
On Modal Characterizations
and Turning GSOS Rules Into Equations

Maciej Gazda
Vrije Universiteit, Amsterdam, The Netherlands

Jagiellonian University, Kraków, Poland
prostyprex@gmail.com

Master Thesis in Computer Science
written under the supervision of:

Prof. Dr. Wan Fokkink
Dr hab. Wit Foryś

Dr. Femke van Raamsdonk

December 2008

Abstract

In this thesis properties of various process equivalences are analysed, specifi-
cally definability with finite HML formulas, soundness of the Approximation
Induction Principle and properties of processes that are regular with respect to
a given equivalence. Also it is explained how to adapt the existing axiomatisa-
tion strategy for bisimulation so that it works for other common equivalences
as well. Futhermore, term rewriting properties of the obtained axiomatisations
are studied.

KEYWORDS: Approximation Induction Principle, axiomatisation, compara-
tive concurrency semantics, Hennessy-Milner logic, term rewriting

Contents

1 Introduction 2
1.1 Labelled transition systems and process equivalences 3
1.2 Processes as terms and structural operational semantics 6
1.3 FINTREE and other operators . 7
1.4 Axiomatisation of the basic operators . 8
1.5 Modal characterizations of the equivalences . 9

2 Approximation Induction Principle 16
2.1 AIP in HML-definable equivalences . 16
2.2 Constructive AIP and N -regular processes . 19
2.3 Which equivalences are useful? . 23

3 Axiomatisation strategy for basic process equivalences 25
3.1 Axiomatisation strategy for bisimulation equivalence 25
3.2 Completeness and possible extensions . 27
3.3 Congruence formats . 28

4 Term rewriting properties of the generated axiomatisations 32
4.1 TRS and normalizing strategy for bisimulation 32
4.2 TRSs for other equivalences and their properties 33

1

Chapter 1

Introduction

Issues covered in this thesis are concerned with what is called comparative
concurrency semantics. This discipline, among other problems, deals with clas-
sification of various notions of equivalence between processes in the concurrency
theory. More specifically, I work in the setting of process algebras where pro-
cesses are expressed as terms over some signature. They are considered mod-
ulo certain equivalences which can be defined using modal characterizations.
Namely, we define a language of modal formulas and identify processes that
satisfy the same formulas from the language. I am mostly interested in deciding
equality between two process terms, preferably using the axiomatic approach
and determining properties of whole classes of process semantics (definability
using modal characterization, compositionality with respect to some basic oper-
ators and other ”sanity” properties). I will focus on concrete process semantics,
which does not take into account the silent step τ . I will also restrict myself to
finitely branching processes.

Perhaps the best way to give an overview of the thesis is to tell how it
evolved. Initially, I wanted to investigate the possibility of generating complete
axiomatisations for some common process equivalences and arbitrary operators
defined with structural operational semantics (using the GSOS format). The
idea stems from the paper from Aceto, Bloom and Vaandrager [2] where an
axiomatisation strategy has been presented for bisimulation equivalence. The
problem basically boils down to adapting their strategy into other settings. I
soon discovered that this has already been solved in most of the cases, although
the different results have not been merged in one paper. Therefore, this part of
my work (which is done in Chapter 3) was rather a presentation of what has
been achieved so far, relating a few facts from already existing papers and fill-
ing some gaps. As a side topic, a question about the Approximation Induction
Principle (AIP) emerged. This infinitary conditional equation allows to decide
equality between processes whose finite projections are all equal. It seems to be
common knowledge that one can apply this rule for any sensible process equiv-
alence provided that we consider only finitely branching processes. I wanted to
obtain a clear and fairly general condition guaranteeing that the Approximation
Induction Principle would hold.

Another issue was to gain an insight about term rewriting properties of the
obtained axiomatisations. This has already been done in case of bisimulation
by Bosscher in [12]. His results are valuable also when we consider other equiv-
alences; there is a straightforward extension of his term rewriting strategy so
that every term can be rewritten to a normal form. However, I have found that
in some cases the obtained term rewriting systems are not confluent, Moreover,
there is little or no hope to find such.

2

During this research I noticed that basic process equivalences have some
common properties which have been proved for each equivalence separately
and there is a lack of more general statements and proof methods. Since all
these equivalences have corresponding modal characterizations with subsets of
Hennessy-Milner logic, the natural way of deriving properties of whole classes
of process equivalences is to impose restrictions on the modal languages that
define them. This approach has resulted in obtaining a sufficient condition for
an equivalence to be determined by finite HML formulas, soundness of AIP
and also properties of processes that are regular with respect to various equiv-
alences. I think it might be interesting to further apply this reasoning in order
to obtain certain congruence results and discuss what are the minimum ”san-
ity” restrictions for a process equivalence (for example congruence w.r.t. basic
operations).

The reader is assumed to have some background in process algebra and
term rewriting, although I will provide all the necessary definitions concering
the former field. As for term rewriting, the reader may consult [4] or simply the
Appendix A of [13] for the most basic notions.

1.1 Labelled transition systems and process equivalences

The basic notion that will be used to specify a system is a labelled transi-
tion system. This model is more general than finite automata in the sense that
it allows an arbitrary set (or even a class [15]) of states. In general, there is
no boundary on the cardinality of outgoing transitions from a given state as
well. However, I will restrict myself to the finitely branching labelled transition
systems with a finite set of transition labels (actions).

Definition (Labelled transition systems)
Assume a set P of processes and a finite set Act of actions. A labelled tran-

sition system is a pair (P,→) where P is a set of processes and →⊆ P ×Act×P
a transition relation. As a standard convention, we will use p a→ q to denote

(p, a, q) ∈→ (positive literal) and p
a

6→ for ¬∃q ∈ P : p a→ q (negative literal).
We extend the transition relation such that it can be labelled also with traces,
namely we define p ε→ p and p

aσ→ q for σ ∈ Act∗ iff ∃r : p a→ r ∧ r σ→ q. For
a q ∈ P such that ∃σ : p σ→ q we say that q is reachable from p. We will also
write I(p)

def
= {a ∈ Act | ∃q∈P p

a→ q} for the set of initial actions (initials)
that process p can take in the first step.

An important question is when we should consider two processes undistinguish-
able. There are many ways to define equivalences between processes. In general,
the finer an equivalence is (having more equivalence classes), the more features
of a process can be observed. On the other hand, since applied process algebra
deals with modelling and verification of complex systems where state spaces
tend to grow large, we would require as many identifications as possible in order
to make the verification algorithms efficient.

3

I have mentioned a difference between labelled transiton systems and the ear-
lier ”classical” finite automata theory. Another difference is that in our model
we usually need finer equivalences which not only take into account execution
traces but also either branching structure of a process or at least some additional
information about traces (decorated trace semantics like failure or ready trace).
Below, I will give a short overview of the most common process equivalences to
which I will refer as basic process equivalences throughout the paper; see [15]
for more details.

Trace equivalence. One of the earliest notions of equivalence between processes
and also the coarsest one (having the least number of equivalence classes). Pro-
cesses are considered trace equivalent if they execute exactly the same traces of
actions. Formally, σ ∈ Act∗ is a trace of a process p if ∃q : p σ→ q. The set
of all traces of p is denoted T (p) and p and q are trace equivalent (p =T q) iff
T (p) = T (q).

Completed trace equivalence. In addition to trace equivalence, we distinguish
processes according to execution paths that lead to termination. Let CT (p) =
{σ ∈ Act∗ | ∃q : p σ→ q ∧ I(q) = ∅}. Processes p and q are completed trace
equivalent (p =CT q) iff T (p) = T (q) and CT (p) = CT (q).

This equivalence resembles language equivalence on finite automata, if we
assume that all states without outgoing transitions are the terminating (or ”ac-
cepting”) states. However we also have to take into account partial traces which
do not lead into terminating states, because otherwise we could not distinguish
processes with infinite execution paths.

Failures equivalence. Apart from mere trace we also take into account all sub-
sets of actions that cannot be taken after executing a certain trace. The set of
failure pairs of p is defined as

F (p) = {(σ,X) | σ ∈ Act∗ ∧X ⊆ Act ∧ ∃q : (p σ→ q ∧ I(q) ∩X = ∅)}

Failures equivalence is defined as: p =F q iff F (p) = F (q).
This equivalence plays a crucial role in a model for Hoare’s CSP language

which substituted an earlier one based on the trace equivalence.

Readiness. This equivalence is based on a similar idea as failures equivalence,
but now we take into account the set of actions that can be taken after executing
a certain trace. We define a set of ready pairs of p as:

R(p) = {(σ,X) | σ ∈ Act∗ ∧X ⊆ Act ∧ ∃q : (p σ→ q ∧ I(q) = X) }.

Processes p and q are readiness equivalent, notation p =R q, iff R(p) = R(q).
Observe that the real difference between failures and readiness equivalence

is not simply the one that would be indicated by their names. The crucial thing
is that in case of failures we allow all the subsets of Act \ I(p) and therefore
the presence of a failure pair (σ,X) does not imply that there is a state q with

4

p
σ→ q and I(q) = Act \ X. This is the reason why readiness equivalence is

strictly coarser than failures (=F⊂=R).

Failure trace. This equivalence also distinguishes more processes than failures
equivalence. It follows another direction than readiness by taking into account
a subset of forbidden actions in all steps of a trace. Therefore, a failure trace is
an alternating sequence of failure subsets and actions. We define:
FT (p) = {X0a1X1...anXn | ∃p0, ..., pn : p = p0 ∧ pi−1

ai→ pi for i = 1, . . . , n ∧
∀i∈{0,...,n}I(pi) ∩Xi = ∅ }.

Processes p and q are failure trace equivalent (p =FT q) iff FT (p) = FT (q).

Ready trace. A combination of ideas from the previous two equivalences is
known as ready trace equivalence. This time actions are interleaved with sets
of inital actions of a state:
RT (p) = {X0a1X1...anXn | ∃p0, . . . , pn : p = p0 ∧ pi−1

ai→ pi for i = 1, . . . , n ∧
∀i∈{0,...,n}Xi = I(pi)}. Processes p and q are ready trace equivalent (p =RT q)
iff RT (p) = RT (q).

This equivalence has several interesting properties. As well as failure trace
it is compositional with respect to the priority operator θ [6]. Moreover, as
will be shown in Chapter 4, if we turn its axiomatisation into a term rewriting
system, the resulting rulified axiomatisation is terminating and confluent for
well-founded terms.

Simulation. Previous equivalences are examples of decorated trace semantics,
where we take into account traces of actions, possibly interleaved with infor-
mation about initial or forbidden action . A different approach is based on the
notion of simulation. We say that S ⊆ P × P is a simulation relation iff:

pSq ∧ p a→ p′ ⇒ ∃q′ : q a→ q′ ∧ p′Sq′

If there is a simulation relation S such that pSq and a simulation relation R
with qRp, then p and q are similar (s =S q). Simulation relation is finer than
trace equivalence and independent of all decorated trace semantics.

Ready simulation. This equivalence is finer than all the aforementioned se-
mantics. This time, we define ready simulation relation which is a simulation
that satisfies the following additional condition: pSq ⇒ I(p) = I(q). Processes
p and q are ready simulation equivalent, notation p =RS q iff there exists a ready
simulation S with pSq and a ready simulation R with qRp.

Bisimulation. The finest of all known ”useful” or ”sensible” process equiva-
lences. We say that R is a bisimulation relation iff:
pRq ∧ p a→ p′ then ∃q′ : q a→ q′ ∧ p′Rq′ and
pRq ∧ q a→ q′ then ∃p′ : p a→ p′ ∧ p′Rq′.

Processes p and q are bisimilar, notation p↔q, iff there exists a bisimulation
relation R such that pRq. In this paper we will consider all bisimilar processes
undistinguishable.

5

Definition (Properties of processes)
A process p is:
- well-founded if there is no infinite execution trace starting with p,
- finitely branching if for all r reachable from p the set {q | ∃a∈Act r

a→ q} is
finite,
- regular if p is finitely branching and there are finitely many bisimilar states
reachable from p which can be distinguished modulo bisimulation,
- computable if p is finitely branching and there exists an algorithm that com-
putes for every state q reachable from p its complete set of outgoing transitions.

Assume from now on that all processes that we consider are finitely branch-
ing, unless explicitly stated otherwise.

1.2 Processes as terms and structural operational semantics

We will use the model common for all process algebras where processes are
represented as terms over some signature.

Definition (Signature, variables and terms)
Assume a signature Σ which is a finite set such that with every f ∈ Σ has been
associated a value ar(f) ∈ N, which is the arity of f . If ar(f) = 0 then we will
call f a constant. Assume further a countably infinite set of variables Var. The
set T(Σ) of terms over Σ is defined inductively:
(1) x ∈ T(Σ) for every x ∈ V ar,
(2) If f ∈ Σ and t1, ..., tar(f) are terms then f(t1, ..., tar(f)) ∈ T(Σ).

A term is closed if it does not contain any variables. The set of all closed
terms over Σ is denoted T (Σ). A term in which all variables belong to a vector
of variables ~x is denoted C[~x].

Definition (Substitution)
A substitution is a function σ : V ar → T(Σ). If σ(V ar) ⊆ T (Σ) then σ is called
a closed substitution. Substitution extends to transitions and any syntactic con-
structs containing variables in a natural way.

We will work in the setting of labelled transition systems of the form (T(Σ),→)
for some signature Σ of operators on processes. These operators are defined
using structural operational semantics with transition system specifications.

Definition (Transition rule / transition system specification (TSS))
A transition rule over Σ is an inference rule of the form:

H

t
a→t′

where H is a (possibly empty) set of literals called premises and the positive
literal t a→ t′ is called the conclusion. A transition system specification (TSS)

6

is a set of transition rules. A transition relation → generated by a TSS T con-
tains all rules t a→ t′ such that t and t′ are closed terms and there is a rule
H
α and a closed substitution σ such that for all positive literals α in σ(H), α
is generated by T and for all negative literals β in σ(H), β is not generated by T.

We will restrict ourselves to an important and widely used class of GSOS rules
and TSSs. A transition relation generated by a GSOS system has a nice sanity
property: it exists and is always unique, therefore I will not present more ad-
vanced tools to obtain a transition, like a well-supported proof.

Definition (GSOS rule / TSS)
A transition rule is in GSOS format if it is in the form:⋃l

i=1{xi

aij→yij |1≤j≤mi} ∪
⋃l

i=1{xi

bik
6→|1≤k≤ni}

f(x1,...,xl)
c→C[~x,~y]

Where for X = {xi} and Y = {yij} we have X,Y ⊆ V ar and X ∩ Y = ∅,
and aij , bik ∈ Act. If mi > 0 then we say that the rule tests its i-th argument
positively. A transition system specification is in GSOS format if all its rules
are and there are finitely many of them.

LTSs generated by GSOS systems are also finitely branching and computable.
More information about this format can be found in [3] and [11]. GSOS stands
for Structural Operational Semantics with Guarded recursion ([11]).

1.3 FINTREE and other operators

Now we are ready to define the most basic process operators. The simple al-
gebra FINTREE consists of three operators using which we can generate all
processes which represented as graphs are finite DAGS. These operators are:

• action prefix a for all a ∈ Act, a unary operator which represents execution
of a single action followed by the rest of a process; for a process p, ap is a
process that first executes a and afterwards proceeds with p. This operator
makes the process tree grow one level deeper. Action prefixes are defined
with the following rule scheme, one rule for each a ∈ Act:

ax
a→x

• alternative composition (choice operator) +, a binary operator which rep-
resents a choice between two processes and a subsequent execution of one
of them. If p and q are processes, then p + q is a process that executes
either p or q. Below the alternative composition is defined with two GSOS
rules:

x
a→x′

x+y a→x′
y

a→y′

x+y a→y′

7

• a constant 0 which represents a process that cannot execute any action.
We will use a as an abbreviation for a0 for each a ∈ Act. There are no
rules for 0.

We will also use a notation Σi∈Iti for a finite set of indexes I = {i1, . . . , in} to
represent a choice ti1 + · · ·+ tin . For I = ∅, we define Σi∈∅ = 0.

Apart from FINTREE, I will now define two other important operators. The
first one, parallel composition ||, is a crucial operator in process algebra. For two
processes p and q, p||q denotes a process that can execute p and q in parallel,
which means that it can execute any possible valid interleaving scheme for p
and q.

x
a→x′

x||y a→x′||y
y

a→y′

x||y a→x||y′

Another example of process operators is a family of one-step encapsulation op-
erators ∂1

B that were used in [2] to obtain a complete axiomatisation for bisim-
ulation equivalence (this issue will be covered in Chapter 3). Process ∂1

B(p),
where B ⊆ Act, behaves like p except that in the first step it cannot take any
action from the set B. Rules for ∂1

B are, for any a 6∈ B:

x
a→x′

∂1
B(x) a→x′

1.4 Axiomatisation of the basic operators

Up to this point we have specified how to define process operators with structural
operational semantics and also several notions of equality between processes.
The heart of process algebra is another approach: defining operators with ax-
ioms and deriving equality between process terms using equational reasoning.
Below, I will present axiomatisations of FINTREE operators for all basic equiv-
alences that will be dealt with in this paper. Axioms for bisimulation are also
valid in other equivalences and are included in their axiomatisation. Proofs of
the following theorems can be found in [15] (and [9] for ready simulation).

Theorem 1.1 The following four equations are a sound and complete axioma-
tisation of FINTREE operators for bisimulation equivalence.

(A1) (x+ y) + z = x+ (y + z)
(A2) x+ y = y + x
(A3) x+ x = x
(A4) x+ 0 = x

Theorem 1.2 Sound and complete axiomatisations for FINTREE operators
with respect to some basic process equivalences are presented below. For each

8

of the equivalences, its axiomatisation contains axioms A1 - A4 and one or two
equations given in the table. Equivalences marked with ∗ contain conditional
equations that use an I() operator which, given a process, returns the set of its
initials.

trace a(x+ y) = ax+ ay
completed trace a(bx+ u) + a(cy + v) = a(bx+ cy + u+ v)
failures a(bx+ u) + a(by + v) = a(bx+ by + u) + a(by + v)

ax+ a(y + z) = ax+ a(x+ y) + a(y + z)
readiness a(bx+ u) + a(by + v) = a(bx+ by + u) + a(by + v)
failure trace∗ I(x) = I(y) ⇒ ax+ ay = a(x+ y)

ax+ ay = ax+ ay + a(x+ y)
ready trace∗ I(x) = I(y) ⇒ ax+ ay = a(x+ y)
simulation a(x+ y) = a(x+ y) + ay
ready simulation a(x+ by + bz) + a(x+ by) = a(x+ by + bz)

1.5 Modal characterizations of equivalences

An important and very useful tool in the analysis of process equivalences and
their connections with TSS formats is the modal characterization of process
equivalences. In general, we define a set of modal formulas (language) L which
represents properties of a process we are interested in. For each formula ϕ ∈ L
we define its semantics with a satisfaction relation |=. We define a corresponding
process equivalence ∼L by:

p ∼L q iff {ϕ ∈ L | p |= ϕ} = {ϕ ∈ L | q |= ϕ}

Among modal characterizations the language and sublanguages of Hennessy-
Milner Logic are particularly influential and useful. The original language was
established by Hennesy and Milner in [16]. Further in [17] they proved that
finitely branching processes are bisimilar if and only if they satisfy the same
set of HML formulas. Modal characterizations of other basic equivalences with
subsets of Hennesy-Milner logic have been presented in [15].

Definition (HML formulas (potential observations))
The set O of finite modal observations (HML formulas) is defined inductively
by:
- > ∈ O
- aϕ ∈ O if ϕ ∈ O and a ∈ Act
- ∀i∈Iϕi ∈ O if ϕi ∈ O where I is a finite set
- ¬ϕ ∈ O if ϕ ∈ O

The set of infinite HML formulas O∞ contains all the above formulas as well
as infinite conjunctions:
- O ⊂ O∞

- ∀i∈Iϕi ∈ O∞ if ϕi ∈ O∞ where I is a set

9

The meaning of HML formulas is given by the following satisfaction relation.

Definition (Satisfaction relation)
Suppose we have a labelled transition system (P,→). A satisfaction relation
|=⊆ P ×O is defined inductively by:
- p |= >
- p |= aϕ if ∃q : p a→ q ∧ q |= ϕ
- p |= ∀i∈Iϕi if p |= ϕi for all i ∈ I
- p |= ¬ϕ if p 6|= ϕ
This definition is valid for O∞ as well.

Each HML formula represents some characteristic of a process behaviour. Fini-
tary HML formulas (O) in particular provide information about process be-
haviour up to a certain depth. This fact will be formally expressed and proved
in Chapter 2. We can define depth of a formula ϕ ∈ O in a natural way.

Definition (Depth of a HML formula)
For all ϕ ∈ O we define d(ϕ) inductively:
- d(>) = 0 - d(aϕ) = d(ϕ) + 1
- d(∀i∈Iϕi) = maxi∈I{d(ϕi)} - d(¬ϕ) = d(ϕ)

We will work with equivalences induced by sublanguages of O. The follow-
ing definitions provide a general scheme that will be used throughout the paper.

Definition (N -observations, equivalence defined by a modal language)
For each language ON ⊆ O and process p we define a set of N -observations of
p:

ON (p) := {ϕ ∈ ON | p |= ϕ}.

The sets of infinite N -observations O∞
N (p) are defined analogously. For each

ON ⊆ O a process equivalence =N is defined as:

p =N q iff ON (p) = ON (q)

What remains now is to define the subsets (sublanguages) of O which would
correspond to the common process equivalences. The languages presented be-
low come from [10] and are equal or in some cases slightly modified versions of
those from [15].

Definition (Sublanguages of O)
Sublanguages of O that correspond to basic process equivalences are presented
below. We assume that in all the following formulas the sets I and J are finite.

- trace observations:
OT ϕ ::= > | aϕ′(ϕ′ ∈ OT)

10

- completed trace obervations:
OCT ϕ ::= > | aϕ′(ϕ′ ∈ OCT) | ∀a∈Act¬a>
- failures observations:
OF ϕ ::= > | aϕ′(ϕ′ ∈ OF) | ∀i∈I¬ai>
- readiness observations:
OR ϕ ::= > | aϕ′(ϕ′ ∈ OR) | ∀i∈I¬ai> ∧ ∀j∈Jbj>
- failure trace observations:
OFT ϕ ::= > | aϕ′(ϕ′ ∈ OFT) | ∀i∈I¬ai> ∧ ϕ′(ϕ′ ∈ OFT)
- ready trace observations:
ORT ϕ ::= > | aϕ′(ϕ′ ∈ ORT) | ∀i∈I¬ai> ∧ ∀j∈Jbj> ∧ ϕ′(ϕ′ ∈ ORT)
- simulation observations:
OS ϕ ::= > | aϕ′(ϕ′ ∈ OS) | ∀i∈Iϕi(ϕi ∈ OS)
- ready simulation observations:
ORS ϕ ::= > | aϕ′(ϕ′ ∈ ORS) | ¬a> | ∀i∈Iϕi(ϕi ∈ ORS)
- bisimulation observations:
OB ϕ ::= > | aϕ′(ϕ′ ∈ OB) | ∀i∈Iϕi(ϕi ∈ OB) | ¬ϕ′(ϕ′ ∈ OB)

The following theorem states that the equivalences induced by the aforemen-
tioned subsets of infinite HML formulas coincide with the corresponding process
equivalences. The proof can be found in [15].

Theorem 1.3 For N ∈ {T,CT, F,R, FT,RT, S,RS,B}, p =N q if and only
if O∞

N (p) = O∞
N (q).

In this paper I will always use the characterizations with finite HML formulas.
In order to justify the use of ON rather that O∞

N while reasoning about the
corresponding process equivalence =N , I will now prove the counterpart of the
above theorem in the setting of finitely branching processes. I could refer to
the existing theorems from [15], however van Glabbeek presented there proofs
for each equivalence separately. I would like to establish a general condition
so that a given equivalence defined with a subset O∞

N of O∞ that satisfies this
condition is completely determined by its finite formulas ON . As it turns out,
it only suffices to make sure that if we take a ϕ ∈ O∞

N and replace an infinite
conjunction at some position in ϕ with a finite one containing an arbitrary finite
subset of formulas from the original conjunction, the resulting formula belongs
to the language O∞

N as well.
I will use the following notions (position in a formula etc.) which are similar

to those from the term rewriting theory. The definitions below are based on [4]
and adapted to modal formulas.

Definition (Position in a HML formula, prefix order, subterm, replacement)
1. The set of positions of a formula ϕ ∈ O∞ is a set Pos(ϕ) of words that

may contain elements from Act, {¬} and I for all I such that ∀i∈Iϕi is a sub-
formula of ϕ. Pos(ϕ) is defined inductively as:
- ϕ = > ⇒ Pos(ϕ) = {ε}

11

- ϕ = aψ ⇒ Pos(ϕ) = {ε} ∪ {ap|p ∈ Pos(ψ)}
- ϕ = ∀i∈Iϕi ⇒ Pos(ϕ) = {ε} ∪

⋃
i∈I

{ip|p ∈ Pos(ϕi)}

- ϕ = ¬ψ ⇒ Pos(ϕ) = {ε} ∪ {¬p|p ∈ Pos(ψ)}
2. Furthermore we define a prefix order on positions: p ≤ p′ if there exists

p′′ such that p = p′p′′.
3. For a formula ϕ ∈ O∞ and position p ∈ Pos(ϕ) the subformula of ϕ at

position p, notation ϕ|p is defined inductively:
ϕ|ε = ϕ (aψ)|ap′ = ψ|p′ (∀i∈Iϕi)|ip′ = ϕi|p′ (¬ϕ)|¬p′ = ϕ|p′

4. Finally, for formulas ϕ,ψ ∈ O∞ and a position p ∈ Pos(ϕ) we define the
replacement of the subformula of ϕ at position p by ψ, notation ϕ[ψ]p as:
- ϕ[ψ]ε = ψ
- (aϕ)[ψ]ap′ = aϕ[ψ]p′

- (∀j∈Jϕj)[ψ]ip′ = ∀j∈J ϕ̄i where ϕ̄i = ϕi[ψ]p′ and ϕ̄j = ϕj for j 6= i
- (¬ϕ)[ψ]¬p′ = ¬ϕ[ψ]p′

Lemma 1.4 Let ϕ ∈ O∞ be a formula such that ϕ|p = ∀i∈Iϕi for some
set of indexes I. Let us define formulas ϕp(J) as:

ϕp(J) = ϕ[∀i∈Jϕi]p for J ⊆FIN I

1. If p contains an even number of ”¬”, then

q |= ϕ⇔ ∀J⊆F IN I q |= ϕp(J)

2. If p contains an odd number of ”¬”, then q |= ϕ implies that

∃J0⊆F IN I : q |= ϕp(J0) and ϕp(J0) implies ϕ

Proof While proving both statements, I will use the following observations.
Firstly, we may assume that there are no two subsequent indexes in any position
p, because any formula of the form ∀i∈Iϕi, where some ϕi is again a conjunction,
can be replaced by an equivalent ”normal form” ∀j∈Jϕj where ϕj are of the form
aϕ′j or >.

Another observation is that if p is a position in a formula ϕ that does not
contain negation symbols, such a formula can be ”unfolded” with respect to p.
Namely, suppose that p contains actions a1, . . . , an (n ∈ N), precisely in this
order, possibly interleaved with indexes. There exist formulas ψ0, . . . , ψn such
that q |= ϕ if and only if there exist states q0, q1, . . . , qn such that q = q0 and
qk |= ψk (k ∈ {0, 1, . . . , n}) and qn |= ϕ|p. The formulas ψk for k ∈ {0, 1, . . . , n}
are constructed as follows: if the next symbol after ak (or the initial symbol for
k=0) is ak+1 or k = n and an is the last symbol in p, then ψk = >. Otherwise the
symbol after ak is some index j, so at the position-prefix of p that ends with ak

we have a conjunction of the form ∀i∈Iϕi. In such case we take ψk = ∀i∈I\{j}ϕi.
A simple and important fact is that if make a substitution at position p with
some formula γ, the values ψk in the unfolding of ϕ[γ]p remain unchanged.

1. We will proceed with induction on the number of ¬ symbols in p. In the

12

base case there are none of them, therefore p is a word over Act ∪ I1 ∪ · · · ∪ Is
for some sets of indexes I1, . . . , Is. Observe that in this case q |= ϕ if and
only if there exist processes q0, . . . , qn with q = q0 and n ≥ 0 and certain
formulas depending on ϕ: ψ0, . . . , ψn ∈ O∞ (possibly equal to >) such that
q0

a1→ q1
a2→ . . .

an→ qn and qi |= ψn for i = 0, . . . , n and moreover qn |= ϕ|p,
ϕ|p = ∀i∈Iϕi. If qn |= ∀i∈Iϕi then it is immediate that for all J ⊆FIN I
qn |= ∀i∈Jϕi and therefore q |= ϕp(J). Suppose now that q |= ϕp(J) for
all J ⊆FIN I. Then for each J there exists a corresponding chain of states,
transitions and formulas qJ

0
a1→ qJ

1
a2→ · · · an→ qJ

n with q = qJ
0 , qJ

i |= ψi for
i ≤ n and qJ

n |= ∀i∈Jϕi. Since p is finitely branching, the set {qJ
n |J ⊆FIN I} is

finite. Let us denote elements of this set with q1, . . . , qm. Suppose now, towards
contradiction, that none of qi satisfies ∀i∈Iϕi. Then for all j ∈ {1, . . . ,m}
qj 6|= ϕij

for some ij ∈ I. But then if we take J0 = {i1, . . . , im}, qj 6|= ∀i∈J0ϕi

for all j ∈ {1, . . . ,m}, which is a contradiction. Thus qj |= ∀i∈Iϕi for some j
and hence q |= ϕ.

Assume now that if ψ|p = ∀i∈Iψi and p contains 2K ”¬” symbols, then
q |= ψ ⇔ (∀J ⊆FIN I q |= ψp(J)). Take ϕ with ϕ|p = ∀i∈Iϕi where p contains
2K + 2 ”¬” symbols. The case where first the two positions of p are occupied
by negations is trivial, let us assume that it is not the case. Observe first that
q |= ϕ is equivalent to the statement:
(*) ”there exists a chain of transitions and actions q0

a1→ q1
a2→ . . .

an→ qn and
corresponding formulas ψ0, . . . , ψn with qi |= ψi such that for every chain qn

an+1→
qn+1 · · ·

an+k→ qn+k with qi |= ψi for some ϕ-dependent ψi qn+k 6|= ϕ̄ where
ϕ̄ = ϕ|p′ for some p′ containing two ¬ symbols and ending with a ¬ symbol”

Suppose that q |= ϕ and fix such a chain. We have:

(**) q |= ϕp(J) ⇔ qn+k |= ϕp′′(J)

where p′′ is a position such that p = p′p′′ (this is because the chain satisfies
all the other necessary subformulas ψi). Since qn+k |= ϕ̄, from the induction
hypothesis we obtain ∀J ⊆FIN I qn+k |= ϕ̄p′′(J), and according to (**) we
obtain ∀J ⊆FIN I q |= ϕp(J). The proof in the other direction uses the fact
that q is finitely branching and there are only finite number of possible qJ

n states
for each ϕp(J). A slightly modified reasoning from the base case proves that
in one of these states for each ”appropriate” path (with trace a1...an+k where
intermediate states satisfy ψi) that leads to qn+k we have qn+k |= ϕ̄p′′(J). From
the induction hypothesis we obtain qn+k |= ϕ̄ and deduce that p |= ϕ.

2. Now consider the case when p contains an odd number of ”¬” symbols.
We will use the first part of the lemma that has already been proven. Let us
consider a position p′ < p such that the first ¬ symbol appears in p just after
p′ (so (p′¬) ≤ p). The fact that q |= ϕ is then equivalent to the existence of a
chain of states and transitions q = q0

a1→ q1
a2→ . . .

an→ qn with qi |= ψi for some ψi

where i ≤ n and qn 6|= ϕ̄ where ϕ̄ = ϕ|p′¬. Suppose then that p |= ϕ and fix such
a chain (a1, q1), . . . , (an, qn). Observe that for a position p′′ such that p = p′¬p′′
we have ϕ̄|p′′ = ϕ|p = ∀i∈Iϕi and p′′ contains an even number of ¬ symbols.
According to the first part of the lemma, qn |= ϕ̄ ⇔ ∀J ⊆FIN I qn |= ϕ̄p′′(J)

13

which is equivalent to qn 6|= ϕ̄ ⇔ ∃J ⊆FIN I qn 6|= ϕ̄p′′(J). Thus there exists
J0 ⊆FIN I such that qn |= ϕ̄p′′(J0), from which we deduce that q |= ϕp(J0).

Now take any q′ such that q′ |= ϕp(J0). As before there exists a correspond-
ing chain q′ = q′0

a1→ q′1
a2→ . . .

an→ q′n such that q′i |= ψi and q′n 6|= ϕ̄p′′(J0) where
ϕ̄ = ϕ|p′¬. Since q′n 6|= ϕ̄p′′(J0), q′n 6|= ϕ̄ and thus q′ |= ϕ.

In the following lemma I will use structural induction on the complexity of
ϕ ∈ O∞. It is feasible since HML formulas are defined recursively. I will use
the term proper subformula of ϕ ∈ O∞ to distinguish formulas that are used
directly in the definition of ϕ. So for example if ϕ = ∀n∈Nϕn, then ϕi for any
i ∈ N is a proper subformula of ϕ whereas ϕ1 ∧ ϕ2 ∧ ϕ3 is not. In fact, ψ is a
proper subformula of ϕ if ψ = ϕ|p for some p 6= ε.

Lemma 1.5 Consider a partial order ≺∈ O∞ × O∞ defined as: ϕ̄ ≺ ϕ if
either:
1. ϕ|p = ∀i∈Iϕi such that I is infinite and p is a minimal position with this
property and ϕ̄ = ϕ[∀i∈Jϕi]p where J is a finite subset of I
2. ∃ψ : ϕ̄ ≺ ψ ∧ ψ ≺ ϕ (transitive closure)
For such partial order there is no infinite descending chain
ϕ1 � ϕ2 � . . . ϕn �

Proof We will proceed with structural induction on ϕ and prove that there
is no infinite descending chain starting with ϕ for all ϕ ∈ O∞. Base case
(ϕ = >) is immediate. Suppose that for all proper subformulas of ϕ the lemma
holds. Consider the following cases:
- ϕ = aϕ′ or ϕ = ¬ϕ′. Observe that if aψ1 � ψ then ψ = aψ2 for some ψ2 and
ψ1 � ψ2. A similar fact holds if we replace a with ¬. Therefore, if there was
an infinite descending chain aϕ′ = aϕ′0 � aϕ′1 � · · · � aϕ′n � . . . then there
would have to be a corresponding chain ϕ′ = ϕ′0 � ϕ′1 � · · · � ϕ′n � . . . which
contradicts the induction hypothesis.
- ϕ = ∀i∈Iϕi. Suppose towards contradiction that there exists infinite descend-
ing chain starting with ϕ = ∀i∈Iϕi. If I is infinite, then for some J ⊆FIN I
∀i∈Jϕi is a successor of ϕ in such a chain. Thus in any case there is an infinite
descending chain containing a finite conjunction of the form ∀i∈Jϕi where for
all i ∈ J there is no such chain starting with ϕi. On the other hand, a ”lesser”
formula (with respect to ≺) is obtained by replacing an infinite conjunction
with a finite one at some minimal position where it occurs, so in the infinite
descending chain starting with ∀i∈Jϕi these replacements take place at one of
the ϕi formulas and its descendants. So for at least one i ∈ J there must be an
infintite descending chain ϕi = ϕ1

i � ϕ2
i � . . . ϕn

i � . . . , a contradiction with
the induction hypothesis.

Theorem 1.6 Suppose we have a sublanguage of all infinite HML formulas
O∞

N ⊆ O∞ satisfying:

14

(*) (ϕ ∈ O∞
N ∧ (ϕ|p = ∀i∈Iϕi)) ⇒ ∀J⊆F IN I ϕ[∀i∈Jϕi]p ∈ O∞

N

Then for all finitely branching processes the corresponding process equivalence is
completely determined by finite HML formulas, namely if q1 and q2 are finitely
branching then:

ON (q1) = ON (q2) ⇒ O∞
N (q1) = O∞

N (q2)

Proof Take two finitely branching processes q1 and q2 such that ON (q1) =
ON (q2). We proceed with transfinite induction w.r.t. ≺. The base case is
trivial since the minimal elements are precisely finite HML formulas. Suppose
that for all ψ ≺ ϕ we have q1 |= ψ ⇔ q2 |= ψ. Now let p be a minimal position
such that ϕ|p = ∀i∈Iϕi for an infinite set I. There are two possibilities:
1. If p contains an even number of ”¬” symbols, then:

q1 |= ϕ⇔ ∀J⊆F IN I q1 |= ϕp(J) (Lemma 1.4)
⇔ ∀J⊆F IN I q2 |= ϕp(J) (ϕp(J) ≺ ϕ + induction hypothesis)
⇔ q2 |= ϕ (Lemma 1.4)

2. Otherwise, suppose that p contains an odd number of ”¬” symbols. I will
prove that q1 |= ϕ ⇒ q2 |= ϕ, the proof in other direction is symmetric. Ac-
cording to Lemma 1.4 there exists a witness formula ϕp(J0) for J0 ⊆FIN I such
that q1 |= ϕp(J0) and satisfying ϕp(J0) implies satisfying ϕ. Since ϕp(J0) ≺ ϕ,
from the induction hypothesis we obtain q2 |= ϕp(J0) and thus q2 |= ϕ.

Corollary 1.7 For N ∈ {T,CT, F,R, FT,RT, S,RS,B} and finitely branching
processes p and q, p =N q if and only if ON (p) = ON (q).

Proof Observe first that for N ∈ {T,CT} we have O∞
N = ON (in case of

completed trace we use the fact that Act is finite). For other equivalences it is
easy to check that the sets O∞

N where N ∈ {F,R, FT,RT, S,RS,B} meet the
requirements of Theorem 1.6 and thus ON (q1) = ON (q2) ⇔ O∞

N (q1) = O∞
N (q2)

(the ”⇐” implication is obvious since ON (q) ⊆ O∞
N (q) for all q ∈ P).

In order to show that an arbitrary equivalence =N definable with infinite modal
characterizations is not necessarily determined by finite HML formulas, I will
now present an equivalence that does not satisfy the requirements of Theorem
1.3.

Counterexample Let us define a set of infinite modal HML formulas:

O∞
N ϕ ::= > | aϕ′(ϕ′ ∈ O∞

N) | ∀σ∈Sσ> where S ⊂ Act∗ ∧ |S| = ∞

Observe that this set violates condition (*) of Thoerem 1.6 . Let us define
processes P = aB + aC and Q = aD, where B = aB + b, C = aC + c and
D = aD+ b+ c. It is not difficult to check that P and Q satisfy the same set of
finite HML formulas from ON . However, P 6=N Q since a∀n∈N(anb>∧ anc>) ∈
O∞

N (Q) \ O∞
N (P).

15

Chapter 2

Approximation Induction Principle

While considering infinite processes, we encounter the following problem.
Suppose we have a sound and complete axiomatisation for a given equivalence
=N that allows us to equate each pair of =N -equivalent finite processes. We
are still unable to do the same with terms representing processes that have an
infinite execution path. Moreover, for example in case of bisimulation, it is not
possible to have a ”standard” finite complete axiomatisation in which we could
equate all pairs of bisimilar processes over a GSOS-defined signature. We need
to employ a more powerful infinitary conditional equation, namely the Approx-
imation Induction Principle (AIP), introduced by Baeten, Bergstra and Klop in
[5]. It states that if two processes are equivalent up to any finite depth, then
they are equivalent.

2.1 AIP in HML-definable equivalences

I will now give formal definitions concerning AIP. First let us define projec-
tion operators πn, which, given a process, simulate its behaviour up to n steps
and then terminate.

Definition (Projection operators)
For each natural number n we define a projection operator πn. The behaviour of
an application of the projection operator to a process is given by the following
rule scheme:

x
a→x′

πn+1(x)
a→πn(x′)

For example: π2(abcd + defg + cd) = ab + de + cd. For each n ∈ N a finite
complete axiomatisation for πn exists ([2],[7]):

πn(x+ y) = πn(x) + πn(y)
πn+1(ax) = aπn(x)

πn(0) = 0
π0(x) = 0

At this point we should discuss one subtlety. If we used these equations to
axiomatize a set of operators containing all the projections, we would obtain
an infinite axiomatisation. However, this obstacle can be removed if we mimic
each of the projection operators πn with a binary operation / where the first
parameter is the process from which we take the n-th projection and the second
one works as an ”hourglass”, for example πn(x) = x/bn for some b ∈ Act. The
details as well as a finite axiomatisation of the / operator can be found in [2].
Thus we can safely assume that there exists a finite complete axiomatisation of

16

the projection operators.
With the projection operators defined, we can now phrase the basic version

of the Approximation Induction Principle:

Definition (Approximation Induction Principle - AIP)
An Approximation Induction Principle is the following assumption:

(AIP) If πn(x) = πn(y) for all n ∈ N , then x = y.

Now suppose the setting as mentioned in the beginning. We have an axioma-
tisation for a given equivalence in which AIP holds, which is complete for all
terms representing well-founded processes. If we include AIP in this axiomati-
sation, we will obtain a sound and and complete axiom system. What remains
now is to find out for which process equivalences AIP is sound. I will prove
that it is the case for all process equivalences that can be defined using modal
characterizations within O.

The crucial part of the proof is the following lemma which states that if a
finitary modal formula is satisfied by a process p, then it is satisfied by almost all
of its projections. The intuition here is simple: each modal formula is satisfied
by some finite sub-process of p with depth (maximum execution path) equal
to d(ϕ), and from d(ϕ) onward, this sub-process is included in all πn(p) where
n ≥ d(ϕ).

Lemma 2.1 For any process p:

ϕ ∈ O(p) ⇔ ∀n ≥ d(ϕ) ϕ ∈ O(πn(p))

Proof Assume an arbitrary process p. We will proceed with induction on the
size of the formula ϕ.
”⇒”: The base is trivial (ϕ = >). Suppose that for all ϕ: |ϕ| ≤ k, p |= ϕ implies
that ϕ is satisfied by all projections πn(p) where n ≥ d(ϕ). Let ψ ∈ O(p),
|ψ| = k + 1. There are three possible cases:

• ψ = aϕ
Then ∃q: p a→ q ∧ q |= ϕ with ϕ ∈ O(q). From the induction hypothesis
we obtain: ∀n ≥ d(ϕ) ϕ ∈ O(πn(q)). Since πn(p) a→ πn−1(q) for n ≥ 1,
we have: ∀n ≥ d(ϕ)+1 πn(p) |= aϕ, so aϕ ∈ O(πn(p)) for n ≥ d(ϕ)+1 =
d(aϕ).

• ψ = ∀i∈Iϕi

p |= ∀i∈Iϕi ⇔ ∀i∈Ip |= ϕi

With the induction hypothesis, the last statement implies:
∀i ∈ I ∀n ≥ d(ϕi) πn(p) |= ϕi

Therefore:
∀n ≥ maxi∈I{d(ϕi)} ∀i ∈ I πn(p) |= ϕi

But d(∀i∈Iϕi) is equal to maxi∈I{d(ϕi)} from the definition. Hence
∀n ≥ d(∀i∈Iϕi) πn(p) |= ∀i∈Iϕi

17

• ψ = ¬ϕ
We have to consider all the subcases, depending on ϕ:
- ϕ = >: this is impossible (it would mean that p 6|= > which is never
true)
- ϕ = aϕ′: In this case p 6|= aϕ′ which is equivalent to: ∀q : p a→ q q 6|= ϕ′.
If there is no a-transition from p, then obviously each projection πn(p)
satisfies ¬aϕ′. Otherwise, let {qi}i∈I be the set of all qi for which p a→ qi.
Now, from the induction hypothesis we know that for each qi ∀n ≥ d(¬ϕ′)
πn(qi) |= ¬ϕ′ (observe that |¬ϕ′| = k). Therefore ∀n ≥ d(¬ϕ′) + 1
πn(p) 6|= aϕ′ and thus ∀n ≥ d(ϕ) πn(p) |= ¬aϕ′.
- ϕ = ∀i∈Iϕi: This is equivalent to ∃i0 ∈ I : p 6|= ϕi0 ⇔ ∃i0 ∈ I : p |= ¬ϕi0 .
Again, |¬ϕi0 | ≤ k, so we can apply induction hypothesis to obtain: ∀n ≥
d(¬ϕi0): πn(p) |= ¬ϕi0 ⇒ πn(p) 6|= ∀i∈Iϕi ⇔ πn(p) |= ¬∀i∈Iϕi which is
the desired statement.
- ϕ = ¬ϕ′: This is immediate (in this case ψ is equivalent to ϕ′).

”⇐”: The other direction follows immediately from what we have just proven.
Take an arbitrary formula ψ ∈ O and a process p such that ∀n ≥ d(ψ) πn(p) |=
ψ. Suppose towards contradiction that p 6|= ψ. Then p |= ¬ψ and it was
already proven that this implies ∀n ≥ d(¬ψ) πn(p) |= ¬ψ. This contradicts our
assumptions about ψ. Therefore p must satisfy ψ.

Theorem 2.2 Let ON be any subset of the set of all finite observations O and
let ON (p) denote the set {ϕ ∈ ON | p |= ϕ}. For a process equivalence =N

defined by:

p =N q ⇔ ON (p) = ON (q)

the Approximation Induction Principle is sound, namely:

∀n ∈ N πn(p) =N πn(q) ⇒ p =N q

Proof Suppose that ∀n ∈ N πn(p) =N πn(q), which means that ∀n ∈ N
O(πn(p)) = O(πn(q)). We have to prove that ON (p) = ON (q). In fact it suffices
to prove that ON (p) ⊆ ON (q), the proof for the other inclusion is symmetric.
Take any ϕ ∈ O(p). According to the Lemma 2.1, we have ∀n ≥ d(ϕ) ϕ ∈
πn(p) = πn(q). Using the Lemma again we obtain ϕ ∈ ON (q).

The assumption made about the mapping ON could be further relaxed. For a
given process p it can return any set of formulas satisfied by p, provided that
(ϕ ∈ ON (p) and πn(p) |= ϕ) ⇒ ϕ ∈ ON (πn(p)) for any projection of p. An
important consequence of Theorem 2.2 is given below:

Corollary 2.3 AIP is sound with respect to all the basic process equivalences
on finitely branching processes, namely T,CT, F,R, FT,RT, S,RS,B.

18

2.2 Constructive AIP and N-regular processes

AIP in its original version can serve us only as an elegant complementary rule
allowing to obtain a complete axiom system. It is still a purely theoretical
concept. For given arbitrary processes p and q, we cannot effectively compute
whether they are equivalent or not, because we would have to check the equiv-
alence of all their countably infinite projections.

To overcome this obstacle, the notion of constructive AIP (AIPc) was intro-
duced by Mauw in [18] and investigated further by Barros and Hou in [8]. The
constructive version of AIP allows us to decide bisimilarity between two regular
processes by checking only one pair of their projections.

We shall observe first that a regular process can be expressed with linear
process equations. In fact, a process is regular if and only if it is a solution of a
set of linear equations (linear recursive specification) [13].

Definition (Linear recursive specification)
A set of recursive process equations E is a linear recursive specification if its
equations are of the form:

Xi = ai,1X1 + · · ·+ ai,kXk + bi,1 + · · ·+ bi,li

with i ∈ {1, . . . , k} and ai,1, . . . , ai,k, bi,1, . . . , bi,li ∈ A ∪ {0}.

A solution of a recursive equation Xi = ai,1X1 + · · ·+ ai,kXk + bi,1 + · · ·+ bi,li
is unique modulo bisimulation [13] and denoted with < Xi|E > where E is the
linear recursive specification to which the given equality belongs.

Theorem 2.4 Process p is regular if and only if it can be represented by a
linear recursive specification. In other words, there exists a linear recursive
specification E:

Xi = ai,1X1 + · · ·+ ai,kXk + bi,1 + · · ·+ bi,li

such that p↔ < Xi|E > for some i.

Now suppose we have two processes p and q which we know are regular. Ideally,
we would like to have the corresponding linear recursive specifications given for
each of them such that p =< Xi|E1 > and q =< Yj |E2 >. If this is the case, we
can further assume that there is only one set of equations E and p =< Xi|E >
and q =< Yj |E > for some i and j. Barros and Hou [8] have proved that in this
case we only need to check the (n − 1)-th projection where n is the number of
equations in E:

Theorem 2.5 (AIPc). Let E be a linear recursive specification with n vari-
ables and let Xp and Xq be two recursion variables in E, then:

19

πn−1(< Xp|E >) = πn−1(< Xq|E >) ⇒ < Xp|E >=< Xq|E >

With AIPc we obtain a useful tool that allows us to actually compute whether
two processes are bisimilar, provided that we are given the appropriate linear
recursive specification. Barros and Hou also presented a way to obtain such a
specification for all terms over ACP with linear recursion.

I will show that AIPc also holds in case of slightly modified linear recur-
sive specifications, where equations are given with respect to an arbitrary finite
observations-based process equivalence. Firstly, I will define N -regular pro-
cesses, which generalize the class of regular processes.

Definition (N -regular process)
For an equivalence on processes =N based on finite observations ON , a finitely
branching process p is N -regular if the set of its reachable states which are dis-
tinguishable modulo =N is finite.

We will also restrict ourselves to the class of equivalences satisfying certain
sanity conditions. I will refer to them as regular equivalences. Note that the
conditions below have been established so that the subsequent lemma could
hold and perhaps it would be more appropriate to call an equivalence regular
if it is compositional w.r.t. projections and Lemma 2.6 holds for this equivalence.

Definition (Regular equivalence)
Suppose that ON ⊆ O induces an equivalence =N . The equivalence =N is reg-
ular if:
1. (ϕ ∈ ON ∧ (ϕ|p = aψ)) ⇒ ϕ[ψ]p ∈ ON

2. (ϕ ∈ ON ∧ (ϕ|p = ∀i∈Iψi)) ⇒ ϕ[ψi]p ∈ ON

3. (ϕ ∈ ON ∧ (ϕ|p = ¬ψ)) ⇒ ϕ[ψ]p ∈ ON

4. =N is a congruence w.r.t. all projection operators.

Lemma 2.6 Let =N be a regular equivalence. If a process p is N -regular,
then p =N p′ where p′ is a regular process.

Proof Suppose p is N -regular and let Q be the set of all states reachable
from p. Now we create a new labelled transition system with a set of states
Q′ = {[q]=N

| q ∈ Q} and transition defined with: [q]=N

a→ [s]=N
whenever

q
a→ s (so we include all the so-called ”may transitions”). Then [p]=N

∈ Q′

is obviously regular. The fact that ON (p) = ON ([p]=N) can be proved with
induction on the size of a modal formula. I will use [p] as an abbreviation of
[p]=N

. Base case (ϕ = >) is obvious. Suppose that for all ϕ ∈ ON such that
|ϕ| ≤ k we have ϕ ∈ ON (p) ⇔ ϕ ∈ ON ([p]). Take ψ such that |ψ| = k + 1. We
have to consider the following cases:

• ψ = aϕ
”⇒”: We have: aϕ ∈ ON (p). Then there exists a process q: p a→ q and

20

q |= ϕ. By definition of the transition relation on Q′, there is a transition
[p] a→ [q]. From the induction hypothesis [q] |= ϕ, so [p] |= aϕ.
”⇐”: Now aϕ ∈ ON ([p]). Then there exists q such that [p] a→ [q] and
[q] |= ϕ, so from the induction hypothesis q |= ϕ. From [p] a→ [q] it follows
further that there exists some p′ such that p′ =N p and a transition p′ a→ q.
For this p′ we have p′ |= aϕ and since p′ =N p, we obtain aϕ ∈ ON (p).

• ψ = ∀i∈Iϕi

We have: ∀i∈Iϕi ∈ ON (p) ⇔ p |= ∀i∈Iϕi ⇔ ∀i∈Ip |= ϕi

⇔ ∀i∈I [p] |= ϕi (from the induction hypothesis) ⇔ [p] |= ∀i∈Iϕi

• ψ = ¬ϕ
We shall consider three subcases, since ϕ = > is not possible:
- ψ = ¬aϕ′:
”⇒”: We assume that there is no q such that p a→ q and q |= ϕ. We have
to prove that there is also no q′ such that [p] a→ [q′] and [q′] |= ϕ′. Sup-
pose towards a contradiction that there exists such q′. By the induction
hypothesis q′ |= ϕ′. Then there must be a process p′ with p′ =N p and
p′

a→ q′. This implies p′ |= aϕ′ but since p′ =N p we would also have
p |= aϕ′, a contradiction.
”⇐”: Now assume [p] |= ¬aϕ′. Then there is no q such that [p] a→ [q]
and [q] |= ϕ′. Since from the induction hypothesis ([q] |= ϕ′) ⇔ (q |= ϕ′),
there is also no q with p′

a→ q for any p′ such that p′ =N p, so for p in
particular. Thus p 6|= aϕ′, so p |= ¬aϕ′.
- ψ = ¬∀i∈Iϕ

′
i:

For each i |¬ϕi| ≤ k and from the induction hypothesis we have p |=
¬ϕi ⇔ [p] |= ¬ϕi. Thus p |= ¬∀i∈Iϕ

′
i ⇔ ∃i∈Ip 6|= ϕ′i ⇔ ∃i∈I [p] 6|= ϕ′i⇔

[p] |= ¬∀i∈Iϕ
′
i.

- ψ = ¬¬ϕ′: here ψ ≡ ϕ′ with |ϕ′| = k − 1 and we obtain
(p |= ψ = ϕ′) ⇔ ([p] |= ψ = ϕ′) immediately from the induction hypothe-
sis.

For equivalences based on arbitrary subsets of modal observations the converse
does not hold, a process which is N -equivalent to a regular process is not nec-
essarily an N -regular process itself. Take, for instance, a labelled transition
system with only one action a and readiness as a process equivalence. Process
A defined as follows:

A = a.A+A1

An = a.An+1 + an

is readiness equivalent to a process B with B = a.B + a. However, the first
process is not readiness - regular.

21

Theorem 2.7 Let =N be a regular equivalence. Consider a set of equations
E:

Xi =N ai,1X1 + · · ·+ ai,kXk + bi,1 + · · ·+ bi,li

with i ∈ {1, . . . , k} and ai,1, . . . , ai,k, bi,1, . . . , bi,li ∈ A ∪ {0}.

Let p1, . . . , pn and q1, . . . , qn be two solutions for E, namely:

∀i∈{1,...,k} pi =N a1p1 + · · ·+ akpk + b1 + · · ·+ bl and
∀i∈{1,...,k} qi =N a1q1 + · · ·+ akqk + b1 + · · ·+ bl

Then ∀i∈{1,...,k} pi =N qi.

Proof Take an arbitrary i. I will prove with induction on n that ∀n∈N πn(pi) =
πn(qi). Base case (n = 0) is trivial. Now suppose that ∀k≤n πk(pi) = πk(qi).
We have:
πn+1(pi) =N πn+1(ai,1p1 + · · ·+ ai,kpk + bi,1 + · · ·+ bi,li) (congruence w.r.t. πn+1)
=B ai,1πn(p1) + · · ·+ ai,kπn(pk) + bi,1 + · · ·+ bi,li (property of projection)
=N ai,1πn(q1) + · · ·+ ai,kπn(qk) + bi,1 + · · ·+ bi,li (induction hypothesis)
=B πn+1(ai,1q1 + · · ·+ ai,kqk + bi,1 + · · ·+ bi,li) (property of projection)
=N πn+1(qi) (congruence w.r.t. πn+1)

Having proved equality of all projections, now we can apply the AIP theorem
for all finite observations-based equivalences, which yields: pi =N qi.

Theorem 2.8 AIPc is sound for any finite HML observations-based regular pro-
cess equivalence, namely, if we have a linear recursive specification consisting of
k equations modulo =N , and compare two processes from the vector of solutions,
we only need to check (k − 1)-th projection to decide if they are =N -equivalent.

Proof The same reasoning as in the proof of AIPc in [8], with the exception
that we would use =N instead of = which is there implicitly assumed to be
bisimulation equivalence. In fact, it can be any of the equivalences based on
finite observations provided that it is compositional w.r.t. the projections.

Corollary 2.9 Suppose that =N is a regular equivalence. For every pair of N -
regular processes p and q, there exists n ∈ N such that πn(p) =N πn(q) ⇔ p =N q
where =N is an arbitrary equivalence based on finite observations.

Proof Since p and q are N -regular, there exist regular processes p′ and q′

such that p =N p′ and q =N q′. Let Ep′ and Eq′ be linear recursive specifica-
tions such that p′ and q′ respectively are in their vectors of solutions. Suppose
without loss of generality that sets of variables in Ep′ and Eq′ are disjoint. Let

22

E be a linear recursive specification with equations from Ep′ ∪ Eq′ where = is
replaced with =N . From generalized AIPc for arbitrary equivalences it follows
that π|E|−1(p) =N π|E|−1(q) ⇔ p =N q.

2.3 Which equivalences are useful?

So far I have presented several theorems concerning classes of process equiv-
alences satisfying certain conditions. These conditions have mostly been ex-
pressed in terms of modal characterizations (Theorem 1.3, theorems for N -
regular processes). In the definition of a regular equivalence there is also a
requirement that an equivalence should be compositional w.r.t. projection. In
this section I would like to discuss the ”sanity” properties that we usually have
to impose on equivalences that we analyse and the possibility of expressing those
conditions in terms of modal characterizations with HML formulas. Below, four
sanity conditions are given that are used throughout this paper:

1. Equivalence is definable with finite HML formulas.
2. Compositionality w.r.t. FINTREE.
3. Compositionality w.r.t. the projection operators.
4. For each N -regular process p, p =N q where q is a regular process.

I will now discuss sufficient conditions such that four of the above properties
are met:

1. A fairly general sufficient condition has been established in Theorem 1.3.

2. In [15] it has been proved that all basic process equivalences are compo-
sitional w.r.t. FINTREE operators. It might be interesting to give a more
general condition involving properties of a modal characterization.

3. The folllowing lemma states that if two distinguishable processes of depth at
most K are guaranteed to differ on a formula of depth less or equal K then the
equivalence is a congruence w.r.t. projection operators.

Lemma 2.10 Suppose =N is a HML-based process equivalence and let us denote
the maximum length of an execution path of a finite process p with depth(p). If
for all finite processes p 6=N q implies that there is a HML formula ϕ such that
(1) ϕ ∈ (ON (p) \ ON (q)) ∪ (ON (q) \ ON (p)) and
(2) d(ϕ) ≤ max{depth(p), depth(q)} ,
then =N is compositional w.r.t. the projection operators.

Proof Suppose that πn(s) 6= πn(t) for some n ∈ N. Then there exists ϕ ∈
(ON (πn(p)) \ ON (πn(q))) ∪ (ON (πn(q)) \ ON (πn(p))) with depth less than or
equal to n. Without loss of generality suppose that ϕ ∈ ON (πn(p))\ON (πn(q)).
But since depth(ϕ) ≤ n, by applying Lemma 2.1 we obtain ϕ ∈ ON (p) \ON (q).

23

Let me remark at this point that compositionality w.r.t. FINTREE operators
does not necessarily imply compositionality for the projection operators. For
example, for Act = {a, b} and the set of modal formulas:

ON = {>,¬a> ∧ ¬b>, a ∧ ¬an> (n ≥ 2)}

the corresponding process equivalence =N is a congruence w.r.t. FINTREE
operators. However, it is not compositional for any projection operator since
b =N a∞ whereas a ∧ ¬an+1> ∈ ON (πn(a∞) \ ON (πn(b)).

The Corollary below could be proven from the Lemma 2.10 or simply by
observing that projection operators are defined with rules satisfying certan con-
gruence formats given in Chapter 3 (except for completed trace).

Corollary 2.11 For N ∈ {T,CT, F,R, FT,RT, S,RS,B}, =N is compositional
w.r.t. the projection operators.

As for more general and elegant conditions, I will now present a hypothesis that
I suspect is true. It would be a nice challenge to complement what has been
proven in this thesis with a proof of the following statement:

Conjecture An HML-definable equivalence =N is a congruence w.r.t. all the
projection operators if the following properties holds for ON :
(ϕ ∈ ON ∧ (ϕ|p = ∀i∈Iϕi)) ⇒ ∀J⊆F IN I ϕ[∀i∈Jϕi]p ∈ ON

(ϕ ∈ ON ∧ (ϕ|p = ¬ψ)) ⇒ ϕ[ψ]p ∈ ON

4. The conditions in the definition of a regular equivalence are sufficient, but
on the other hand too restrictive. In particular, failures and failure trace equiv-
alences do not satisfy them. A generalization is needed in this case as well.

24

Chapter 3

Axiomatisation strategy for basic
process equivalences

In this chapter I would like to present a problem, as well as its solution, that
has been an inspiration for my research. Suppose we have a process equivalence
=N and an arbitrary GSOS system G, possibly satisfying some additional re-
strictions. We would like to have an algorithm that would generate a sound and
complete axiomatisation for all operators in ΣG modulo =N .

Input: GSOS system G
Output: A sound and (ground) complete axiomatisation for ΣG modulo =N ,
that is, an axiomatisation TG that satisfies, for all closed terms s,t:

TG |= s = t ⇔ s =N t

3.1 Axiomatisation strategy for bisimulation equivalence

The central algorithm (strategy) discussed here is the one presented in [2] for
bisimulation semantics. It has two variants, the basic and alternative strategy.
Strategies for other equivalences that I will discuss later are slight variations
of it with a few axioms added, depending on the equivalence. I will present
briefly the main idea of the algorithm, as much as it is necessary for general
understanding and the forthcoming proofs.

First, let us recall the basic definitions concerning TSS formats used in the
axiomatisation strategy. It is not necessary to digest the exact definitions of
smooth, distinctive and discarding operations, the important thing is how an ar-
bitrary operation that does not satisfy these additional restrictions is expressed
with the ”good” operations in the axiomatisation.

Definition 2. (Smooth GSOS rule / operation)
A GSOS transition rule is smooth if it is in the form:

{xi
ai→yi|i∈I} ∪ {xi

bij

6→|i∈K,1≤j≤ni}
f(x1,...,xl)

c→C[~x,~y]

An operation is smooth if all its rules in the defining TSS are.

Definition 3. (Distinctive operation)
An operation f from a GSOS system is distinctive if:
- it is smooth,
- for each argument i, either all rules for i test i positively or none of them does,
- for each pair of different rules for f there is an argument for which both rules

25

have a positive antecedent, but with a different action.

The alternative strategy uses the notion of discarding operation in order to
introduce an additional peeling law.

Definition 4. (Discarding rule / operation)
A GSOS rule is discarding if:
- it is smooth,
- for no argument i that is tested negatively, xi occurs in the target.
An operation is discarding if all of its rules in the defining TSS are.

Before I will proceed with the description of the axiomatisation, there is one
important property of an axiomatisation that has to be defined. It is crucial in
the completeness proof as well as in analysis of term rewriting properties of the
rulified axiomatisations.

Definition (Head normalizing property)
A term t ∈ T (Σ) is in head normal form if it is of the form Σi∈Iaiti. An ax-
iomatisation T over Σ is head normalizing for t if there exists a Σ-term t′ in
head normal form such that T ` t = t′.

The strategy takes as input an arbitrary TSS G in GSOS format and produces
an axiomatisation T . It proceeds in the following steps:

1. If G does not contain all FINTREE operations, then they are added to
G. Axioms A1 - A4 are included in T .
2. For each non-smooth operation f (if such exists) a new smooth operation fc

with higher arity is introduced so that the following axiom is sound:

f(x1, ..., xar(f)) = fc(x′1, ..., x
′
ar(fc)) with ∀i∃j | x′i = xj

This equation (copying axiom) is included in the axiomatisation.
2a. In the alternative strategy the same kind of axiom is added for each opera-
tion f that is not both smooth and discarding, where fc is a smooth discarding
operation.
3. For each smooth (smooth and discarding in the alternative strategy) but not
distinctive operation f add distinctive (and discarding - alternative strategy)
operations f1, . . . , fn such that for each ~x:

f(~x) =
∑n

i=1 fi(~x)

Functions fi are obtained by simply partitioning the set of transition rules of f .
Each subset from the partition gives rise to a new distinctive function. Thus, f
is equal to the choice between fi. The above equation (distinctifying axiom) is
added to the axiomatisation.
4. Once all the fresh auxiliary operators with the corresponding axioms have
been added to G and the output axiomatisation, axioms for distinctive opera-
tions are added according to the rules specified in [2]. These include:

26

- distributivity laws of the form:
f(x1, . . . , xi+yi, . . . , xar(f)) = f(x1, . . . , xi, . . . , xar(f))+f(x1, . . . , yi, . . . , xar(f))
- action laws (recall section 1.3 and the ∂1

B operator):
f(P1, . . . , Par(f)) = a.C[x1, . . . , xar(f)], where Pi ∈ {∂1

Bi
(xi), ai.xi, xi, 0} for

∅ ⊂ Bi ⊂ Act
- inaction laws:
f(P1, . . . , Par(f)) = 0, where Pi ∈ {ai.xi, bi.xi + yi, xi, 0}.
4a. The alternative strategy introduces the same distributivity and inaction
axioms as above. The action axioms are of the same form except that one-step
encapsulaton is not used, so Pi ∈ {ai.xi, xi, 0}. Furthermore, an additional
peeling law is introduced which takes the form:
f(P1, . . . , bi.xi+yi, . . . , Par(f)) = f(P1, . . . , yi, . . . , Par(f)), where Pj ∈ {aj .xj , xj}

3.2 Completeness and possible extensions

Once an axiomatisation strategy for bisimulation equivalence has been defined,
a natural question is whether we can use this result to obtain complete ax-
iomatisations of other basic process equivalences. Our suspicions are justified
since bisimulation is the finest of all basic process equivalences, and equations
derived from its axiomatisation are valid in other equivalences. In particular,
head normalization is preserved. Moreover, we have complete axiomatisations
of FINTREE operators at our disposal. The following theorem indicates further
conditions that have to be met in order to obtain a complete axiomatisation of
arbitrary operations.

Theorem 3.1 Suppose we have a head normalizing axiomatization T over a
set of operators Σ ∪ FINTREE ∪ {πn}n∈N which is sound for an equivalence
=N . Moreover, T contains a sound and complete axiomatisation of FINTREE
for =N . If
1) =N is a congruence for all operators in Σ ∪ FINTREE ∪ {πn}n∈N, and
2) AIP is sound for =N

then T + AIP is complete for =N .

Proof Let s, t ∈ T (Σ) be closed terms such that s =N t. Since =N is compo-
sitional for each projection πn, we have πn(s) =N πn(t) for each n ∈ N. Take
any n ∈ N. T is head normalizing for all terms, therefore it is easy to notice
that T |= πn(s) = sn and T |= πn(t) = tn where sn, tn ∈ FINTREE. From
the transitivity of =N and soundness of T for =N we obtain sn =N tn. Since T
contains a complete axiomatisation of FINTREE for =N , T |= sn = tn. Hence
T |= πn(s) = sn = tn = πn(t). We have proved that for an arbitrary n ∈ N,
T |= πn(s) = πn(t). Thus T +AIP |= s = t.

Together with the head normalizing property of the presented axiomatisation
and the result from Chapter 2,hich yields soundness of AIP for all basic process
equivalencess, the facts presented above imply that in order to obtain a sound

27

and complete axiomatisation for other basic process we only need now to have a
TSS format that would ensure that the equivalence in question is a congruence
for all the generated operators.

3.3 Congruence formats

In the remainder of this chapter I will give a short introduction of TSS for-
mats for basic process equivalences such that operations generated by TSSs in
these formats respect a given equivalence. The following overview is based on [3]
and [10]. The congruence formats presented there are more general (ntyft/ntyxt
or panth), for our purposes it is enough to consider GSOS and its subformats
(we can always take intersection of GSOS and the most general congruence for-
mat for a given equivalence).

GSOS is a congruence format for bisimulation equivalence and ready sim-
ulation. Its positive variant (without negative premises) generates operations
that respect trace and simulation equivalences. Therefore, GSOS (or positive
GSOS) can be used as an input format while generating axiomatisation for the
aforementioned equivalences. Before descibing more cumbersome formats for
decorated trace semantics, I would like to mention completed trace equivalence,
for which no general congurence format is known and moreover there is almost
no hope to find one. The following example comes from [3].

A unary encapsulation operator ∂B with B ⊆ Act for a given process t be-
haves like t except that it cannot perform any action b ∈ B. It can be defined
with the following rule scheme:

x
a→y (a6∈B)
∂B(x) a→y

Now consider two process terms a(b+c) and ab+ac. Clearly they are completed
trace equivalent. However, since a ∈ CT (∂{c}(ab+ ac)) \CT (∂{c}(a(b+ c))) we
have ∂{c}(a(b + c)) 6=CT ∂{c}(ab + ac). Thus =CT is not compositional w.r.t.
∂{c}, in fact this is true if we can take any nontrivial subset B of Act as a set of
forbidden actions for ∂B . Observe that the predicate in the premise is a simpli-
fied notation denoting a set of rules, each one for different a ∈ Act \B. Perhaps
in an attempt to specify a congruence format for completed trace equivalence,
we would have to use variables ranging over actions rather than actions them-
selves. However, it might be possible as well that no sensible general congruence
format exists for this equivalence.

Bloom, Fokkink and van Glabbeek have obtained congruence formats for
ready trace, failure trace, readiness and failures in [10]. It is another example of
a result obtained with the analysis of modal characterization of processes with
HML formulas. I will now present the congruence formats for decorated trace
equivalences adapted into the setting of GSOS format.

Definifion (Propagation, polling)
An occurrence of a variable in a GSOS rule is propagated if the occurrence is

28

either in the target or in the left-land side of a positive premise whose right-
hand side occurs in the target. An occurrence of a variable in a GSOS rule is
polled if the variable occurs on the left-hand side of a positive premise and is
not propagated (does not occur in the target).

The congruence formats use the notion of a floating variable, which may rep-
resent a running process. To this end we need to introduce a predicate Λ on
arguments of function symbols. The interested reader is referred to [10] for de-
tails underlying these concepts.

Definition (Liquid and frozen arguments / floating variables)
Assume a predicate Λ on arguments of function symbols. If Λ(f, i), then we say
that an argument i of f is liquid (w.r.t Λ), otherwise it is frozen. A variable in
a GSOS rule is Λ-floating if either it occurs as a right-hand side of a positive
premise or it occurs in the source at a Λ-liquid position.

Definition (Decorated trace safe GSOS rules and decorated trace formats)
Assume a predicate Λ on arguments of function symbols. A GSOS rule is:
- Λ-ready trace safe if each Λ-floating variable is propagated at most once, and
at a liquid position,
- Λ-readiness safe it is Λ-ready trace safe and each Λ-floating variable is not
both propagated and polled,
- Λ-failure trace safe if it is Λ-readiness safe and each Λ-floating variable is
polled at most once, at a liquid position in a positive premise.

A TSS is in ready trace, readiness or failure trace format if all its rules are
Λ-ready trace safe, Λ-readiness safe or Λ-failure trace safe respectively for some
predicate Λ.

Theorem 3.2 If a TSS in ready trace/readiness preorder, then the operations
that it defines respect ready race/readiness congruence. If a TSS is in failure
trace format, then its operations respect failure trace and failures equivalence.

In order to adapt the decorated trace formats in our axiomatisation strategy,
we only need to make sure that the operations introduced by copying and dis-
tinctifying axioms are definable with decorated trace rules, provided that the
whole input TSS is in one of the above formats.

Lemma 3.3 Let P = (Σ, R) be a TSS in GSOS format and also in N for-
mat for N ∈ { ready simulation, ready trace, readiness, failure trace }. Then
the TSS P ′ = (Σ′, R′) with Σ ⊂ Σ′ and R ⊂ R′ which contains extra operations
introduced by both strategies from [2] is also in GSOS N format.

Proof. P ′ is obviously in GSOS format. Let f ′ ∈ Σ′ \ Σ be an operation
introduced by one of the strategies. Then f ′ is either used as an auxiliary op-
erator for a distinctifying or a copying axiom.

29

In the first case, the rules for f ′ are a subset of rules for some g ∈ Σ which are
given in N format. Therefore, rules that define f ′ are also in N format.
In the latter case, f ′ is obtained from some f ∈ Σ by introducing extra variables
so that f(x1, ..., xm) = f ′(x′1, ..., x

′
n) where n > m and for each i there exists

j: x′i = xj . The rules for f ′ are obtained by replacing occurrences of the x -
variables by the corresponding x′ - variables. For i 6= j, xi and xj are replaced
by disjoint sets of corresponding x′ki

, x′kj
.

Consider a rule from R′ defining f ′:

⋃
i∈I{x′i

ai→ yi} ∪
⋃

i∈K{x′i
bij

6→}
f ′(x′1, ..., x′n) a→ C[x′, y]

(1)

In both strategies, there is a surjective mapping σ : {1, ..., n} → {1, ...,m} and
a corresponding rule from R of the form:

⋃
i∈σ(I){(xσ(i))

ai→ yi} ∪
⋃

i∈σ(K){xσ(i)

bij

6→}

f(x1, ..., xm) a→ C[σ(x′), y]
(2)

Where σ(x′) denotes the vector xσ(1), ..., xσ(n).

Let us also define Λ(f ′, i) ⇔ Λ(f, σ(i)), so that an argument of the function
f is liquid if and only if the corresponding argument in the f ′ function is also
liquid.

Following are the proofs that the first rule preserves the syntactic restrictions
of the second rule:

1) Ready trace:
Suppose rule 2 is in ready trace format. We have to prove that each Λ-floating
variable has at most one propagated occurrence at a Λ-liquid position.
Let z be a Λ-floating variable. There are two possible cases. First, z can occur
at the right-hand side of a positive premise, so it is one of yi for some i. The
target in rule 1 does not change occurrences of y - variables as compared to the
rule 2, in which it occurred at most once. In the second case z = xi for some
i and it occurs exactly once in the source, at a Λ-liquid position. Therefore
Λ(f, xσ(i)) = Λ(f ′, i) = 1 and xσ(i) has at most one propagated occurrence in
rule 2. We can view the target of rule 2 as the same open term as the target
of rule 1 with variables xi substituted with xσ(i). So if xσ(i) has at most one
occurrence in rule 2, then xi must have at most one occurrence in rule 1 as well.

2) Readiness:
Ready trace format has already been proven. We have to show that no Λ-
floating variable has both propagated and polled occurrences.
If z is a Λ-floating variable that has a polled occurrence, then z = xi for some i

30

Process equivalence Input SOS format
trace positive failure trace GSOS
completed trace -
simulation positive GSOS
failures failure trace GSOS
readiness readiness GSOS
failure trace failure trace GSOS
ready trace ready trace GSOS
ready simulation GSOS
bisimulation GSOS

Figure 1: Formats of TSSs for the axiomatisation strategies

(this is because the rule doesn’t contain any lookahead). Since xσ(i) is also Λ-
floating in rule 2, it doesn’t have a propagated occurrence there. Thus, neither
has xi.

3) Failure trace:
If rule 2 is in failure trace format, then rule 1 is in readiness format. What
remains to prove is that each Λ-floating variable has at most one polled occur-
rence, which must be at a Λ-liquid position in a positive premise. Actually, the
second fact is immediate since the rule is in GSOS format, so the left-hand sides
of premises are single variables.
As before, we derive the desired property from the fact that for a Λ-floating vari-
able xi, xσ(i) is also Λ-floating and therefore has at most one polled occurrence
in rule 2. Since xi cannot have more occurrences than xσ(i), we have proven
that rule 1 is in failure trace format.

Corollary 3.4 For P = (Σ, R) a TSS in GSOS N format for some N ∈ {
ready simulation, ready trace, readiness, failure trace }, there exists an algorithm
(strategy) to produce a sound and complete axiomatisation. It is a variation of
the axiomatisation strategy from [2], which adds to the set of produced axioms a
finite number of specific axioms for each equivalence, according to Theorem 1.2.

31

Chapter 4

Term rewriting properties of the generated
axiomatisations

Term rewriting properties of axiomatisations generated by the alternative strat-
egy from [2] were studied by D.J.B. Bosscher in [12]. He provided a rulified ax-
iomatisation which is a term rewriting system based on the generated axioms,
and also gave a rewriting strategy such that every well-founded term (repre-
senting a well-founded process) is rewritten to a normal form which is unique
modulo associativity and commutativity of +, for all bisimilar process terms.
In this chapter I will try to use this result to obtain term rewriting systems for
other equivalences, normalising and possibly confluent.

4.1 TRS and normalizing strategy for bisimulation

First I will present a summary of the term rewriting system and arewriting
strategy for it which yields normalisation. These have been presented in Boss-
cher’s paper [12].

Definition (Rulified axiomatisation)
Suppose we have an axiomatisation T generated by the alternative strategy for
some GSOS system G. A rulified axiomatisation → consists of the following
rewrite rules:

(1) x+ x→ x
(2) x+ 0 → x
(3) f(x1, . . . , xar(f)) → fc(x′1, . . . , x

′
ar(fc)) for each copying axiom in T

(4) f(x1, . . . , xar(f)) → Σp
i=1fi(x1, . . . , xar(f)) for each distinctifying axiom

in T
(5) f(P1, . . . , Par(f)) → a.C[x1, . . . , xar(f)] where Pi ∈ {ai.xi, xi, 0} for each

action axiom in T
(6) f(x1, . . . , xi + yi, . . . , xar(f)) →

f(x1, . . . , xi . . . , xar(f)) + f(x1, . . . , yi, . . . , xar(f))
for each distributivity axiom in T

(7) f(P1, . . . , Par(f)) → 0 where Pi ∈ {ai.xi, bi.xi+yi, xi, 0} for each inaction
axiom in T

(8) f(P1, . . . , bi.xi + yi, . . . , Par(f)) → f(P1, . . . , yi, . . . , Par(f)) where Pj ∈
{aj .xj , xj} for each peeling axiom in T

(9) f(P1, . . . , bi.xi, . . . , Par(f)) → 0 whenever there exists a rule
f(P1, . . . , bi.xi + yi, . . . , Par(f)) → 0

(10) f(P1, . . . , bi.xi, . . . , Par(f)) → f(P1, . . . , 0, . . . , Par(f)) whenever there
exists a rule
f(P1, . . . , bi.xi + yi, . . . , Par(f)) → f(P1, . . . , yi, . . . , Par(f))

32

The above rewrite rules are mostly directed versions of equations from T . There
are some exceptions, though. Firstly, we do not include the rules for commuta-
tivity and associativity, because the resulting TRS would not be terminating.
Thus the rewriting is done for equivalence classes modulo these two laws for
+. Furthermore, rules (9) and (10) are added to obtain a confluent TRS in
situations when we would need a rule x→ x+ 0 to be able to use the inaction
axiom. For a rulified axiomatisation obtained in this way Bosscher proposed a
rewriting strategy that works as follows:

1. Contract all non-action redexes, repeat this step until no more non-action
redexes are left.
2. Contract the outermost redex surrounded by the least number of action pre-
fixing operations.
3. Repeat the whole procedure from point 1.

Furthermore, he has proved that this strategy is head normalizing and
rewrites each pair of bisimilar well-founded terms to a unique normal form
which consist only of FINTREE operators.

4.2 TRSs for other equivalences and their properties

A simple variation of the original strategy for bisimulation provides us with
a weakly normalising TRS for the other equivalences. Namely, after the strat-
egy given above terminates, producing a normal form which consists only of
FINTREE operations, we introduce a subsequent step depending on the chosen
equivalence =N :

4. Contract the redex according to the rules based on additional one or two
axioms (apart from EA), which are unique for every equivalence =N . The two
rules for FINTREE (x+ x→ x, x+ 0 → x) may also be used. Repeat until no
more redexes are left.

Definition (Rulified axiomatisations for basic process equivalences)
For an equivalence =N where N ∈ {T,CT, F,R, FT,RT, S,RS}, its rulified
axiomatisation →N consists of rules (1) - (10) of → with an addition of the
following one or two rules according to Figure 2.

I will include completed trace equivalence in the considerations, even though
no axiomatisation strategy has been defined for this equivalence. Since it is a
congruence with respect to FINTREE and has a complete axiomatisation for
these basic operators, we can analyse term rewriting properties of the rulified
axioms for FINTREE only.

Having defined the rulified axiomatisations, we would like to know whether
the resulting TRSs will be confluent and terminating. While it is easy to observe
that termination holds for all equivalences, some of the obained TRSs are not

33

Process equivalence Additional rewrite rules
ready simulation a(x+ by + bz) + a(x+ by) →S a(x+ by + bz)
ready trace I(x) = I(y) ⇒ ax+ ay →RT a(x+ y)
failure trace I(x) = I(y) ⇒ ax+ ay →FT a(x+ y),

ax+ ay + a(x+ y) →FT ax+ ay
readiness a(bx+by+u)+a(by+v) →R a(bx+u)+a(by+v)
failures a(bx+by+u)+a(by+v) →F a(bx+u)+a(by+v),

ax+ a(x+ y) + a(y + z) →F ax+ a(y + z)
completed trace a(bx+ u) + a(cy + v) →CT a(bx+ cy + u+ v)
simulation a(x+ y) + ay →S a(x+ y)
trace ax+ ay →T a(x+ y)

Figure 2: Additional rewrite rules for rulified axiomatisations

confluent.
Before I will present the main result of this chapter, I need to make certain

definitions clear. I will call well-founded any term that represents a well-founded
process, and a well-founded TSS will stand for a TSS that generates only well-
founded processes 1 (observe that such processes are bisimilar to process terms
consisting of FINTREE operators only). I will denote equality modulo associa-
tivity and commutativity of + with =AC .

Theorem 4.1 For each equivalence =N where N ∈ {T, S,CT, F,R, FT,RT,RS},
→N is terminating for t ∈ FINTREE.

Proof We can observe that each of the additional rewrite rules decreases the
number of summands at some level, possibly increasing their number at an outer
(higher) level (by level I mean the number of nested action prefixing operations).
However, the number of levels remains constant. Therefore, the summands dis-
appear or are ”pushed” to the outer term. This can’t take forever since the
number of levels is constant.

Corollary 4.2 For each equivalence =N where N ∈ {T, S,CT, F,R, FT,RT,RS},
→N is normalising for a well-founded term t.

Theorem 4.3 The rulified axiomatisations of well-founded GSOS systems are
confluent for trace, completed trace, ready trace and bisimulation equivalence.
In other cases, namely simulation, failures, readiness, failure trace and ready
simulation we obtain a non-confluent term rewriting system.

1In [12] there are notions of syntactic and semantic well-foundedness. In this paper I do
not deal at all with the former and well-founded always means semantically well-founded.

34

Proof Trace. Any strategy leads to construction of a ”trace-normal” term
which is 0 or ∑

i∈I ai.ti

where i 6= j ⇒ ai 6= aj and all ti are in trace-normal form. The set of all such
terms is isomorphic to the set of all prefix trees.

Now, as I have already proven normalisation for well-founded terms, it suf-
fices to show that any two normal forms s and t representing trace equivalent
terms are equal modulo commutativity and associativity of +. I will proceed
with induction on the size of a normal form. The base case when |s| = |t| = 0
is trivial . For larger sizes, we can’t yet assume that s and t have the same size,
so let the induction hypothesis be that if s =T t and max{|s|, |t|} ≤ K then
s =AC t. Take s and t such that max{|s|, |t|} = K+1. We have: t =

∑
i∈I ai.ti

and s =
∑

j∈J aj .sj for some finite sets of indexes I and J .
Now suppose, on the contrary, that s 6=AC t. Since s and t satisfy the same

set of trace formulas and for each a ∈ I(s) = I(t), ai = a and aj = a for exactly
one i and j respectively. So if s and t are different modulo AC, then the differ-
ence must be on some of the terms ti and sj , namely there exist i ∈ I, j ∈ J
such that ai = aj = a and ti 6=AC sj and as a consequence of the induction hy-
pothesis ti 6=T sj . On the other hand, we have OT (s) = OT (t), so in particular
(*) {aϕ | aϕ ∈ OT (s)} = {aϕ | aϕ ∈ OT (t)}.
But since {aϕ | aϕ ∈ OT (s)} = {aϕ | ϕ ∈ OT (si)} and {aϕ | aϕ ∈ OT (t)} =
{aϕ | ϕ ∈ OT (tj)}, we obtain {aϕ | aϕ ∈ OT (s)} 6= {aϕ | aϕ ∈ OT (t)}, contra-
diction to (*).

Completed trace. In this case normal forms are 0 and terms of the form:∑
i∈I ai.ti

where i 6= j ⇒ (ai 6= aj or (ti = 0 and tj 6= 0) or (ti 6= 0 and tj = 0)) and all
ti are in completed trace-normal form.
The proof can be done in the same way as in the case of trace equivalence. The
only difference is that a normal form can now contain two summands with the
same prefix, a.0 and a.t where t 6= 0. We proceed with induction on the size
of formula as before and again deduce that for two completed trace equivalent
terms difference is only possible on the deeper level but there we have completed
trace equivalent terms and the induction hypothesis yields equality modulo AC.

Ready trace. Normal forms are 0 and terms of the form:∑
i∈I ai.ti

where i 6= j ⇒ (ai 6= aj or I(ti) 6= I(tj))
This is a generalization of the previous two normal forms. Again we use induc-
tion on the complexity of a term. Observe first that for each well-founded term
in normal form t, action prefix a and set of initials X, if there is a summand of
t of the form a.ti with I(ti) = X then it is unique. As a consequence, for any

35

other summand a.tj with i 6= j, RT (ti)∩RT (tj) = {>}. Therefore in any term
s such that s =RS t for each summand ai.ti of t there must be a unique corre-
sponding summand a.sj of s such that RT (ti) = RT (sj). We have ti =AC sj

from the induction hypothesis. Therefore for all normal forms s ready trace
equivalent to t we obtain s =AC t.

Bisimulation. Confluence of the rulified axiomatisation →B has already been
proved in [12].

Now I will prove that for other equivalences confluence does not hold.

Simulation: Terms

a(b(c+ d)) + bc
a(b(c+ d))

are both normal forms representing similar terms, thus →S is not confluent.
We could try to overcome this obstacle by involving sequential composition

instead of action prefixing in the rewrite rules. This would allow us to compare
sequences of any arbitrary length. For example, for the two above terms a rule
x; (y+z)+x; y →S x; (y+z) would work (provided that we would define sensible
rules for ;). However, we still face a problem with the choice operator. There
can be an arbitrary number of alternating + and action prefixing/sequential
composition operations in a path to a leaf of a term (in one of the execution
paths of a process). Consider two similar process terms:

b+ a (b+ a(b+ a(. . . (b+ a) . . .)))︸ ︷︷ ︸
(n−1) brackets

b+ a (b+ a(b+ a(. . . (b+ a) . . .)))︸ ︷︷ ︸
(n−1) brackets

+an

I will present a proof sketch and argue that there exists no term rewriting sys-
tem involving action prefixing and/or sequential composition, choice operator
and 0 that would rewrite each of the above terms to a unique form for each
n ∈ N. In a finite set of rules there is a boundary on the number of nested
choice operators in a term (I will call this value a depth), say K. Now suppose
that we have two terms as above with n = K+1. Suppose further that they are
rewritten to a unique form

∑p
i=1 ti with p ≥ 1. We can distinguish two cases;

either there is only one summand ti of depth K + 1 or there are at least two of
them. In the first case the second term would be rewritten to a form with only
one summand of depth K + 1, so the second summand aK+1 would disappear
at some point of the reduction. Let l →S r be the rule applying which we can
rewrite the term

∑p
i=1 t

′
i with two or more summands of depth K +1 to a term

with only one summand of depth K+1 and other possible summands with lower
depth. It is rather easy to see that it cannot be applied at position other than
ε (root position); this is because no term is similar to a term of a lower depth.
Consider the case when l →S r is applied at the root position and let t′i0 be a

36

term of depth K + 1 that would disappear by applying l →S r. Take a leaf of
t′i0 with depth K + 1 an add a term a(a+ b) at the end of it. Call the resulting
term t′′ and consider a term obtained from

∑p
i=1 t

′
i by replacing t′i0 with t′′. Its

depth is K+2 and thus is obviously not similar to our redex
∑p

i=1 t
′
i. However,

this term would be rewritten with l →S r to the same term as the result of
applying l→S r to

∑p
i=1 t

′
i. The same argument can be used in the second case

where the unique normal form would have two or more summands of depthK+1.

Ready simulation: The counterexample is a slightly modified version of the one
that I used in case of simulation. The two following terms are ready simulation
equivalent.

ab+ a(ab+ a(ab+ a(. . . (ab+ aa) . . .)))︸ ︷︷ ︸
(n−1) brackets

ab+ a(ab+ a(ab+ a(. . . (ab+ aa) . . .)))︸ ︷︷ ︸
(n−1) brackets

+an

The reasoning follows the same scheme as in the previous case. In general, two
terms t + s and t are equivalent because ON (s) ⊆ ON (t) (s is a ”redundant”
summand). However, we cannot reduce t+ s to t without the knowledge about
at least K + 1 levels of s because for any position p of t with length less than
K, there exists no q such that t|p =N s|q.

For the remaining equivalences, I will only provide counterexamples for the
rulified axiomatisations defined in this paper, without a general proof that there
cannot exist a confluent TRS.

Readiness and failures: Terms

a(bc+ d) + a(b+ e)
a(b+ d) + a(bc+ e)

are readiness and failure equivalent and both are normal forms for →R and →F .
We can consider a more general form of these terms:

tn+1 = a(bsn + d) + a(b+ e)
sn+1 = a(b+ d) + a(btn + e)

t0 = t′0 = c

Failure trace: Below we have a term in a normal form. The underlined subterm
has all its failure trace modal formulas contained in the other two summands:

a(an + a) + ab+ a(an + b) for n ≥ 1

Therefore, the above term is failure trace equivalent to the following:

a(an + a) + ab

Results of this chapter are summarized in Figure 3.

37

Process equivalence Term rewriting system
trace confluent
completed trace confluent
simulation not confluent /

confluent TRS does not exist
failures not confluent /

no confluent TRS known
readiness not confluent /

no confluent TRS known
failure trace not confluent /

no confluent TRS known
ready trace confluent
ready simulation not confluent /

confluent TRS does not exist
bisimulation confluent

Figure 3: Term rewriting properties of the rulified axiomatisations

38

Bibliography

[1] L. Aceto, Deriving Complete Inference Systems for a Class of GSOS Lan-
guages Generating Regular Behaviours. In (B. Jonsson, J. Parrow eds) Proceed-
ings CONCUR 94, Uppsala, Sweden, Vol. 836 of Lecture Notes in Computer
Science, Springer-Verlag, pp. 449-464 (1994)

[2] L. Aceto, B. Bloom and F. Vaandrager Turning SOS Rules into Equations.
Information and Computation, 111, pp. 1–52 (1994)

[3] L.Aceto, W. Fokkink, C. Verhoef, Structural Operational Semantics. In
(J.A. Bergstra, A. Ponse and S.A. Smolka, eds) Handbook of Process Algebra,
pp. 197-292, Elsevier (February 2001)

[4] F. Baader and T. Nipkov, Term Rewriting and All That. Cambridge Uni-
versity Press (1998)

[5] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, On the consistency of Koomen’s
fair abstraction rule. Theoretical Computer Science 51(1/2), pp. 129-176 (1987)

[6] J.C.M. Baeten, J.A. Bergstra and J.W. Klop, Ready-trace semantics for
concrete process algebra with the priority operator. Computer Journal 30(6),pp.
48-506 (1987)

[7] J.C.M. Baeten and W.P. Weijland, Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press (1990)

[8] A. Barros and T. Hou, A Constructive Version of AIP Revisited. Elec-
tronic report PRG0802, Programming Research Group, University of Amster-
dam (January 2008)

[9] S. Blom, W. Fokkink, S. Nain, On the axiomatizability of Ready Traces,
Ready Simulation and Failure Traces. ICALP’03, Eindhoven, Lecture Notes in
Computer Science 2719, pp. 109-118, Springer (June 2003)

[10] B. Bloom, W.J. Fokkink and R.J. van Glabbeek, Precongruence formats for
decorated trace semantics. ACM Transactions on Computational Logic 5(1):26-
78 (January 2004)

[11] B. Bloom, S. Istrail and A.R. Meyer, Bisimulation can’t be traced. Journal
of the ACM 42(1), pp.232-268 (1995)

[12] D.J.B. Bosscher, Term Rewriting Properties of SOS Axiomatisations. Lec-
ture Notes In Computer Science; Vol. 789 (1994)

39

[13] W. Fokkink, Introduction to Process Algebra. Texts in Theoretical Com-
puter Science, An EATCS Series. Springer (January 2000)

[14] R.J. van Glabbeek, Bounded Nondeterminism and the Approximation In-
duction Principle in Process Algebra. STACS 1987: 336-347

[15] R.J. van Glabbeek, The Linear Time - Branching Time Spectrum I. In
(J.A. Bergstra, A. Ponse and S.A. Smolka, eds) Handbook of Process Algebra,
pp. 3-99, Elsevier (February 2001).

[16] M. Hennessy and R. Milner, On observing nondeterminism and concur-
rency. In (J.W. de Bakker and J. van Leeuwen, eds) Proceedings 7th ICALP,
Noorwijkerhout, LNCS 85, Springer, pp. 299-309 (1980)

[17] M. Hennessy and R. Milner, Algebraic laws for nondeterminism and con-
currency. Journal of the ACM 32(1), pp. 137-161 (1985)

[18] S. Mauw, A constructive version of the approximation induction princi-
ple. Proc. SION Conf. CSN 87, pp. 235-252 (1987)

40

