Hyponormal matrices and semidefinite invariant subspaces in indefinite inner product spaces

Joint work with:
Christian Mehl
Leiba Rodman
Indefinite inner product

On \mathbb{C}^n define indefinite inner product given by an invertible $H = H^*$ as follows:

$$[x, y] = \langle Hx, y \rangle$$

Here $\langle \cdot, \cdot \rangle$ denotes the standard inner product.
The H-adjoint

$n \times n$ matrix X

H-adjoint:

$$[Xx, y] = [x, X[^*]y]$$

$$X[^*] = H^{-1}X^*H$$
Classes of matrices

- H-expansion if $X^*HX \geq H$

- H-selfadjoint if $X = X^*$

- H-unitary if $XX^* = I$

- H-dissipative if $iH(X - X^*) \leq 0$

- H-normal if $X^*X = XX^*$

- H-hyponormal if $H(X^*X - XX^*) \geq 0$
Invariant maximal H-nonnegative/nonpositive subspaces

Well known result:

Theorem 1. If X is an H-expansion in a finite dimensional space, and M_0 is X-invariant and H-nonnegative then there exists a maximal H-nonnegative X-invariant subspace M with $M_0 \subset M$.

Usual proof uses a fixed point argument.
Invariant maximal H-nonnegative/nonpositive subspaces II

Also well known: if X is H-selfadjoint in a finite dimensional space then there is an explicit construction of an X-invariant maximal H-nonnegative subspace. Uses canonical form under the equivalence $(X, H) \mapsto (S^{-1}XS, S^*HS)$. Real cases done as well.

If X is H-dissipative in finite dimensional space there is also an explicit construction. Uses a “simple” form under the equivalence above. Done for complex matrices in a complex space, currently under investigation are the real cases.
Recall: X is H-normal if $X^*[X^*]X = XX^*[X^*].$

Canonical forms: when H has only one negative eigenvalue there is a classification of the equivalence classes under the equivalence $(X, H) \mapsto (S^{-1}XS, S^*HS).$

Same when H has two negative eigenvalues. Number of equivalence classes is (very) large.

Points to the fact that an explicit construction of invariant maximal nonnegative subspaces using a canonical form will be impossible.
Invariant maximal H-nonnegative/nonpositive subspaces for H-normal matrices

Theorem 2. Let X be an H-normal matrix. Then there is an X-invariant maximal H-nonnegative subspace.

Proof in finite dimensional case: write $A = \frac{1}{2}(X + X^[*])$, $S = \frac{1}{2}(X - X^[*])$. Then $X = A + S$ and $AS = SA$. Prove by induction on the dimension of the space that A and S have a common invariant maximal H-nonnegative subspace.

Observation: Let X be H-normal, \mathcal{M} an X-invariant maximal H-nonnegative/nonpositive subspace. Then \mathcal{M} is invariant also for $X^[*]$.
Invariant maximal H-nonnegative/nonpositive subspaces
for H-normal matrices II: Extension results

Two extension results:

i. Let X be H-normal, \mathcal{M}_0 an H-nonnegative X-invariant subspace which is also invariant for X^\ast. Then there exists an X-invariant maximal H-nonnegative subspace \mathcal{M} containing \mathcal{M}_0.

ii. Let X be H-normal, \mathcal{M}_0 an H-neutral X-invariant subspace. Then there exists an X-invariant maximal H-nonnegative subspace \mathcal{M} containing \mathcal{M}_0.
Caveat!! Not a simple result. Follows from the following:

iii. Let X be a matrix, and suppose that
1. \mathcal{M}_0 is H-neutral and X-invariant,
2. \mathcal{M}_0 is also $XX[*] - X[*]X$-invariant,
3. $\mathcal{M}_0^{[\perp]} \cap (H^{-1}\mathcal{M}_0)^{[\perp]}$ is $XX[*] - X[*]X$-neutral.

Then there is a maximal H-nonnegative X-invariant subspace \mathcal{M} such that $\mathcal{M}_0 \subset \mathcal{M} \subset \mathcal{M}_0^{[\perp]}$.
Example

\[
X = \begin{pmatrix}
0 & 1 & -1 & -\frac{1}{2} \\
1 & 1 & -\frac{1}{2} & 1 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 1
\end{pmatrix}, \quad H = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]

Then \(X\) is \(H\)-normal, \(\mathcal{M}_0 = \text{span}\{e_1, e_2\}\) is \(X\)-invariant and \(H\)-nonnegative.

The only maximal \(H\)-nonnegative subspace containing \(\mathcal{M}_0\) is \(\text{span}\{e_1, e_2, e_4\}\) and that is not \(X\)-invariant.
Another extension result

Theorem 3. Let X be H-normal and let \mathcal{M}_0 be an H-positive X-invariant subspace. Decompose $\mathbb{C}^n = \mathcal{M}_0 + \mathcal{M}_0^{[\perp]}$. Denote by P the projection onto $\mathcal{M}_0^{[\perp]}$ along \mathcal{M}_0, and define

$$X_{22} = PX|_{\mathcal{M}_0^{[\perp]}} : \mathcal{M}_0^{[\perp]} \to \mathcal{M}_0^{[\perp]}.$$

On $\mathcal{M}_0^{[\perp]}$ define an indefinite inner product inherited from H. Assume that either

$$\sigma(X_{22} + X_{22}^*) \subset \mathbb{R} \text{ or } \sigma(X_{22} - X_{22}^*) \subset i\mathbb{R}.$$

Then there exists an X-invariant maximal H-nonnegative subspace \mathcal{M} containing \mathcal{M}_0.
H-hyponormal matrices

Recall definition: X is H-hyponormal if $X^{[*]}X - XX^{[*]}$ is H-nonnegative, that is

$$H(X^{[*]}X - XX^{[*]}) \geq 0.$$

Problem How far can we extend results on invariant maximal nonnegative/nonpositive subspaces to H-hyponormal matrices?

Important role played by H-selfadjoint part A and H-skew-adjoint part S:

$$A = \frac{1}{2}(X + X^{[*]}), \quad S = \frac{1}{2}(X - X^{[*]}).$$
Invariant maximal H-nonnegative/nonpositive subspaces for H-hyponormal matrices

Main existence result:

Theorem 4. Let X be H-hyponormal. If either the eigenvalues of $X + X^*$ are all real, or the eigenvalues of $X - X^*$ are all purely imaginary (including zero), then there exist an X-invariant maximal H-nonnegative subspace M_+ and an X-invariant maximal H-nonpositive subspace M_- that are both also invariant for X^*.

Very much a finite-dimensional result. Based on the fact that under the conditions of the theorem A and S will have a common eigenvector, and induction on the size of the matrix.
Extension of invariant H-nonpositive subspace

Let X be H-hyponormal, and let \mathcal{M}_- be X-invariant and H-nonpositive. Let $\mathcal{M}_0 = \mathcal{M}_- \cap \mathcal{M}_-^{[\perp]}$. Decompose

$$\mathcal{M}_-^{[\perp]} = \mathcal{M}_0 \dot{+} \mathcal{M}_{nd},$$

where \mathcal{M}_{nd} is H-nondegenerate.

Assumption: \mathcal{M}_0 is also X-invariant.
Denote by X_{nd} and H_{nd} the compressions of X and H onto M_{nd}.

Assumptions on X: either one of the following three conditions hold:

a. $\sigma(X_{nd} + X_{nd}^{[*]}) \subset \mathbb{R}$
b. $\sigma(X_{nd} - X_{nd}^{[*]}) \subset i\mathbb{R}$
c. X_{nd} is H_{nd}-normal.

Then there is an X-invariant maximal H-nonpositive subspaces \mathcal{M} containing \mathcal{M}_-. The conditions on X are independent of the choice of \mathcal{M}_{nd}.

A Pontryagin space version holds as well (finite number of positive squares).
References

Chr. Mehl, A.C.M. Ran en L. Rodman: Extension to maximal semidefinite invariant subspaces for hyponormal matrices in indefinite inner products. Submitted for publication.
ILAS 2006: Welcome to Amsterdam!!!

http://staff.science.uva.nl/~brandts/ILAS06

Amsterdam canal scene in September

Photo: A.S. Tanenbaum
IWOTA July 2007: North-West University, Potchefstroom, South Africa

On behalf of the organizers: you are cordially invited!

Potchefstroom Campus Main Building

More information: Manfred Möller and André Ran are on the organizing committee. We want to tell you all about it!