Integral operators with semi-separable kernel and with symmetries

collaboration with G.J. Groenewald and M.A. Petersen

(Potchefstroom Campus, North-West University, SA)

Journal Functional Analysis (219 (2005), 255-284)
Preliminaries and introduction

Integral operator with semi-separable kernel

\[T : L_2([a, b], \mathcal{U}) \to L_2([a, b], \mathcal{Y}) \]

\[y(t) = (Tu)(t) = D(t)u(t) + \int_a^b k(t, s)u(s) \, ds \]

where

\[k(t, s) = \begin{cases}
F_1(t)G_1(s), & a \leq s < t \leq b, \\
-F_2(t)G_2(s), & a \leq t < s \leq b,
\end{cases} \]

Here \(F_i(t) : \mathcal{X}_i \to \mathcal{Y} \) and \(G_i(t) : \mathcal{U} \to \mathcal{X}_i, \ i = 1, 2 \) are square integrable.

All spaces \(\mathcal{U}, \mathcal{Y}, \mathcal{X}_i \) are finite dimensional.
Realization

Gohberg-Kaashoek, mid eighties Systems with boundary values

\[
\begin{align*}
\dot{x}(t) &= A(t)x(t) + B(t)u(t), & a \leq t \leq b, \\
y(t) &= C(t)x(t) + D(t)u(t), & a \leq t \leq b, \\
(I - P)x(a) + PU(b)^{-1}x(b) &= 0.
\end{align*}
\]

where \(A(t) \) is integrable, \(B(t) \) and \(C(t) \) are square integrable, \(P \) is a projection and \(U(t) \) is the fundamental operator corresponding to \(A(t) \), i.e., \(\dot{U}(t) = A(t)U(t), \ U(a) = I. \)

The system is well-posed, that is \(u(t) \equiv 0 \) implies the existence of a unique solution (which is the zero solution).
In that case

\[y(t) = D(t)u(t) + \int_a^b k(t, s)u(s) \, ds \]

where

\[k(t, s) = \begin{cases}
C(t)U(t)(I - P)U(s)^{-1}B(s), & a \leq s < t \leq b, \\
-C(t)U(t)PU(s)^{-1}B(s), & a \leq t < s \leq b,
\end{cases} \]

So, the input-output operator of the system with boundary values is of the semi-separable type.
Conversely, any such operator admits a realization of this type:

\[A(t) = 0, B(t) = \begin{pmatrix} G_1(t) \\ G_2(t) \end{pmatrix}, C(t) = \begin{pmatrix} F_1(t) & F_2(t) \end{pmatrix}, P = \begin{pmatrix} 0 & 0 \\ 0 & I_{\mathcal{X}_2} \end{pmatrix}, \]

on the state space \(\mathcal{X} = \mathcal{X}_1 \oplus \mathcal{X}_2 \).

A realization of \(T \) of the form

\[\Theta = (A(t), B(t), C(t), D(t); I - P, PU(b)^{-1}) \]

with \(P \) a projection is called an **SB-realization** of the integral operator \(T \).
Problem

Characterize in terms of the SB-realization when such integral operators will be

- selfadjoint,
- J-unitary for some invertible $J = J^*$,
- positive definite,
- contractive,
- positive real or dissipative.
Intermezzo: time invariant case

Let \(b = +\infty \), and \(k(t, s) = k(t - s) \). Let

\[
k(t) = Ce^{tA}B
\]

be a minimal realization.

Then the corresponding integral operator is selfadjoint if and only if \(k(t) = k(-t)^* \) for real \(t \).

In terms of the minimal realization, the integral operator is selfadjoint if and only if there exists an invertible skew-hermitian matrix \(S = -S^* \) such that

\[
SA = -A^*S, \quad SB = -C^*.
\]
Elements in the proof

(A, B, C) is a minimal realization if and only if $(-A^*, C^*, -B^*)$ is a minimal realization.

The proof is now based on Kalman’s state space isomorphism theorem: two minimal realizations are similar and the similarity is unique. That similarity is the matrix S.

Remark iA is selfadjoint in the indefinite inner product given by iS. That fact, and a lot of Krein space theory was used in the study of the time invariant case.
Two SB-realizations

\[\Theta_i = \left(A_i(t), B_i(t), C_i(t), D(t); (I - P_i), P_i U_i(b)^{-1} \right) \]

are called similar if there exists an invertible operator \(E : \mathcal{X}_1 \to \mathcal{X}_2 \) and an absolutely continuous function \(S(t) : \mathcal{X}_1 \to \mathcal{X}_2, a \leq t \leq b \), with invertible operator values, such that a.e. on \([a, b]\)

\[
\begin{align*}
A_2(t) &= S(t) A_1(t) S(t)^{-1} + \dot{S}(t) S(t)^{-1}, \\
B_2(t) &= S(t) B_1(t), \\
C_2(t) &= C_1(t) S(t)^{-1}, \\
(I - P_2) S(a) &= E (I - P_1), \\
P_2 U_2(b)^{-1} S(b) &= E P_1 U_1(b)^{-1}.
\end{align*}
\]

Then \(U_2(t) = S(t) U_1(t) S(a)^{-1} \).
Minimality

An SB-realization is called *SB-minimal* if among all SB-realizations with the same input-output operator the dimension of the state space is as small as possible.

Big problem: this is not unique up to similarity.
USB-class

Def. 1. We say that an integral operator with semi-separable kernel is in the USB-class if up to similarity it has a unique SB-minimal realization.

Example: if \(F_1, F_2, G_1 \) and \(G_2 \) are analytic then \(T \) is in the USB-class.

So far all Gohberg-Kaashoek
Let T be in the USB-class and let for $i = 1, 2$

$$\Theta_i = \left(A_i(t), B_i(t), C_i(t), D(t); (I - P_i), P_iU_i(b)^{-1} \right)$$

be two SB-minimal realizations of T. Then the two are similar.

Theorem 1. (GPR, 2002) *The similarity between two SB-minimal SB-realizations of an integral operator in the USB-class is unique.*
The adjoint

If $\Theta = (A(t), B(t), C(t), D(t); I - P, PU(b)^{-1})$ is an SB-realization of T, then

$$\Theta^* = (-A(t)^*, C(t)^*, -B(t)^*, D(t)^*; P^*, (I - P^*)U(b)^*)$$

is an SB-realization of T^*.

The fundamental operator for Θ^* is $U(t)^{-*}$.
Selfadjointness in the USB-class

Theorem 2. Let T be in the USB-class and let

$$\Theta = \left(A(t), B(t), C(t), D(t); I - P, P U(b)^{-1} \right)$$

be an SB-minimal SB-realization of T. Then $T = T^*$ if and only if $D(t) = D(t)^*$ and there is a unique invertible $S(t)$ such that

$$\dot{S}(t) = -A(t)^*S(t) - S(t)A(t),$$

$$P^*S(a) = S(a)(I - P),$$

$$C(t)^* = S(t)B(t),$$

$$S(t) = -S(t)^*. $$
Unitarity

Let \(J = J^* = J^{-1} \) be a signature matrix.

Theorem 3. Under the same assumptions on \(T \) and its \(\Theta \): \(T \) is \(J \)-unitary, i.e., \(T^*JT = J \) if and only if there is an invertible \(S(t) \) such that

\[
\dot{S}(t) = -A(t)^*S(t) - S(t)A(t) + C(t)^*JC(t),
\]

\[
P^*S(a) = S(a)(I - P),
\]

\[
C(t)^*J = S(t)B(t),
\]

\[
S(t) = S(t)^*.
\]
Further

We continu the paper with

- positivity: $I + T > 0$, with $D(t) \equiv 0$, this involves factorization,

- positive real: $T + T^* > 0$, with $D(t)$ constant,

- dissipative: $-i(T - T^*) > 0$, also with $D(t)$ constant,

- strictly contractive: $\|T\| < 1$, with $D(t) \equiv 0$.

All characterizations involve Riccati differential equations.
Let \(\Theta = (A(t), B(t), C(t), 0; I - P, P U(b)^{-1}) \) be an SB-minimal SB-realization of \(T \) in the USB class, assume that \(\Theta \) is similar to \(\Theta^* \), and that the similarity is given by \(S(t) \).

Theorem 4. The following statements are equivalent:

a. \(I + T \) is positive definite,

b. the Riccati differential equation

\[
\dot{Y}(t) = (Y(t)PS(a)^{-*} - P^*)U(t)^*C(t)^*C(t)U(t)(S(a)^{-1}P^*Y(t) - P),
\]

\[
Y(a) = 0,
\]

has a solution on \([a, b]\). This solution is positive semidefinite, increasing and satisfies \(Y(t)(I - P) = 0 \) for all \(a \leq t \leq b \).