
ON AGENT MODELLING AND SYSTEM SIMULATION OF SELF-ORGANISATION

M.C. Schut
Department of Computer Science
VU University, Amsterdam (NL)

schut@cs.vu.nl

N. Ferreira-Schut
Department of Computer Science

Radboud University, Nijmegen (NL)
nivea@cs.ru.nl

KEYWORDS
design, implementation and validation methodologies; multi-
level simulation; self-organisation; multi-agent systems; sys-
tem design; formal specification; empirical analysis.

ABSTRACT
Complex, natural, social, technological and economic
systems have recently given rise to the need of a new
paradigm for computational systems that are adaptive,
can self-organise and exhibit emergent behaviour. The
design of such systems concerns a homogeneous set of
agents in which each agent receives an input and has to
map it to a ‘good’ output, and where self-organisation
emerges from the interaction between agents. Although
general and simple, this concept is representative for
a very wide spectrum of applications such as protocol
design for large computer networks, design of collective
robotics, and automative traffic engineering. Surpris-
ingly, only a handful of recent research is aimed at a
domain-independent (or: general) design of such sys-
tems. We propose as the solution for the design-problem
a framework that tackles the local (agent) level formally
and the global (system) level empirically. This allows
us to do rigorous formal verification of the behaviour of
the individual agents, as well as large-scale empirical
validation of the system as a whole. Besides, it exploits
the specific advantages of the approaches regarding the
scale of the system: formalisation is good for small
systems, while simulation works well for (very) large
systems. The objective of this paper is to further develop
and exploit the idea of combining a formal approach on
the agent level and an empirical approach on the system
level in self-organisation.

INTRODUCTION
The self-organising ‘paradigm’ is the response to the
increasing need for systems that are adaptive, flexible
and pliable towards uncertain operations of the units
that build it up and the interactions between these units.
These new computational systems (also known as per-
vasive technology or emergence engineering) consist of
many (in order of thousands) units exhibiting complex
behaviours on different aggregation levels. The aggre-
gation levels vary from local (micro) behaviour on the
unit level to global (macro) behaviour on the system

??

?

representation veri�cation

validationanalysis

Figure 1: The design problem, with 3 agents who have to
find a good mapping between their inputs (black circles)
and outputs (white circles).

level. Real-world examples of such systems are abun-
dant: traffic networks, energy distribution networks, mar-
kets, computer networks, animal and human societies.

The problem addressed in this paper concerns the de-
sign of self-organising systems. Consider Figure 1 as an
illustration of the self-organising system design problem:
a homogeneous set of agents in which each agent re-
ceives an input (i.e., observes) and generates output (i.e.,
acts), and faces the problem of mapping its received in-
put to a ‘good’ output. Although it is extremely general
and simple, this illustration captures a very wide range
of applications, including, for example, protocol design
for very large computer networks, design of collective
robotics and inter-vehicular communication for automa-
tive traffic engineering.

Throughout the paper, we define self-organisation in
a strong way: a system is self-organising if, and only
if, there are no organisational roles allocated to the sys-
tem’s parts (i.e., agents, individuals, elements). This def-
inition excludes systems in which (designed or emerged)
organisational roles exist, for example, managers, bro-
kers, superiors or subordinates (which would be weakly
self-organising). Different individuals can still be spe-
cialised in a functional way (related to the system’s task),
but not in an organisational way. The main argument for
this approach is that we want to know the true power of
self-organisation by leaving out organisational structures
and to keep the agents as simple as possible – making it
possible for the intelligence to emerge at the system level
instead of at the agent level.

The current state-of-the-art regarding the design prob-
lem is that there are in general 3 widely-used approaches:
1) simulation – construction of a simulation model fol-
lowed by statistical analysis, 2) formal – building a for-
mal model of the problem/solution and checking whether
desired properties do hold or not; and 3) nature-inspired
– taking observed methods and techniques from nature as
the starting point (e.g., ant foraging, honeybee dancing,
see (Camazine et al. 2001)) and ‘finding’ problems that
can be solved with these methods and techniques.

We consider none of the above described approaches
absolutely ideal to be used as a ‘generic’ design frame-
work. For simulation, the major drawback is that the
modeller has no means to verify the local workings of the
system – the observed and analysed results are on the sys-
tem level and not on the agent (individual) level. With a
formal approach, it is only possible to look at ‘small’ sys-
tems because of the computational complexity of these
approaches. A weakness of the nature-inspired approach
is that it is not a ‘problem-centered’ one (instead, it is
a reverse engineering approach, see (Zambonelli et al.
2005)). Also, all approaches are developed ad-hoc within
the context of a given problem or domain. To date, there
has been no successful attempt to develop a generic de-
sign framework with the explicit aim to be useful for a
wide range of application problems.

The research objective of this paper is to further de-
velop and exploit the idea of combining a formal ap-
proach on a local level and an empirical approach on a
global level in self-organisation.

Although this paper is (only) a very first step to-
wards the long-term aim of delivering a generic frame-
work, we can clearly identify the originality of the pro-
posed research: 1) it deals with design limitations of
nature-inspired (reverse-engineering) approaches (e.g.,
swarm intelligence, see (Bonabeau et al. 1999)), 2) it
does not exclusively focus on either formal or simula-
tion approaches, and 3) it introduces self-organising sys-
tems as an interesting new system class for existing mod-
elling techniques (e.g., Markov decision processes, as de-
scribed below).

RELATED WORK

Design of Self-Organisation Although there is a gen-
eral trend and steep increase of interest in the design of
self-organising systems, there is only a handful of related
research specifically aimed at the domain-independent
(or: general) design of self-organisation. We briefly enu-
merate this work here in order to sketch a context for our
paper. Note that we did not include here: work that looks
at the “emergence problem” (the relation between the lo-
cal and global levels in a self-organising complex sys-
tem) (de Wolf and Holvoet 2005), because we consider
it best to investigate this after successful application of
the proposed framework, enabling us to systematically
examine this problem; work where individual agents in
a self-organising system have or develop organisational

roles, because these systems do not fit the strong notion
of self-organisation used in this paper; and work that is
strongly theoretical, e.g., (Yamins 2007).

We briefly sketch the history of design approaches in
the last decade. In 2003, (Serugendo 2003) sketches
the idea of engineering emergent behaviour and in sub-
sequent work identifies comparison criteria for self-
organising systems, categorises mechanisms leading to
self-organisation, and proposes an approach for select-
ing self-organising mechanisms. In 2004, (Edmonds and
Bryson 2004) use the experimental method as the starting
point of an adaptive strategy for producing self-organised
software. In 2005, (Bar-Yam 2005) proposes multiscale
analysis as a way to engineer complex systems; (Wolf
and Holvoet 2007) categorise design patterns for decen-
tralised coordination in self-organising systems. (Ger-
shenson 2007) proposes a design methodology based on
the idea that reducing the ‘friction’ of interactions be-
tween elements of a system will result in a higher ‘sat-
isfaction’ of the system. In 2007, (Sudeikat and Renz
2007) suggest to use the approach of requirements engi-
neering to develop self-organising multi-agent systems.
And last year, (Martinoli 2008) proposes the use of multi-
level modelling to design swarm (robotic) systems; also,
(Gardelli et al. 2008) propose a simulation-driven ap-
proach to design self-organising environments.

The most important difference between the research in
this literature overview and the work suggested in this
paper is exactly the novelty of our work. Although,
as shown above, some references also make the for-
mal/empirical distinction, nowhere is it combined with
the individual/system level. For instance, a state of the
designed system is represented on the global level (all in-
dividual nodes are within one state), while we propose to
do this only on the local level (i.e., individual-centered)
and clone the agent to lift it to the global level (and then
investigate the system empirically).

Multi-Agent Systems We understand that self-
organising systems demonstrate complex behaviour
even if their individuals are decribed in terms of simple
strategies and knowledge – though some aspects of
more common ‘intelligent’ multi-agent systems, see
(Wooldridge 2002), such as autonomy, decentralisation
and local view are still present. In terms of multi-agent
systems, our research restricts its interests by considering
a self-organising system as a collection of interactive in-
dividuals, which are uncomplicated, basic, light-weight
in their specification. Opposite to this, being intelligent
means that the agent is capable to reason about the
world given the information it obtains and following
its behaviour description. Our interest lies in stochastic
systems in which the options of actions that such a
reasoner can take follows a probabilistic distribution.
Additionally, reward functions are used to allow the
specification of strategic mechanisms, i.e., based on
these functions, an agent will endeavour on establishing
the best set of actions that leads to its goal(s).

Markov Decision Processes Our first attempt at a for-
malisation of the local level will be by means of a Markov
decision process, hence a brief introduction. In general, a
Markov chain, according to (Baier and Katoen 2008), is a
directed graph where nodes represent (system) states and
relations among those states are captured by probabilis-
tic transitions. Markov decision processes (MDPs), see
(Bellman 1957), extend Markov chain by the explicit rep-
resention of actions which generate the transitions among
states. One can use an MDP in order to model problems
in which the decision making process in uncertain envi-
ronments is automated. By uncertain environments we
mean that the outcomes of actions are not entirely pre-
dictable. By automation we mean that we can use algo-
rithms in order to ‘solve’ an MDP (i.e., derive a policy
which maps states to best actions).

Well-known exensions of the ‘basic’ MDP model that
are relevant to this paper are partially observable MPDs
(or: POMDPs, see (Kaelbling et al. 1998)) and multi-
agent MDPs (or: MMDPs). Regarding the latter, (Jam-
roga 2008) presents a formal language, MTL, which
allows the representation of general scenarios in which
a system is formed by multiple agents (or: processes)
which interact to one another. In this case, sets of agents
can establish joint strategies in order to achieve (com-
mon) objective(s). A model for the multi-agent MTL is
a refinement of MMDPs, see (Boutilier 1999). The main
difference with the work by Jamroga is that Boutilier
focus on fully cooperative multi-agent systems, while
the former allows the specification of sets of agents that
might not share the same objectives – accounting, there-
fore, for more general scenarios. Still, in both, agents
are assumed to know the global state of the system at all
times. Another approach also related to Boutiliers and to
multi-agent MDPs is the framework proposed by (Xuan
et al. 2000). This approach also concentrates on the de-
scription of fully cooperative systems. But here the de-
centralised aspect of multi-agents systems is emphasized.
Instead of assuming the omniscience of agents, decen-
tralised control of finite state Markov processes is used.

For us it is clear that formalisations of MDPs such as
presented by (Jamroga 2008) is highly relevant. First,
we can represent agents using a MDP model and specify
properties regarding the behaviour of those agents. Then,
we are able to verify whether those desired, or required,
properties in fact hold.

In the next section we present our framework, estab-
lishing in more detail the role of specification and verifi-
cation in our self-organising design.

SOLUTION FRAMEWORK

The solution that we propose is a design framework
(shown in Figure 2) based on the before-mentioned sim-
ple idea to approach the agent level formally and the sys-
tem level by means of simulation. This synthetic ap-
proach allows us to do rigorous formal verification of
the behaviour of the individual agents as well as large-

??

?

validation
simulation

model

veri�cationformal
speci�cation

empirical, global

formal, local

Figure 2: The proposed solution framework.

scale empirical validation of the system as a whole. It
also exploits the specific advantages of the approaches
regarding the scale of the system: formalisation is good
for small systems while simulation works well for (very)
large systems. Thus, differently from other approaches,
we do not attempt to either fully formally specify the sys-
tem behaviour, nor do we blindly rely on observed sys-
tem behaviour while not knowing what happens at the
local level.

The reason that this approach potentially works well
for self-organising system design (but possibly not for
system design in general) has to do with two important
aspects of a self-organisation itself. Firstly, although
such systems are massive (i.e., involve many agents),
they are formed by homogeneous set of agents (e.g., bird
flocks and fish schools). This property makes the mod-
elling and designing of these systems somewhat easier
than ‘complicated’ systems – especially concerning the
representation of the agents and, subsequently, scaling up
the system (almost by simple ‘cloning’). Secondly, the
interaction among the agents occurs ‘only’ with their di-
rect neighbours. Thus there is no need (not even theoret-
ically) to consider the possibility that two distant agents
interact with each other. Also, the nature of the inter-
action differs from cooperation in the traditional sense –
agents rather react to each other (like birds in flock on
the basis of separation, alignment and cohesion).

Our framework consists of 4 subsequent development
phases, i.e., formal specification, verification, simulation
model and validation. The arrows in the Figure 2 indicate
how the phases relate to one another. Note that a special
case of such general description is having a system that
goes successfully from specification to validation, never
returning to a previous phase.

Formal specification As previously mentioned, we
understand an agent to be an autonomous entity capa-
ble of observing (or partially modelling) the world (i.e.,
the domain in which it is situated) and acting in accor-
dance with those observations. In order to obtain an accu-
rate agent description, a diversity of languages adequate
for an agent specification have been produced. In this
context, logical languagues are characterised by their un-
ambiguous semantics, and have been applied as useful
formalisms for agents’ description, allowing also agents’
implementation and verification, see (Fisher et al. 2006;
Barringer et al. 1996). In other words, logical formali-
sation of agent behaviour is desirable, not only in order
to provide a clear semantics of agent-based systems, but

also to provide the foundation for sophisticated reason-
ing techniques. For these reasons, we opt for applying a
formal language for the representation of agents in this
step of the design of self-organising systems.

Verification Well-defined syntax and unambiguous se-
mantics of a formal language allow an accurate agent de-
scription to be produced, while also potentially allowing
formal verification tools to be applied. Logical verifica-
tion can (and should) be used in order to guarantee that
malicious behaviour of individuals are avoided, some-
thing that is of crucial importance in complex and criti-
cal applications. In this phase of the system’s design, we
aim to verify that certain (desired) properties regarding
individual behaviour are guaranteed, before proceeding
to the system simulation where the self-organisation as-
pect (and, consequently, broader scope) comes into play.
A method for formal verification of (agent-based) sys-
tems is model-checking, see (Baier and Katoen 2008).
Essentially, this method performs an exhaustive search
through a finite-state specification aiming to obtain a way
in which the required property might be contradicted. In
model-checking an agent is given in terms of local states
in some structure.

Simulation model The simulation phase is the first one
on the global level of the system design. It is through the
simulation process that a system’s emergent behaviour
can be produced. That is, in our simulation phase a
model is obtained in which a large number of individuals
is considered, and as a result of their interaction the self-
organising aspect of the system can be generated. For ex-
ample, consider an artificial society in which the task of
individual agents is solely to survive on the basis of col-
lected resources that exist in the environment. The model
that you use for this simulation can be a simple rule-set
to be executed by an agent: each agent is a rule-based
system. If the agents are able to learn, an adaptive algo-
rithm is added to the simulation in order to make such
learning possible. The simulation then adds the control
loop to the whole system (model + algorithm) and allows
you to switch on the model and observe its development
over time. In short, it is through simulation that the real
scale of the system can be achieved. It is only in such
dimensionality that the emergent intelligent behaviour of
the society can finally be accomplished and analysed.

Validation Validation of a self-organising system
refers to the conclusions that can be drawn for the sys-
tem behaviour, observed during the simulation phase.
In this context, some statistical methods, such as two-
sample t-test and analysis of variance, allow the inter-
pretation and evaluation of emergent behaviour. In this
sense, emergent means that “the whole is more than the
sum of the parts” according to (Damper 2000). In other
words, emergents – which are novel with respect to the
individual parts of the system – arise dynamically from

the interaction among those parts, following (Wolf and
Holvoet 2007). Other criteria (or:‘a properties) can be
checked (besides general properties of self-organisation,
see (Holland 1995)): robustness – capability of the sys-
tem to remain operational in the face of (unpredicted)
variations of the environment; adaptivity – which refers
to the quality of fitting to given changes in the environ-
ment; in our context, an individual might change itself
or the system as a whole might change; redundancy –
when knowledge or information is kept in different lo-
cations of the system; and, success on the completion of
required application task(s).

SPECIFICATION WITH MDP
We investigate whether the MDP model is an appropriate
one for the formal specification in our proposed solution
framework. Here, we define an MDP following (Jamroga
2008),

Definition A Markov decision process over domain
D = 〈U,>,⊥,−〉 and a set of utility symbols Π is a
tuple M = 〈S,Act, Pr, π〉, where

• S is a finite and non-empty set of states;

• Act is a non-empty set of actions;

• Pr : S × Act × S → [0, 1] is a stochastic transi-
tion relation and Pr(s1, α, s2) defines a probability
with which the system will go to state s2, if it is
in state s1 and the agent performs action α. Be-
ing a probability distribution, for each state s1 ∈ S,∑

s2∈S Pr(s1, α, s2) = 1, or Pr(s1, α, s2) = 0 for
all s2, in case α is not enabled in s1.

• π : Π× S → Û is a valuation of a utility fluent.

The definition includes that a utility and/or propositional
symbol (referred to as fluents) can be assigned to each
state of the Markov decision process model. The domain
consists of a set of utility values U ∈ R, > and ⊥ rep-
resenting the logical truth and falsity, and − the comple-
ment function. Besides, Û = U ∪ {>,⊥}. In this con-
text, a policy can then be defined as a sequence of steps
which specify the set of (future) actions to be taken by the
agent. In such context, policies can also be stochastic. In
short, Markov decision processes define stochastic sys-
tems which involve strategic reasoning, decision making
and reward/utility functions.

In the next section we present an example of self-
organising system in which all phases of our framework
is described, and MDP is the underlying model for an
agent representation.

EXAMPLE
We consider here a short example to illustrate the ideas
presented above. The example concerns a simple game.
Assume that we have a x × y checkers board with in to-
tal i black and j white pucks. The pucks are scattered

randomly over the board. On the board are also k robots
situated that have to collect the pucks. Each agent also
has a colour, black or white, and can only pick up pucks
of the same colour as itself. An agent can observe pucks
and other agents on the m surrounding cells; move hori-
zontally (East, West) and vertically (North, South); it can
pick up pucks, and also change colour. The aim of the
game is for the group of agents as a whole to converge
on a division of labour where the ratio for black/white
robots is equal to the ratio of black/white pucks. Here,
we are interested in the with-replacement version of the
game: when a puck has been picked up by an agent, it
is put back on the board at another random empty cell.
(In the without-replacement version, an alternative aim
of the game is to pick up all pucks as fast as possible.) We
have not implemented the example in a computer model,
but here we do give a preliminary outline of the different
steps in the introduced framework.

Formal specification
Based on the general MDP definition given above, we
formalise the agent states and actions as well as the re-
ward function from our example. We let the state of an
agent be a vector containing 1) its own colour, 2) the
colour of the puck that the agent currently stands on (has
value 0 is the agent does not stand on a puck), 3) the
number of black agents, 4) the number of white agents,
5) the number of black pucks, and 6) the number of white
pucks in the agent’s neighbourhood. The agent receives
a reward r when it picks up the puck that it currently
stands on, it ‘pays’ a penalty c when it changes colour.
Besides, the absolute value of r is much higher than the
value of c.

Agents = {1, . . . , k}, Colour = {b, w};
Sti = 〈coli, pucki, #agb, #agw, #pub, #puw〉,
where i ∈ Agents, coli ∈ Colour,
pucki ∈ Colour ∪ {0},
agcolour = [colour] agent,
#agcolour = number of agents in neighbourhood,
pucolour = [colour] puck, and
#pucolour = number of pucks in neighbourhood;
Act = {N, S, E, W, P ickUp, ChangeColour};
Reward : St×Act→ R,
Reward(〈b, , , , , b〉, P ickUp) = r,
Reward(〈w, , , , , w〉, P ickUp) = r,
Reward(〈 , , , , , 〉, ChangeColour) = c,
where is a wildcard, r and c are constants,
r > 0, c < 0, and | r | � | c | .

In the example, the transition function represents mov-
ing from one neighbourhood state to another. In the for-
malisation above, we opted for a very concise description
of the state, making the role of the transition function
somewhat more important. More detailed state descrip-
tions can also be considered that could include informa-
tion about the distance to the other robots/pucks or even
the exact location relative to the agent’s own location.

With respect to a suitable action policy, i.e., a sequence
of actions to the taken at each state in order to maximise
an agent’s reward, either an automated or hadmade policy
can be established. This means that either MDP solution
algorithms (e.g., value/policy iteration) can be applied in
order to obtain a system’s solution, or a ‘hard-coded’ so-
lution can be described.

Verification
Given the nature of self-organising systems, we do not
have a notion of global states (i.e., representing the state
of all the agents). Therefore, the described properties
do not refer to group objectives or team performance
which should be optimised. Instead, we define and ver-
ify properties that only refer to an agent’s individual be-
haviour or aim. For instance, we may be interested in
verifying whether it holds that “an agent eventually col-
lects a puck”. Moreover, and perhaps more interesting,
is a property which establishes that “an agent picks up
as many pucks as possible with the least possible colour
changes”.

Although we are aware that properties regarding the
behaviour of small groups of agents can also be verified,
due to the scale of self-organising systems (as mentioned
above), only through simulation the full behaviour of the
system can be observed and further analysed. An exam-
ple of such a (small group) property is whether it is guar-
anteed that “the ratio of the number of black/white pucks
is the same as the ratio of the black/white agents”.

In order to specify and verify such system properties,
a suitable logical language is needed. The language pro-
posed by (Jamroga 2008) could be considered as a poten-
tial formalism for this purpose. However, it still remains
to be evaluated in detail how its description fits to the
our concept of multi-agency in self-organising systems.
For instance, we might require a more generic descrip-
tion of a system - more closely related to the concepts of
POMDP. This should allow us to avoid the usual require-
ment of knowing the global state of the system.

Simulation model
The purpose of the simulation model is to obtain in-
formation about the global level of the system. In
other words, for our example, we are interested to see
if all agents together can achieve convergence towards
equal black/white robot and puck ratios. As mentioned
above, the generic approach to constructing the simula-
tion model is to take the individual agent model as spec-
ified formally and ‘clone’ it to scale it up to reach a typi-
cal self organisational system size. We expect the formal
specifications to be as such that the step towards imple-
mentation (and produce software) is as small as possible.
Besides this ‘cloning’ process, we need to take some de-
sign decisions on the environment in which the system
is situated. In the example, we need to define the size
(x × y) of the board. With the simulation model being
complete, we need to design and set up the experimental

parts of the simulation. Thus, we have to define inde-
pendent and dependent variables as well as contingency
(exogenous) variables. Typically, in these kinds of sim-
ulation experiments, there are many of such parameters
and we must carefully craft the experimental design to re-
strict ourselves in terms of what we want to investigate.
The objective(s) of the study should work as restrictors
here. In this puck-collection study, we can vary, for ex-
ample, the number of robots, number of pucks, or size of
the board. Then we can measure the effect of these vari-
ables on, for example, the black/white robot and puck
ratios, or the total number of collected pucks. Also, if we
have specified a number of different control policies for
the agents, we can test the performance of those policies
in comparison to each other.

Validation
The properties to be validated on the global level have
the form of statistical hypotheses: statements on corre-
lations between independent and dependent variables in
the experimental design/setup. In our example, the most
important hypothesis concerns two dependent variables:
the ratio of the number of black/white pucks, and the ra-
tio of the black/white agents. It depends on our particular
interest how we are going to investigate this (regarding a
suitable hypothesis), e.g., do we want to show this in gen-
eral, only for particular board sizes, only for particular
numbers of robots or pucks?

In general, whereas the logical verification of the in-
dividual level concerns checking correctness, i.e., “does
my agent do what I expect/want it to do?”, the proper-
ties on the system level generally concern performance
criteria, i.e., “is the collection of agents effective with
respect to some shared goal or objective?”. Besides
such (domain-dependent) performance criteria, we al-
ready mentioned the apparent useful (generic) properties
of self-organisation: robustness, adaptivity and redun-
dancy. Testing these in terms of statistical hypotheses
means that these properties must, first of all, be quanti-
fied and then included in the (in)dependent variables. Ro-
bustness and redundancy are related to size of the system
(number of agents) and the flow of information between
agents; adaptivity can be 1) hardwired into the agents
themselves (and is thus not testable), 2) measured on the
local level (an individual agent adapts to changing cir-
cumstances), or 3) measured on the global level (individ-
ual behaviour is not adaptive, but the system as a whole
is, i.e., like a flock of birds.

Finally, note that we do not aim to ‘solve’ or explic-
itly acquire further knowledge on the before-mentioned
“emergence problem”. In our experience (and also ob-
served by others), attempts to investigate this problem
either exclusively formal or empirical are prone to fail-
ure because of the system size (formal approaches do
not scale) or individual behaviour/interaction (simulation
loses touch with the local level). As mentioned, we are
mainly interested in the resultant outcome of the system,
without necessarily finding out more about ‘emergence’

as a phenomenon.

CONCLUSIONS

We have seen that nature can bring us useful methods and
techniques, but it seems that the range of applicability is
limited: we know of a small number of problems that can
be solved – travelling salesman problem, dynamic rout-
ing, collective robotics – but we may have hit the bound-
aries. It is time to change our frame of mind: instead of
the solution-centered way of approaching self-organising
system design (i.e., we have a solution provided by nature
and find a problem that we can solve with it), we need to
move to a problem-centered approach in which there is a
problem to be solved and we can use a (generic) design
framework to pour the problem in and systematically in-
vestigate potential solutions.

In terms of developing such a framework, we need to
1) conceptualise the problem class (to know what we are
talking about), and to 2) formalise the problem/solution
space (to see if solutions can be found) – eventually lead-
ing up to an operational framework containing design
principles and/or solution algorithms. However ambi-
tious the ultimate goal is to create such a framework, it
would meet the challenge set to the community: to de-
velop applications that “work for themselves” – define
a global goal, design components and local functional-
ity and check that the desired result will emerge during
execution, as coined by (Serugendo 2003).

This paper is a small step in between steps 1 and 2
in the above described timeline. We have started with
the conceptualisation in earlier work (outlined in (Schut
2007)) and are now exploring ways to put the concep-
tualisation on a more formal footing. As such, we do
not aim to deliver a framework that will generate a solu-
tion – i.e., solve the mapping problem for the individual
agents in the above-mentioned design problem (Figure
1). Instead, what we aim to achieve is a framework in
which we can 1) represent a design problem, and 2) sys-
tematically examine potential solutions by effectively in-
tegrating formalisation and simulation. A possible next
step after successfully examining potential solutions sys-
tematically, further automation applied to the framework
could potentially involve generating solutions.

REFERENCES

Baier, C. and Katoen, J. P. (2008). Principles of Model Check-
ing. MIT Press.

Bar-Yam, Y. (2005). About engineering complex systems:
Multiscale analysis and evolutionary engineering. In En-
gineering Self-Organising Systems, volume 3464 of Lec-
ture Notes in Computer Science, pages 16–31. Springer.

Barringer, H., Fisher, M., Gabbay, D., Owens, R., and
Reynolds, M., editors (1996). The Imperative Future:
Principles of Executable Temporal Logic. Research Stud-
ies Press. ISBN: 0-86380-190-0.

Bellman, R. (1957). Dynamic Programming. Princeton Uni-
versity Press. Dover paperback edition (2003).

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm
Intelligence : From Natural to Artificial Systems. Oxford
University Press.

Boutilier, C. (1999). Sequential optimality and coordination
in multiagent systems. In Dean, T., editor, Proceedings
of Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), pages 478–485. Morgan Kaufmann.

Camazine, S., Deneubourg, J., Franks, N., Sneyd, J., Bonabeau,
E., and Theraulaz, G. (2001). Self-Organization in Bio-
logical Systems. Princeton University Press.

Damper, R. (2000). Emergence and levels of abstraction. Inter-
national Journal of systems Science, 31(7):811–818.

de Wolf, T. and Holvoet, T. (2005). Emergence versus self-
organisation: Different concepts but promising when
combined. In Brueckner, S., Serugendo, G. D. M., Kara-
georgos, A., and Nagpal, R., editors, Proceedings of
the workshop on Engineerings Self Organising Applica-
tions, volume 3464 of Lecture Notes in Computer Science,
pages 1–15. Springer.

Edmonds, B. and Bryson, J. (2004). The insufficiency of for-
mal design methods - the necessity of an experimental ap-
proach for the understanding and control of complex mas.
In Jennings, N., Sierra, C., Sonenberg, L., and Tambe, M.,
editors, Proceedings of the Third International Joint Con-
ference on Autonomous Agents and Multi Agent Systems
(AAMAS 2004), pages 938–945. ACM Press.

Fisher, M., van der Hoek, W., B.Konev, and Lisitsa, A., edi-
tors (2006). Logics in Artificial Intelligence, volume 4160
of Lecture Notes in Computer Science. Springer-Verlag.
ISBN 0302-9743.

Gardelli, L., Viroli, M., Casadei, M., and Omicini, A.
(2008). Designing self-organising environments with
agents and artefacts: A simulation-driven approach. Inter-
national Journal of Agent-Oriented Software Engineering
(IJAOSE), 2(2):171–195. Special Issue on Multi-Agent
Systems and Simulation.

Gershenson, C. (2007). Design and Control of Self-organizing
Systems. PhD thesis, Vrije Universiteit Brussel.

Holland, J. (1995). Hidden Order: how adaptation builds com-
plexity. Perseus Books.

Jamroga, W. (2008). A temporal logic for multi-agent MDP’s.
In AAMAS 2008 Workshop on Formal Models and Meth-
ods for Multi-Robot Systems, pages 29–34.

Kaelbling, L., Littman, M., and Cassandra, A. (1998). Planning
and acting in partially observable stochastic domains. Ar-
tificial Intelligence Journal, 101:99–134.

Martinoli, A. (2008). A multi-level modeling methodology for
swarm robotic systems. In AAMAS 2008 Worshop on For-
mal Models and Methods for Multi-Robot Systems. In-
vited talk.

Schut, M. (2007). Science of simulation of collective intelli-
gence. Available at http://sci.collectivae.net/.

Serugendo, G. D. M. (2003). Engineering emergent behaviour:
A vision. In Hales, D., Edmonds, B., Norling, E., and
Rouchier, J., editors, Proceedings of the 4th International
Workshop Multi-Agent-Based Simulation, number 2927 in
Lecture Notes in Artificial Intelligence. Springer.

Sudeikat, J. and Renz, W. (2007). Toward requirements en-
gineering for self-organizing multi-agent systems. In
Serugendo, G., Martin-Flatin, J., Jelasity, M., and Zam-
bonelli, F., editors, Proceedings of the First International
Conference on Self-Adaptive and Self-Organizing Systems
(SASO), pages 299–302, Washington, DC, USA. IEEE
Computer Society.

Wolf, T. D. and Holvoet, T. (2007). Design patterns for decen-
tralised coordination in self-organising emergent systems.
In Brueckner, S., Hassas, S., Jelasity, M., and Yamins,
D., editors, Engineering Self-Organising Systems, volume
4335 of Lecture Notes in Computer Science, pages 28–49.
Springer.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems.
John Wiley & Sons.

Xuan, P., Lesser, V., and Zilberstein, S. (2000). Communication
in multi-agent Markov decision processes. In Proceed-
ings of ICMAS Workshop on Game Theoretic and Deci-
sion Theoretic Agents.

Yamins, D. (2007). A Theory of Local-to-Global Algorithms
for One-Dimensional Spatial Multi-Agent Systems. PhD
thesis, Harvard School of Engineering and Applied Sci-
ences.

Zambonelli, F., Gleizes, M.-P., Mamei, M., and Tolksdorf,
R. (2005). Spray computers: Explorations in self-
organization. Pervasive and Mobile Computing, 1(1):1–
20.

AUTHOR BIOGRAPHIES
MARTIJN C. SCHUT has over 10 years of experience in
research on multi-agent systems, organisational modelling,
computational intelligence and self-organisation. He has been
involved in the following research projects that are related
to the work described in this paper: NEWTIES (EU-FP6-
003752, 2004-08; where an emergence engine was developed
combining individual, social and evolutionary learning in a
population-based adaptive system); and SYMBRION (EU-
FP7-216342, 2008-13; development of symbiotic multi-robot
organisms based on bio-inspired approaches and modern com-
puting paradigms). His email is schut@cs.vu.nl and his
personal webpage at http://www.cs.vu.nl/∼schut.

NIVEA FERREIRA-SCHUT works at the Institute for
Computing and Information Sciences at the Radboud Uni-
versiteit (Nijmegen, NL) on the B-Screen project (NWO
BRICKS/FOCUS grant number 642.066.605) whose work in-
clude the proposal of probabilistic (graphical) models for the
breast cancer domain, based on screening mammography inter-
pretation. She received in 2006 her PhD degree from the Uni-
versity of Liverpool, and her thesis regards the development and
application of a logic-based programming language, which is a
powerful – although simple – logical language obtained by the
combination of a linear temporal logic-based framework with a
probabilistic logic of belief. Her email is nivea@cs.ru.nl.

