Let S be a list of n key-element items with keys in $[0, N - 1]$. Bucket-sort uses the keys as indices into auxiliary array B:

- the elements of B are lists, so-called buckets
- Phase 1:
 - empty S by moving each item (k, e) into its bucket $B[k]$
- Phase 2:
 - for $i = 0, \ldots, N - 1$ move the items of $B[k]$ to the end of S

Performance:

- phase 1 takes $O(n)$ time
- phase 2 takes $O(n + N)$ time

Thus bucket-sort is $O(n + N)$.

Bucket-Sort
Bucket-Sort: Example

- key range $[0, 9]$

- Phase 1: filling the buckets

- Phase 2: emptying the buckets into the list
Bucket-Sort: Properties and Extensions

The keys are used as indices for an array, thus:

- keys should be numbers from \([0, N - 1]\)
- no external comparator

Bucket-sort is a stable sorting algorithm.

Extensions:

- can be extended to an arbitrary (fixed) finite set of keys \(D\) (e.g. the names of the 50 U.S. states)
- sort \(D\) and compute the rank \(\text{rankOf}(k)\) of each element
- put item \((k, e)\) into bucket \(B[\text{rankOf}(k)]\)

Bucket-sort runs in \(O(n + N)\) time:

- very efficient if keys come from a small intervall \([0, N - 1]\) (or in the extended version from a small set \(D\))
Lexicographic Order

A d-tuple is a sequence of d keys (k_1, k_2, \ldots, k_d):

- k_i is called the i-th dimension of the tuple

Example: $(2, 5, 1)$ as point in 3-dimensional space

The **lexicographic order** of d tuples is recursively defined:

$$(x_1, x_2, \ldots, x_d) < (y_1, y_2, \ldots, y_d) \iff x_1 < y_1 \lor (x_1 = y_1 \land (x_2, \ldots, x_d) < (y_2, \ldots, y_d))$$

That is, the tuples are first compared by dimension 1, then 2, \ldots
Lexicographic-Sort

Lexicographic-sort sorts a list of \(d \)-tuples in lexicographic order:

- Let \(C_i \) be comparator comparing tuples by \(i \)-th dimension.
- Let \texttt{stableSort} be a stable sorting algorithm.

Lexicographic-sort executes \(d \)-times \texttt{stableSort}, thus:

- let \(T(n) \) be the running time of \texttt{stableSort}
- then lexicographic-sort runs in \(O(d \cdot T(n)) \)

Algorithm \texttt{lexicographicSort(S)}:

\begin{itemize}
 \item \textbf{Input:} a list \(S \) of \(d \)-tuples
 \item \textbf{Output:} list \(S \) sorted in lexicographic order
\end{itemize}

\hspace{1cm} \textbf{for} \hspace{0.2cm} i = d \hspace{0.5cm} \textbf{downto} \hspace{0.5cm} 1 \hspace{0.5cm} \textbf{do}
\hspace{2cm} \texttt{stableSort}(S, C_i)
\hspace{1cm} \textbf{done}
Lexicographic-Sort: Example

(7, 4, 6) -- (5, 1, 5) -- (2, 0, 6) -- (5, 1, 4) -- (2, 1, 4)
(5, 1, 4) -- (2, 1, 4) -- (5, 1, 5) -- (7, 4, 6) -- (2, 0, 6)
(2, 0, 6) -- (5, 1, 4) -- (2, 1, 4) -- (5, 1, 5) -- (7, 4, 6)
(2, 0, 6) -- (2, 1, 4) -- (5, 1, 4) -- (5, 1, 5) -- (7, 4, 6)

Dimension 1
Dimension 2
Dimension 3
Number representations

We can write numbers in different numeral systems, e.g.:

- 43_{10}, that is, 43 in decimal system (base 10)
- 101011_2, that is, 43 in binary system (base 2)
- 1121_3, that is, 43 represented base 3

For every base $b \geq 2$ and every number m there exist unique digits $0 \leq d_0, \ldots, d_l < b$ such that:

$$m = d_l \cdot b^l + d_{l-1} \cdot b^{l-1} + \ldots + d_1 \cdot b^1 + d_0 \cdot b^0$$

and if $l > 0$ then $d_l \neq 0$.

Example

$$43 = 43_{10} = 4 \cdot 10^1 + 3 \cdot 10^0 = 101011_2 = 1 \cdot 2^5 + 0 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 1121_3 = 1 \cdot 3^3 + 1 \cdot 3^2 + 2 \cdot 3^1 + 1 \cdot 3^0$$
Radix-Sort

Radix-sort is specialization of lexicographic-sort:

- uses bucket-sort as stable sorting algorithm
- is applicable if tuples consists of integers from $[0, N - 1]$
- runs in $O(d \cdot (n + N))$ time

Sorting integers of fixed bit-length d in linear time:

- consider a list of n d-bit integers $x_{d-1}x_{d-2} \ldots x_0$ (base 2)
- thus each integer is a d-tuple $(x_{d-1}, x_{d-2}, \ldots, x_0)$
- apply radix sort with $N = 2$
- the runtime is $O(d \cdot n)$

For example, we can sort 32-bit integers in linear time.
Example

We sort the following list of 4-bit integers:

1001 0010 1101 0001 1110
0010 1110 1001 1101 0001
1001 1101 0001 0010 1110
1001 0001 0010 1101 1110
0001 0010 1001 1101 1110
Suppose we are given a sequence S of n elements each of which is an integer from $[0, n^2 - 1]$. Describe a simple method for sorting S in $O(n)$ time.

- Each number from $[0, n^2 - 1]$ can be represented by a two digit number in the number system with base n.
 \[(n - 1) \cdot n + (n - 1) = n^2 - 1\]

- Conversion of each element into base-n is $O(1)$. ($O(n)$ for the whole list).

- Then use radix-sort to sort in $O(2 \cdot n)$, that is, $O(n)$ time.