cs.vu.nl

kielmann@cs.vu.nl

bal@cs.vu.nl

http://ww. cs. vu. nl / manta

ABSTRACT

We describe a new approach to object replication in Javagdim
at improving the performance of parallel programs. Our oG
ming model allows the programmer to define groups of objduets t
can be replicated and updated as a whole, using totallyredde
broadcast to send update methods to all machines contaiing

are invoked. The compiler and runtime system together ichixer
which methods will only read (but not modify) the object d¢krs
such read-only methods are executed locally, without anynco-
nication. Methods that modify any data in the cluster aratoast
and applied to all replicas. A single broadcast messageed s
update the entire cluster, independent of the number ofttshje

copy. The model has been implemented in the Manta high-per- contains. The semantics of such replicated method invatsiire
formance Java system. Performance measurements on a Myrinesimilar to those of RMI.

cluster show that the replication mechanism is efficierd.(eup-
dating 16 replicas of a simple object takes 68 microsecounuly,
slightly longer than the Manta RMI latency). Example apgiions
that use object replication perform as fast as manuallynipéd
versions based on RMI.

1. INTRODUCTION

Object replication is a well-known technique to improve freg-
formance of parallel object-based applications [3]. Altgb sev-
eral different forms of object replication have been pregbfor
Java [9, 14, 19, 25, 27], no scheme exists yet that transihaeerd
efficiently supports replicated objects in Java and thagrgtes
cleanly with Java’'s primary point-to-point communicatimecha-
nism, Remote Method Invocation (RMI) [28]. Some systems-tem
porarily cache objects rather than trying to keep multiglpies of

an object consistent [9, 14, 19, 27]. Some proposals have-a pr
gramming model that is quite different from the object iratian
model of RMI [25]. Also, performance results are often lackor
disappointing. The probable reason for these problemeimtter-
ent difficulty in implementing object replication. In pantilar, it

is hard to find a good programming abstraction that is easgéo u
integrates well with RMI, and can be implemented efficiently

In this paper we introduce a new compiler-based approacblfor
ject replication in Java that is designed to resemble RMI ashm

as possible. Our model does not allow arbitrarily complejecto
graphs to be replicated, but deliberately imposes restnisto ob-

tain a clear programming model and high performance. Briefly
our model allows the programmer to define closed groups of ob-
jects, called clusters, that are replicated as a whole. steflthas

a single entry point, called the root object, on which its moels

We have implemented this scheme in the Manta high-perfotman
Java system [18, 26]. Updating a simple object replicated®n
Myrinet-connected machines takes 68 microseconds, oigligtisi
longer than the RMI latency in Manta. We have also implengénte
two parallel Java applications that use replicated objedigch we
use to illustrate efficiency and ease of programming of ceypdid
objects in Manta.

The contributions of the paper are as follows:

¢ We propose a new model, similar to RMI, that allows closed
groups of objects to be replicated.

e We describe a compiler-based implementation of this model
as part of the Manta system.

¢ We analyze the performance of this implementation on a Myri-
net cluster, using a micro benchmark and two applications,
showing the performance benefits of object replicationvaJa

The outline of the rest of the paper is as follows. In Section 2
we describe our approach to object replication. In Sectiowe
discuss the implementation in the Manta system. In Sectiave4
discuss the implementation and performance of two parafipli-
cations. In Section 5, we look at related work. Finally, ircts@n 6,

we present our conclusions.

2. REPLICATION IN MANTA

The primary goal of our object replication mechanism is to-pr
vide a programming model as close as possible to RMI. With RMI
parallel applications strictly follow Java’s object-arted model in
which client objects invoke methods on server objects ircation-
transparent way. Each remote object is physically locatezha
machine. Although the RMI model hides object remoteness fro
the programmer, the actual object location has a strongdtrgra
application performance.

From the client’s point of view, object replication is copbeally
equivalent to the RMI model. The difference is in the impleiae
tion: objects may be physically replicated on multiple mssors.

The advantage of replication is that read-only methods (neth-
ods that do not modify the object’s data) can be performedllipc
without any communication. The disadvantage is that wrigthm

nodeobjects; these node objects, however, cannot be referenced
directly from outside the cluster. As a consequence, onlthous
of the root object can be directly invoked in order to marépel

ods become more complex and have to keep the state of object(read or modify) the cluster. All other method invocationsidle

replicas consistent. For objects that have a high reacwaitio,
replication will reduce communication overhead.

Data replication can be implemented in different ways, @it

ing both performance and the programming model. Many system
that use replication apply anvalidation scheme where the repli-
cas are removed (invalidated) after a write method. Our expe
ences with the Orca language, however, show that for objgstd
languages anpdateprotocol often is more efficient, especially if
it is implemented witHunction shippind3]. With this strategy, a
write method on a replicated object is sent to all machinasdbn-
tain a copy. Then the method is applied to all copies. Foratbje
based systems, this strategy is often more efficient thatidation
schemes. Especially if the object is large (e.g., a big hakle},
invalidating it is unattractive, as each machine must theriave

a new copy of the entire object on the next access. With func-
tion shipping, only the method and its parameters are saut, u
ally resulting in much smaller data transfers than with lidkaion

the cluster can only be the indirect result of an invocatiarthe
root object.

This model is general enough to express all common data-struc
tures like lists, graphs, hash tables, and so on. Also, thdeirie
restrictive enough to allow a simple and efficient implenagion,

as will be discussed later. As the Java object model has riomot

of clustered (or compound) objects, we have defined a new and
simple programming interface in Manta to express this ehirs
mechanism. We discuss this interface below.

2.1 Programming interface and example

Object clusters are defined by the application programnsngu
two so-called “special” interfaces to mark cluster objeci&his
approach is similar to RMI, where the special interfgea.rmi.-
Remotds used to identify remote objects. Root objects are iden-
tified by implementing the interfacmanta.replication.Rogtwhile
node objects implememhanta.replication.NodeThe use of these

schemes or data shipping schemes, which send or broadeast enjpterfaces allows the Manta compiler to recognize clustgeais

tire objects. Manta therefore uses an update mechanisnfunith
tion shipping. To update all replicated clusters in a cdasisway,
methods are sent usirigtally-ordered group communicatid],
so all updates are executed in the same order on all machines.

Remote method invocation (RMI) can be seen as a simple form of

function shipping to a single, remote object. This is why \aé c
our approacheplicated method invocationAs with RMI, the ar-
guments to methods of a replicated object healéby-valuerather
than call-by-referencesemantics. The same holds for return val-
ues. Because methods are executed once per replica, ratuasv
as well as possibly raised exceptions will be discarded lamoales
except the one on which the method was invoked.

A difficult problem with object replication is that a methadtoked
on a given object can also access many other objects, byviabijp
the references in the first object. A write method can thugssc
and update an arbitrarily complex graph of objects. Synubro
ing multiple concurrent write methods on different (but gibsy
overlapping) object graphs is difficult and expensive. Aiohe
function-shipping update strategy is applied naively tapis of
objects, broadcast communication would be needed for dgelto
in the graph, resulting in a high communication overheadcaOr
avoids these problems by supporting a very simple objecteinod
and disallowing references between objects (see Sectighdin-
ple solution for Java would be to replicate only objects withref-
erences to other objects, but this would be far too restadir
many applications. For example, it would then be impossible
replicate data structures like linked lists, since thesebailt out of
objects (unlike in Orca).

Our solution to this problem is to take an intermediate apgincand
replicate only closed groups of objects, which we chlisters A
cluster is a programmer-defined collection of objects witingle
entry point, that will be replicated and updated as a wholkende,
a write method on a cluster is implemented using a singledmanst
message, independent of the number of objects in the clugter
entry point of a cluster is called it®ot, and it is the only object
that can be accessed by objects outside the cluster. Inaddit
cluster can have other objects reachable from the roogddfie

such that replication-related code can be generated (sti@1$8).
Furthermore, the Manta compiler has to enforce certaimicésns
on replicated objects in order to maintain replica conaisteas
discussed in Section 2.2.

cl ass StackNode i npl enents nanta.replication. Node {
St ackNode prev;
int val ue;

public StackNode(int d, StackNode p) {
val ue = d;
prev. = p;

}

class Stack inplements nanta.replication. Root {
private StackNode top = null;

public void push(int d) {
top = new StackNode(d,
}

public int pop() throws Exception {
St ackNode tenp = top;
if (tenp !'= null) {
top = top.preyv;
} else {
/1 throw exception.

top);

return tenp.val ue;

}
public int top() throws Exception {
if (top nul 1) {
/1 throw exception.
}

return top.val ue;

Figure 1: A replicated stack

To illustrate the use of the two special interfaces, Figushdws

a simple example of an object cluster, a replicated stacklem
mented as a linear list. Whenever a n8tackobject is created, a
new cluster is created using tBgackobject as its root. By calling

the pushmethod,StackNodenbjects will be added to this cluster.
Together with the root, these objects form a well-definededb
group. If the methods of th8tackclass would use objects instead
of simple integer values, the call-by-value semantics fmame-
ters and return values ensure that no external referencsts@ihe
objects inside the cluster.

Once a replicate®tackhas been created, a reference to it can be
passed to different machines using normal RMI calls. Maman-
time system on the remote machine will replace this referdnc

a reference to its local replica, creating a new one if a logglica
does not yet exist. From the programmer’s point of view, teltss
are thus passed by reference via RMI, just like ordinary terob-
jects. Also, method invocations on replicated clusterssarelar

to normal remote method invocations, as illustrated by tethods

of the Stackclass. As with RMI, the methods generally have to be
synchronized (using Javasgnchronizedeyword); in Manta, write
methods of replicated objects are automatically synckeshiread
methods are only synchronized if specified in the program.

2.2 Restrictions on replicated objects

In the RMI model, remote method invocation is not completely
transparent, and some restrictions are applied on remgéeteb
due to the presence of multiple address spaces. Thesetiossi
also apply to replicated objects in Manta. For example,gaskMlI
disallows direct access to the fields of a remote object varmte
reference, Manta disallows direct access to the fields afibieob-
ject. In addition, Manta has several other restrictiongépticated
objects, which are necessary to ensure replica consistéfeyis-
cuss these restrictions below. The Manta compiler triesforee
them, and produces error messages whenever it detectsonsla

No remote referenceds a result of our decision to replicate only
closed groups (clusters) of objects, cluster objects dacmatain
references to remote objects. Also, the methods definedHer (
root of) a cluster cannot take remote objects as paramétarsifly
scalar data, arrays, and node objects). Because remotdhje
accessed via their remote references, they would be shgratl b
replicas of a cluster rather than being replicated thereseln such
a case, the function shipping approach would causediséed in-
vocation problenj20], illustrated in Figure 2. On the topl’s meth
method callsncr on the remote objedB. When A gets replicated
(shown on the bottom), function shipping will invokeethon all
replicas, in turn causing all of them to invok&cr on B. This in
general leads to erroneous program behavior that depentteeon
actual number of replicas. Manta avoids this problem byicapl
ing closed groups of objects, so it disallows referencestoote
objects from within a replicated cluster (e.g., the refessfiom A

to B is not allowed).

Restrictions on the use of special interface®ur programming
interface does not allow a class to implement both the raet-in
face and the node interface, because that would make ituiffac
cleanly separate different clusters from each other. Fersime
reason, root and node objects may only contain referencesde
objects. This restriction also rules out references frornderback
to the root object of its own cluster. As all objects in a chudtave
to implement either the root or the node interface, and a®tem
references are not allowed inside clusters, classes oarmbhode
objects are not allowed to also implement the remote interfa

No static variables.The use of static variables is not allowed in
root and node objects, as static objects may also be accesded

meth()

@ incr() @

remote
object

incr()

m incr()
_

meth()

remote
object

incr()

Figure 2: The nested method invocation problem

modified from outside the cluster. This would break the bgH-
value semantics which enforce node objects to be privatesab
their cluster.

Only calls to “well-behaved” methodsinside the methods of the
root and node objects, methods of other classes may be galkxd
that they are “well-behaved”, deterministically produgidentical
results on all machines. Their implementation must not dejmn
static variables or methods, random generators, 1/0, otaited
time.

To summarize, our model deliberately disallows referebetseen
different clusters or between clusters and remote obje¥diso, it

uses call-by-value semantics for the parameters and redudts of
replicated method invocations (as RMI does). As a resuliyster
is a closed group of objects, that can be replicated effigieas

discussed in the next section.

3. IMPLEMENTATION

The implementation of Manta'’s object replication is pdlyianside
the Manta compiler and partially in the runtime system. Marges

a static (native) compiler, which translates Java progriorexe-
cutables [18]. The compiler generates code wrappers feseta
implementing themanta.replication.Rooaind manta.replication.-
Nodeinterfaces, checks the restrictions on both root and noee ob
jects, and most importantly, analyses the methods of rabhade
classes to distinguish between read and write operatiams.rin-
time system establishes object clusters and updates theatl on
nodes. It also coordinates the execution of method invoeatio
enforce replica consistency.

3.1 Read/write analysis

The advantage of object replication compared to RMI is thethm
ods which only read objects can be performed locally, wittamy
communication. Only write operations cause communicatmnss
the set of replicas. To distinguish between read and writthoaks,
the Manta compiler has to analyze the method implementation
Therefore, the compiler checks if there are any operatiorthe
method that assign values to class variables, or if thereats

to other methods that can be attributed as write methodso, If s
the method is classified as a write method, otherwise it isiden
ered to be a read method. Also, if a method may executeatify

or notifyAll operation, it is a write operation. The implemented
analysis is conservative by always classifying methodssdbiatain
assignments as write methods, even if the assignments nigy on
be executed conditionally. Furthermore, methods of ctastieer
than for root or node objects are assumed to be free of sidetsff
(see Section 2.2), and can thus safely be ignored in thewessl/
analysis.

Unfortunately, this analysis cannot be performed completiscom-
pile time. Due to Java’'s support for polymorphism and dyrami
binding, the method to be invoked depends, in general, oruthe
time type of the object. Since a read-only method of one ctess

be overridden by a write method in a subclass (or vice veita),
may not be known until runtime whether a given invocatiordeear
writes an object. Still, it is important to execute each rodtin the
correct mode (read or write). If a read-only method would xe e
cuted as if it were a write method, it would be broadcast, Itiesu

in much overhead. Even worse, if a write method would aceiden
tally be executed as if it were a read-only method, errongoos
gram behavior would occur. Due to this problem, the final khec
distinguish between read and write operations is perforatedn
time. In Manta, wrappers are generated for all methods dfand
node objects in which the current execution mode (read dejs
checked before actually invoking the object's method. & tur-
rent invocation is executed in read mode, and the actualadeth
requires write mode, the current invocation is aborted asthrted

in write mode. This may, for example, happen during the execu
tion of a method of the root object when another method of &nod
object is to be called. This restart can be performed sdfelyause
so far only read operations have been executed, and the stige
has not changed yet.

3.2 Code generation

The compiler generates method wrappers for all methodsaif ro
and node objects in order to maintain read or write mode, asd p
sibly perform restarts. Apart from that, read methods arectly
called on the local replica from within the correspondingpper.

Write operations are performed in two phases. First, thehatkt
wrapper broadcasts a call header and the parameters tqp#ll re
cas, including itself. The broadcast mechanism we use isgbar
the underlying Panda layer [3], which handles all commuigca
between Manta nodes. Panda’s broadcast is totally ordeceal|
machines receive all broadcasts in the same order. This allay,
replicas perform write operations in the same order, cgusiam

to be consistent with each other.

On each node, a separate thread consecutively processes-inc
ing broadcast messages. The call header and the parameters a
extracted, and a handler method executes the respectiveodnet
on the local object replica. For transferring parameteectsj the
standard object serialization method from Manta’s RMI pcot is
used. The serialization code is generated by the Manta ¢empi
and is highly efficient [18].

Finally, when the method completes, its outcome (resukahpr
raised exception) is intercepted by the handler. On thekingo
node, the outcome will be forwarded to the original callen &l
other nodes, the outcome is simply discarded.

3.3 Cluster management
Whenever a new root object is created, a new cluster is iitiplic
created along with it. On the invoking process, the root cihig

created, and a unique identifier is assigned to it. In tura,ntw
cluster is broadcast to all nodes of the parallel applicatigsing
Panda’s totally ordered broadcast mechanism. This enshats
clusters are always created on all nodes before any writeatipe
attempts to modify them.

Although the replicated clusters are immediately esthbtison all
nodes, the application itself views them as being replitate de-
mand. Only the process on which the cluster was created gets a
reference to the new cluster. The application code thendhdst
tribute the reference to other nodes using RMI.

A possible optimization of this scheme would be to replicatéus-

ter only on those nodes that actually have a reference tohits T
could avoid some overhead of processing write updates @tiahj
that are not used on some of the nodes. As a drawback, elaborat
group management would have to be implemented. Our current
implementation simply replicates all clusters on all nod@sr pre-
vious experience with the Orca shared object system iredaiat

this approach yields adequate performance [3].

3.4 Wait and notify

The execution model for write methods also has to correcthdie
synchronization fomvait, notify; and notifyAll primitives. When-
ever a broadcast message for invoking a write method iswetei
the method will not immediately be executed. Instead, edpbcd
cluster has a queue for incoming broadcast messages, arehd th
waiting for messages to appear in the queue. Whenever a geessa
appears, the thread takes it out of the queue and invokeespea-
tive method. All write methods are therefore executed bynglsi
thread, one at atime, in the order they were received in. Mbigel
ensures that all nodes execute all write methods in the satee o

This single-threaded scheme cannot be used for executiitg wr
methods that may block while callingait. In this case, no other
write methods will be able to run, including the one intended
wake up the blocked method. This problem is illustrated ig- Fi
ure 3, which presents the code oBan object, a simple bounded
buffer with a single data slot. Thget method will block until a
value has been written into the bin, then it empties the i, a
wakes up other, waiting, methods. Tiat method will block until
the bin is empty, it will fill the bin, and then wake up waitingeth-
ods. Bothput and get are write methods (they chandided and
call notifyAll), and are therefore broadcast to all replicas. On each
node, the corresponding messages are put into the queugetf a
would block because tHgin object is empty, the thread serving the
write method would block and thgut that was intended to wake
up thegetwould never be executed.

A simple-minded solution would be to create one thread fohea
incoming broadcast message. Unfortunately, the globaiugimn
order could then no longer be guaranteed. Instead, we ude-a so
tion similar to theWeaverabstraction introduced in [23]. A new
thread is created whenever the original thread blocks. oAlgh
this happens in the same order on each node it still has todre gu
anteed that blocked threads also wake up in exactly the seaee o
on all nodes, otherwise the total execution order for writthrods
would still be violated. Unfortunately, Javagait/notify mecha-
nism does not guarantee any order in which waiting threadls wi
wake up. Manta’s runtime system therefore provides speaific
plementations ofvait, notify, andnotifyAll for replicated objects.
Here, the execution afotifyAll on a root or node object causes
waiting threads to be put back into the execution queue iothxa

class Bin inplenents manta.replication. Root {
private boolean filled = fal se;
private int value;

public synchronized int get() {
while (!filled) wait();
filled = fal se;
noti fyAll();
return val ue;

}

public synchronized void put(int i) {
while (filled) wait();

value = i;
filled = true;
noti fyAll();

Figure 3: A replicated Bin object

the global order in which they were invoked. The currentdhdre
servicing the queue will then detect that the head of the guen-
tains a blocked thread, wake this thread up, and terminsedf.it
The woken up thread will then continue to run and wake up the
next thread when it terminates. The last thread will not trate,

but continue servicing new calls from the queue. This wdynal
chines will wake up the threads in the same order and keep the
copies of the object clusters consistent.

The solution presented here is specific to the Manta system. |
Manta, the implementation of theait, notify, andnotifyAll meth-

ods are aware of object replication. Because the implertiensa

of these methods in the Sun JDK dimal (i.e., not overloadable),
we are not allowed to replace them with replication awarsives,
making it harder to implement our scheme in a non-Manta Java
system. A solution would be to offer alternative methodshwit-
ferent names, or to use a preprocessor to replace caiaitonotify
andnotifyAll at compile time.

3.5 Performance evaluation

To evaluate the performance of Manta’s replication medranwe
implemented theStackclass from Figure 1 and compiled it with
our Manta system. Our experimentation platform, calledDise
tributed ASCI SupercomputéDAS), consists of 200 MHz Pentium
Pro nodes each with 128 MB memory running Linux 2.0.36. The
nodes are connected via Myrinet [5]. Manta’s runtime sydtes
access to the network in user space via the Panda commuonicati
substrate [3] which uses the LFC [4] Myrinet control program
Myrinet lacks a hardware broadcast facility, but LFC impéams

an efficient spanning-tree broadcast protocol inside theindy
network interfaces. The DAS system is more fully described i
http://www.cs.vu.nl/das/

Table 1 summarizes our results for fheshmethod, writing a stack
object, and for theop method, reading a stack. For comparison,
we also measured the sequential execution of the methods, an
their invocation via Manta’s standard RMI mechanism. Fersh-
quential version, we compiled variants of tBeackclasses that do
not implement the replication-related interfaces. Theetfior the
sequentiapush (3.1 us) is dominated by the creation of$tack-
Nodeobject. For the RMI version, thBtackclass implements the
java.rmi.Remoténterface. Invoking both methods on such an ob-
ject locally (within the same process), adds al®us to the pure

sequential times. Calling a remote object on a different himec
adds abou50 us.

The replicatedStackhas been tested using up to 16 machines. The
top read-only method can be performed locally, independertief t
number of replicas. It completes much faster than via a IBd4l,
within only 0.5 us. Broadcasting thg@ushwrite method to two
machines takes slightly longer than a single RED (s), and in-
creases by less thanus each time the number of machines is dou-
bled. With a single process, the Panda layer avoids the lawtta
work communication, saving 50% of the broadcast overheam; ¢
pared to using two processes. The times shown for the régdica
pushmethod denote the time from the method invocation until all
processes have completed the operation.

In this micro benchmark, the cost of a read operation on a-repl
cated object is comparable to the cost of its sequentialtegpart.
The write operation takes only slightly longer than a singhdl
call. These results are very promising. In the followingtEet we
investigate the impact of our implementation on two appitca
kernels.

Table 1: Completion times of Stack operations on a Myrinet
cluster (microseconds), comparing sequential method inva-
tion, RMI, and Manta’s replication

cpus push top
sequential 31 01
RMI, local 6.1 2.7
RMI, remote 56.3 49.2
replicated 1 291 05
replicated 2 600 05
replicated 4 623 05
replicated 8 653 05
replicated 16 68.0 05

4. APPLICATIONS

We evaluated Manta’s replication mechanism with two apgplic
tions. For both, we followed the general approach to firstlénp
ment a “naive” version that is based on shared-object conzaun
tion where the shared objects are accessed via RMI. For gompa
son, we manually optimized the communication behavior ef¢h
versions exclusively using RMI as communication mechanisim
nally, we implemented versions of the “naive” codes thaticape
their shared objects. For all three versions of an apptinative
compare performance and source-code complexity.

4.1 The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) computes theestiort
path for a salesperson to visit all cities in a given set dyaxtce,
starting in one specific city. We use a branch-and-boundrisitgo,
which prunes a large part of the search space by ignoringapart
routes that are already longer than the current best solufitie
program is parallelized by distributing the search spaca tive
different nodes. Because the algorithm performs pruniogigver,
the amount of computation needed for each sub-space is oatkn
in advance. The program therefore uses a centralized jobeque
to balance the load. Each job contains an initial path of adfixe
number of cities; a node that executes the job computes tigéhie

of all possible continuations, pruning paths that are lotigen the
current best solution.

The TSP program keeps track of the current best solutiondfoun
so far, which is used to prune part of the search space. Eatsh no
needs an up-to-date copy of this solution to prevent it fraimgl
unnecessary work, causing it to frequently check the ctiyréest
solution. In contrast, updates to the best solution happénio-
frequently.

In our implementation of TSP, the solution is stored in areobj
of classMinimum We have implemented three different versions
of the Minimumclass, using a remote object, manually optimized
remote objects, and a replicated object.

Figure 5 shows the speedups for the three versions with 1 6p to
nodes. All speedup values are computed relative to the syfekd
manually optimized version, running on a single node. maire
RMI version implements th®linimumclass using a remote object,
stored on one of the nodes. The other nodes receive a reéetenc
this Minimumobject. An expensive RMI is needed in order to read
the value of thdvlinimumobiject, resulting in poor performance and
no speedups. The overhead of the very frequent read opesatio
tually causes a bottleneck at the node owningMliir@mumobject,
causing completion times to increase, rather than to deeredth
the number of nodes. For example with 16 nodes, we countad abo
1.5 - 10® incoming RMI requests on the node owning Mimimum
object.

To prevent this prohibitive overhead, tlgtimizedRMI version
manually replicates the current minimum value to classatdes

of the active TSP worker objects. The frequently occuriragirep-
erations can now be performed locally, by reading the valom fa
variable, even avoiding the overhead of method invocatishen-
ever one node finds a better solution, it performs an RMI cadl t
remoteMinimumobject. This object has a vector of references to
all TSP worker objects, which also act esnoteobjects. While
processing a&et operation, theMinimumobject in turn performs a
set RMI on all TSP worker objects, updating their minimum val-
ues. Using this optimization, TSP achieves a speedup of &1.8
64 nodes. However, the implementation of Mmimumclass be-
comes much more complicated as it needs remote referenaés to
TSP worker objects. Furthermore, the worker objects alse ha
provide a method that can be invoked remotely which somewhat
contradicts the “naive” design.

class M ninuminplenents nmanta.replication. Root {
private int mninmm= |nteger. VAX_VALUE;

public void set(int mninmn) {
if (mninmum< this.mninm {
this.mninum= mni num
}
}

public int get() {
return m ni num
}

Figure 4: Replicated implementation of theMinimum class

The implementation of theeplicated version of TSP is almost
identical to the naive (original) RMI version. The only difence is
that theMinimumclass is marked as being a root object instead of a
remote object (see Figure 4). Because the object is repticat all
nodes, all changes are automatically forwarded and each cendl

locally read the value of the object. Figure 5 shows thahaaitih
the replicated implementation is just as simple as the naivi
implementation, its performance comes close to the manapti-
mized RMI version, achieving a speedup of 45.2 on 64 nodeis. Th
speedup is slightly inferior to the manually optimized RMtsion.
The difference originates in the overhead of reading thamrmim
value. With 64 nodes, for example, we counted the total nurobe
invocations of theget operation to be abouw - 108. As shown in
Table 1, invoking a local read operation on a replicatedatigkes
0.5 microseconds, while reading a local class variable neests le
than0.1 microseconds. The difference of the total completion time
is8-10%/64 - (0.5 — 0.1) - 107 seconds ~ 5 seconds. In fact,
we measured completion times 8.6 seconds for the manually
optimized version and d37.4 seconds for the replicated version,
yielding the speedup values shown in Figure 5.

TSP
60 - naive A
manually optimized ----4----
replicated —e-—- N
50
-
o 40
=
k5
o 30 s
o 4 -
2] Lo
20 :
AT
e
10 it
,;;6'
B
0 le#
0 10 20 30 40 50 60
cpus

Figure 5: Speedup for the TSP application

4.2 All-pairs Shortest Paths Problem

The All-pairs Shortest Paths (ASP) program finds the shiopteth
between any pair of nodes in a graph, using a parallel version
Floyd’s algorithm. The program uses a distance matrix thali-
vided row-wise among the available processors. At the Inégin
of iterationk, all processors need the value of thth row of the
matrix.

We implemented this communication pattern using a re@itab-
ject of classMatrix. The processor containing the row for the next
iteration stores it into this object, allowing other prosas to read
the row. It is possible for a processor to request a row whashriot
been produced yet, causing the call tobhetrix object to block un-

til it is available. As with the TSP problem, we have impler@eh
three versions of ASP, using a remote object, an optimizewte
object, and a replicated object.

The naive RMI version implements tiMatrix class using a remote
object. Each machine has a copy of such an object, used by othe
machines to retrieve its rows using RMI. Because each machin
has to fetch each row for itself, each row has to be sent atness
network multiple times, causing high overhead on the mactiiat
owns the row. For instance, if 64 nodes are used, each rowis se
63 times. Figure 7 shows that the naive RMI version perforrat w
up to 8 nodes. On more nodes, the overhead for sending the rows
becomes prohibitive, limiting the speedup to 28.5 on 64 rimesh
Again, all speedup values are computed relative to the spitbe
manually optimized version, running on a single node.

To prevent the overhead of sending the rows multiple times, t ASP
optimized RMI version uses lainary treeto simulate a broadcast

of a row. When a new row is generated, it is forwarded to tweoth 60 - | ‘t_ n_aivg T 2
machines which store the row locally and each forwards itvo t Ty alicated o
other machines. As soon as the rows are forwarded, the neschin 50
are able to receive a new row, allowing the sending of mdtipivs 20
to be pipelined. The forwarding continues until all mackithave § //77;.cvf7'
received a copy of the row. Using this simulated broadcéast, t § 30 e =
optimized RMI version performs much better, achieving ssio@ @ e
of 58.9 on 64 machines. 20
10 //
class Matrix inplenments nmanta.replication. Root { /
0
private int[][] tab; 0 10 20 30 40 50 60
private int size; cpus
public Matrix(int n) { . . .
tab = new int[n][]; Figure 7: Speedup for the ASP application
}
public synchronized int [] get_row(int i) {
while (tab[i] == null) {
try {
wait(); .)
} catch (Exception e) { jects and it does not even allow references between objdetsce,
) /1 Handle the exception. Orca is not object-oriented, and its programming style éset to
} Distributed Shared Memory [3]. Orca programs read and ot
return tab[i]; object at a time, much like DSM programs read and write memory
} locations one at a time. Java and Java RMI support a quitereift
publ i ¢ synchroni zed void put_row(int i (object-oriented) programming model, and were not desigvieh
- int [] row { object replication in mind. Implementing replicated oltgein Java
talo_[if]Ar| row therefore is much harder. We introduced a clustering cdnicep
} noti fyAll(); allow replication of object graphs (something that cannetnebe
} expressed in Orca, since it lacks references between ehjédso,

synchronization in Orca is much more restrictive than iraJand
only allows methods to block initially, but not halfway dog their
invocation. We addressed this problem by imposing a cardist
ordering for Java'sait, notify, andnotifyAll primitives. Another
.)))] difference between Java and Orca is that Orca can do theneizd/
The replicated ASP implementation uses a single, replicsiz- analysis of methods entirely at compile time, as Orca doesum

trix object, shown in Figure 6. Whenever a processor writes & row nort nolymorphism. For Java, the analysis has to be donéafhart
into the Matrix object using theputrow method, the new row is gyring runtime.

forwarded to all machines, using the efficient broadcastogpm

pr_ovnded by Panda and LFC. Each processor can then Iocaldi{ '® An alternative to replication is to use a Distributed Shavisnory

this row using thegetrow method. The replicated implementation (ps\) system. Several DSM systems for Java exist, whichigeov

is as simple as the naive version. Figure 7 shows that it pe60 5 shared memory programming model instead of the RMI model,

even better than the manually optimized RMI version, alahga\a while still executing on a distributed memory system. Irstheys-

speedup of 60.9 on 64 machines. This is due to Panda’s brstadca temg, no explicit communication is necessary, all commativa is

which performs better than the RMI-based broadcast treeadin handled by the underlying DSM. Java/DSM [30] and DOSA [11]

dition, by using Panda’s broadcast, parameter objectsiunlg to implement a JVM on top of the TreadMarks DSM [13].

be serialized once per broadcast, rather than multiplestim¢he

application-level forwarding tree. Hyperion [19], Jackal [27], and cJVM [2] are examples of Java
) . .) . systems thatacheobjects. In these systems, a processor can get a

As with TS_P, the |mplen_1ent_at|on of thepllcatedversmn of AS_P temporary copy of an object. These copies are invalidatelé{et)

is very similar to the naive implementation. In contrasg dpti- at synchronization points by broadcasting an invalidati@ssage

m|zec_zl version contal_ns a large amount of extra code to imghtm 14 4 copies. In Manta, on the other hand, the replicas oftan o

the binary tree, making the source code more complex and MOreject are continuously kept coherent, by broadcasting wimitéhods

Figure 6: Replicated implementation of theMatrix class.

than twice as big as the naive version. in a totally-ordered way. These broadcast messages alczady
tain the information to refresh the replicas, eliminatihg heed

5. RELATED WORK for further communication. In combination with functionijgping,

Our approach to object replication in Manta follows the sénme- update messages are typically very short, comparable teitkee

tion-shipping update strategy as in the Orca system [3] dsml a of invalidation messages. Also, a replication scheme carefite
uses the same underlying communication system (Pandal), Sti from the availability of an efficient low-level broadcast chanism
there are many important differences with Orca. Orca was de- (LFC, in our case). The actual performance of the two schevhes
signed specifically to allow object replication. In partawy its course also depends on application-specific communicatian-
object model is very simple: it supports only methodsimgleob- acteristics.

The VJava [17] system offers caching using a scheme called Ob implementing one of two new special interfaces.

jectViews. With ObjectViews, threads can have differeietvsof

a shared object. The system can determine at compile tinésif i
safe to access the object concurrently through two difteriws.

It uses this information to reduce the number of invalidatines-
sages sent.

The Java system described in [14] also supports objectrogcind
uses a reliable multicast protocol to send invalidation sagss.
The performance of this system, however, suffers from teéiin
ciencies of the RMI system (Sun JDK 1.1.5) on which it is based
For example, reading a locally cached copy of an object (uih-

out any communication) costs 900 microseconds (measured on
Sun Ultra 2). In comparison, Manta can update 16 remote sopie
of an object in 68 microseconds.

The Javanaise system [9] uses clusters of objects in a walasim
to Manta, but relies on object caching. Processors can fetudt
only copies of a cluster from a centralized server. Thoseesop
will be invalidated when a processor requests write pelionssn
the cluster, causing considerable overhead with updading Iclus-
ters. Manta’s replication mechanism is thus much more effici
In the clustering mechanism of Javanaise]wster object (corre-
sponding to Manta’soot object) serves as the entry point to the
cluster. Programmers have to annotate its methods as reatit®r
operations, a task automatically performed by the Mantapiiem
Finally, Javanaise has no notion médeobjects and any serializ-
able object can be part of a cluster, burdening a significarttqf
guaranteeing replica consistency onto the programmer.

There are many other research projects for parallel progiagin
Javall, 6, 7, 10, 12, 14, 15, 21, 22, 24, 29, 30]. Most of thgse s
tems, however, do not support object replication or cachBey-
eral systems (e.g., [12, 22]) support object migration. Ka@
Java-based distributed system [16] supports recovergcbhjigra-
tion, and replication as means for achieving fault toleeaMdanta’s
focus is on implementation efficiency for parallel applicas.

With the Message Passing Interface (MPI) language binding t
Java [8], communication is expressed using message pasasirey
than remote method invocations. Processes send messaggs (a
of objects) to each other. Additionally, MPI defines colieetop-
erations in which all members of a process group collegtipal-
ticipate; examples are broadcast and related data rédisoms,
reduction computations (e.g., computing global sums),tzarder
synchronization. Object replication roughly correspot@MPl’s
broadcast operation. An integration of MPI's other coilezbper-
ations into Java’s object model could complement expressiss
and efficiency of object replication.

6. CONCLUSIONS

In this paper, we presented a new and efficient approach &zibj

replication in Java. We adopted our previous work on the Orca

shared object system [3] which combines an update protoitbl w
totally ordered broadcast and function shipping. For irgggg
Orca’s replication mechanism into Java’'s object model, met
duced a notion of closed groups of objects, cattedsters which
serve as the unit of replication. Furthermore, we addedathpr
Java’s polymorphism as well as for the synchronization raeism
based orwait and notify, which may cause replicated method in-
vocations to block in the middle of their execution. Our goals

to keep the programming model as close as possible to sthndar

RMI. To achieve this, objects are declared to become replicay

Our implementation partially is inside the Manta compitard par-
tially in the runtime system. The compiler performs coreisy
checks, generates code for replicated method invocatiahaaa-
lyses the methods of cluster objects to distinguish betwead
and write operations. The runtime system establishes addtep
object clusters on all nodes of a parallel application. sbatoor-
dinates the execution of method invocations to enforcéa@pbn-
sistency. Read operations on replicated objects can berpetl
locally (without communication) and take abaub microseconds
on our platform. Write operations for updating 16 replicalestc8
microseconds, only slightly longer than a single RMI call.

We have shown that our approach provides efficient objedi-rep
cation for Java with a programming model close to standard.RM
Object clusters allow complex data structures to be rejgéetavith-
out sacrificing runtime performance. We evaluated our systéh
two application kernels and showed that Manta’s objecicafibn
model actually allows implementation of straight-forwastiared-
object applications, while yielding performance close t@nomally
optimized versions based on individual RMI calls.

We are currently evaluating our replication model. Althbube
model is restrictive, it was strong enough to express theamymi-
cation kernels described in Section 4. Furthermore, we are c
rently evaluating our system with other, more irregular lp
tions, as well as on top of our wide-area Java platform [26].

Acknowledgments

This work is supported in part by a USF grant from the Vrije \dnsiteit.
The DAS system is an initiative of the Advanced School for @ating and
Imaging (ASCI). We thank Rob van Nieuwpoort, Ronald VeldeRatger
Hofman, and Ceriel Jacobs for their contributions to théeeech. We thank
Kees Verstoep and John Romein for keeping the DAS in goodeshap

7. REFERENCES
[1] A.D. Alexandrov, M. Ibel, K. E. Schauser, and C. J. Scheaim
SuperWeb: Research Issues in Java-Based Global Computing.
Concurrency: Practice and Experienc®(6):535-553, June 1997.

[2] Y. Aridor, M. Factor, and A. Teperman. cJVM: a Single st
Image of a JVM on a Cluster. IRroc. of the 1999 Int. Conf. on
Parallel ProcessingAizu, Japan, Sept. 1999.

[3] H.Bal, R. Bhoedjang, R. Hofman, C. Jacobs, K. Langendoen
T. Ruhl, and F. Kaashoek. Performance Evaluation of th@Orc
Shared Object SysterACM Transactions on Computer Systems

16(1):1-40, 1998.

R. Bhoedjang, T. Ruhl, and H. Bal. User-Level Networkelfiace
Protocols|EEE Computer31(11):53—-60, 1998.

N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W. Su. Myrinet: A Gigabit-per-second Lotada
Network.IEEE Micro, 15(1):29-36, 1995.

F. Breg, S. Diwan, J. Villacis, J. Balasubramanian, En#sn, and

D. Gannon. Java RMI Performance and Object Model
Interoperability: Experiments with Java/HPC++ Distriedit
Components. IACM 1998 Workshop on Java for High-Performance
Network ComputingSanta Barbara, CA, Feb. 1998.

[7] S. Brydon, P. Kmiec, M. Neary, S. Rollins, and P. Cappello
Javelin++: Scalability Issues in Global Computing AGM 1999
Java Grande Conferencpages 171-180, San Francisco, CA, June
1999.

B. Carpenter, V. Getov, G. Judd, T. Skjellum, and G. FoRINbr
Java: Position Document and Draft API Specification. Tecdni
Report JGF-TR-03, Java Grande Forum, November 1998.

(4]
(5]

(6]

(8]

9]

[20]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

D. Hagimont and D. Louvegnies. Javanaise: Distributedrgd
Objects for Internet Cooperative Applications.Rroc.
Middleware’98 The Lake District, England, Sept. 1998.

T. Haupt, E. Akarsu, G. Fox, A. Kalinichenko, K.-S. Kim,

P. Sheethalnath, and C.-H. Youn. The Gateway System: Unifor
Web Based Access to Remote Resource#\QiM 1999 Java Grande
Conferencegpages 1-7, San Francisco, CA, June 1999.

Y. Hu, W. Yu, A. Cox, D. Wallach, and W. Zwaenepoel. Rumg
Support for Distributed Sharing in Strongly Typed Language
Technical report, Rice University, 1999. Online at
http://www.cs.rice.edu/"willy/TreadMarks/papers.htm

M. Izatt, P. Chan, and T. Brecht. Ajents: Towards an Emwinent for
Parallel, Distributed and Mobile Java Applications AGM 1999
Java Grande Conferengcpages 15-24, San Francisco, CA, June
1999.

P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoehdvarks:
Distributed Shared Memory on Standard Workstations andadipg
Systems. IrProc. of the Winter 1994 Usenix Conferenpages
115-131, San Francisco, CA, Jan. 1994.

V. Krishnaswamy, D. Walther, S. Bhola, E. Bommaiah, GeR

B. Topol, and M. Ahamad. Efficient Implementations of JavalRM
In 4th USENIX Conference on Object-Oriented Technologies and
Systems (COOTS’98%anta Fe, NM, 1998.

P. Launay and J.-L. Pazat. The Do! project: Distributed
Programming Using Java. First UK Workshop Java for High
Performance Network Computin§outhampton, Sept. 1998.

S. Y. Lee.Supporting Guarded and Nested Atomic Actions in
Distributed ObjectsMaster’s thesis, University of California at Santa
Barbara, July 1998.

I. Lipkind, I. Pechtchanski, , and V. Karamcheti. Olijs@ews:
Language Support for Intelligent Object Caching in Paralie
Distributed Computations. IRroc. of the 1999 Conf. on
Object-Oriented Programming Systems, Languages and
Applications pages 447-460, October 1999.

J. Maassen, R. van Nieuwpoort, R. Veldema, H. E. Bal,Andlaat.
An Efficient Implementation of Java’s Remote Method Invamatin
Seventh ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP’99pages 173-182, Atlanta, GA,
May 1999.

M. W. Macbeth, K. A. McGuigan, and P. J. Hatcher. Exeugitlava
Threads in Parallel in a Distributed-Memory EnvironmentPfoc.
CASCON'98pages 40-54, Missisauga, ON, 1998. Published by
IBM Canada and the National Research Council of Canada.

K. Mazouni, B. Garbinato, and R. Guerraoui. BuildingliRlele
Client-Server Software Using Actively Replicated ObjetisProc.
International Conference on Technology of Object Oriented
Languages and Systems (TOO\®rsailles, France, Mar. 1995.
Prentice Hall.

C. Nester, M. Philippsen, and B. Haumacher. A More Edfi¢ciRMI
for Java. INACM 1999 Java Grande Conferengmges 153-159, San
Francisco, CA, June 1999.

M. Philippsen and M. Zenger. JavaParty—Transparemdte
Objects in JavaConcurrency: Practice and Experience
9(11):1225-1242, Nov. 1997. Online at
http://wwwipd.ira.uka.de/JavaParty/.

T. Ruhl and H. E. Bal. Synchronizing operations on riplét objects.
In Proceedings of the 2nd Workshop on Runtime Systems forlétaral
Programming Orlando, FL, Mar. 1998.

L. F. G. Sarmenta and S. Hirano. Bayanihan: Building Shellying
Web-Based Volunteer Computing Systems Using Jaugure
Generation Computer Systemi$(5/6), 1999.

B. Topol, M. Ahamad, and J. T. Stasko. Robust State 8bddr
Wide Area Distributed Applications. 1h8th International
Conference on Distributed Computing Systems (ICDCS&jes
554-561, Amsterdam, The Netherlands, May 1998.

R. van Nieuwpoort, J. Maassen, H. E. Bal, T. Kielmanrd an
R. Veldema. Wide-area parallel computing in JavaAGM 1999
Java Grande Conferengpages 8-14, San Francisco, CA, June 1999.

[27] R. Veldema, R. A. F. Bhoedjang, and H. Bal. Distributdthfed
Memory Management for Java. Technical report, Vrije Ursiteit
Amsterdam, Nov. 1999.

J. Waldo. Remote procedure calls and Java Remote Method
Invocation.|[EEE Concurrency6(3):5-7, July—September 1998.

K. Yelick, L. Semenzato, G. Pike, C. Miyamoto, B. Liblit

A. Krishnamurthy, P. Hilfinger, S. Graham, D. Gay, P. Coledlad
A. Aiken. Titanium: a high-performance java dialect AGM 1998
workshop on Java for High-performance network compuytifep.
1998. Online at http://www.cs.ucsb.edu/conferenceagai

W. Yu and A. Cox. Java/DSM: A Platform for Heterogeneous
Computing.Concurrency: Practice and Experience
9(11):1213-1224, Nov. 1997.

(28]

[29]

[30]

