A Virtual Shared Disk
on Distributed Redundant Storage

Stefan Vijzelaar

February 9, 2010

Abstract

Simulating a shared disk on distributed redundant storage requires a
consistent ordering of disk operations. Consensus on such an ordering is
impossible in asynchronous systems with failing processes. Consistency
can however be achieved without reaching consensus, even when only a
majority of processes is available. This paper shows how to implement a
virtual shared disk, using an appropriate consistency model. Algorithms
are verified using the Spin model checker.

1 Introduction

Storage sharing is an important application of current network technology, rang-
ing from sharing files between computers in a home network to consolidating
storage in an enterprise server environment. These applications can choose from
a variety of hardware and software solutions. Storage can for example be shared
at block level: using host bus adapters attached to shared disks, or network
adapters connected to a storage area network. Storage can also be shared at file
level: using distributed file systems with storage servers, or network file systems
on network attached storage. Storage systems can even be used to complement
each other: shared disk file systems can transform shared block storage into
shared file storage, storage servers of a distributed file system can use shared
disks as backing storage. There are a lot of options to stack, mix and match
storage solutions.

Reliability is a big concern for storage systems, especially when storage is
shared. Sharing storage can increase the impact of data loss, should the storage
system fail. The solution is to introduce redundancy into the system, allowing
for a certain amount of backing storage to fail without jeopardizing integrity.
Redundant arrays of inexpensive disk (RAID) are a prime example: data is
stored on multiple disks and can survive disk failures. However, RAID and
similar techniques are designed to run on a single machine with directly attached
storage. Even when shared block storage is used, a RAID implementation can
only run on a single node at a time. It is not meant to run concurrently. This
still leaves the node as a single point of failure.

A single point of failure can be removed by either using fail-over or making it
redundant. Fail-over implementations let another node take over when a node
fails. The problem then shifts to detecting node failure: in an asynchronous
system it is impossible to distinguish between a slow and a failed node. Hard-
ware solutions exist to ensure that a presumably failed node stays down, for
example by cutting its power, but these solutions add complexity to the system.
Redundant implementations make sure no single point of failure exists. The
problem then becomes one of coordination between participating nodes, which
might prove difficult since deterministic consensus in an asynchronous system is
impossible when nodes can fail. Hardware solutions exist in the form of redun-
dantly connected RAID appliances, but these are generally expensive. A more
cost effective solution would be a redundant implementation in software.

This paper presents a virtual shared disk: a shared disk implementation
in software, based on redundant distributed storage. Data is distributed over
multiple nodes and can be accessed concurrently. Despite this, the system still
behaves as a single shared disk. Shared disk semantics are ensured through
a consistency model: read and write operations behave as if subject to some
global order. For example, when a read or write finishes, no subsequent read
can return an older value than the one just read or written. It is not necessary
to have complete consensus on the global order. It is enough to prove that,
for each execution, one or more possible orderings exist which are consistent
with the observed read and write behavior. The consistency model used in this
paper is called strict linearizability. It allows virtual shared disks to function as
a drop-in replacement for shared disk hardware.

Messages sent concurrently by the protocol can arrive in different orders at
their destinations; caused by arbitrary message delays introduced by the net-
work. Correctness needs to be evaluated for each possible ordering of messages
to ensure reliability and sequential consistency. Model checking is used to make
sure the virtual shared disk behaves correctly. A Promela model of the algo-
rithm is created and subsequently verified using the Spin model checker. The
model checker builds a state space of the protocol and verifies its correctness.

The virtual shared disk is meant to run on plain commodity hardware: per-
sonal computers, some with local storage, connected through a network. Ma-
chines running the MINIX operating system and connected using an Ethernet
network are used as a platform for an initial implementation. Since the so-
lution is based on software, it does not require hardware shared disks, which
can be especially expensive when redundancy is required. Together with other,
for example open source, storage solutions, this gives access to an affordable
redundant storage system.

This paper is structured as follows. Section 2 is an introduction to concepts
of storage systems. It provides a basic overview of terminology and describes
solutions which can be used to complement a virtual shared disk. Section 3
presents use cases for a virtual shared disk implementation: it can replace and
improve upon the uses of conventional shared disks. Section 4 explores the
theory available to construct virtual shared disks and investigates competing
solutions.

A preliminary algorithm for virtual shared disks is introduced in section 5.
It is followed by sections 6 and 7 respectively, which show the model checking
and implemention of the algorithm. The preliminary algorithm can cope with
asynchronous networks, but not failing processes. Section 8 presents a better
algorithm to implement a virtual shared disk. In this algorithm, processes
can fail as long as a majority remains responsive. Section 9 shows how model
checking and implementation are combined by sharing C-code.

2 Storage system concepts

This section will provide a basic overview of concepts and terminology used in
storage systems. It references solutions which can be used complementary to
a virtual shared disk implementation. One of the most ubiquitous technology
in storage systems, namely RAID, is discussed in section 2.1. It increases the
reliability of directly attached storage. Section 2.2 shows how LVM can be used
to divide storage in smaller pieces; resulting in flexible backing storage for one
or more virtual shared disks. Dedicating a network to shared disks results in a
SAN as presented in section 2.3. An alternative called NAS is shown in section
2.4, where files are shared over the network instead of block devices. Because it
is typical to store some type of filesystem on a storage device, we look at shared
disk filesystems in section 2.5 and distributed filesystems in section 2.6.

2.1 RAID

A redundant array of independent disks (RAID) combines multiple disks into a
single virtual aggregate disk. The aggregate RAID disk can exploit the under-
lying parallelism to increase performance and reliability. The probability of a
single disk failure however increases when combining multiple disks. RAID disks
need to cope with disk failures, which can potentially destroy data stored on the
aggregate disk. RAID uses mirroring or parity-based schemes to redundantly
store data, ensuring data can survive partial failures of the array.

Different RAID levels exist, corresponding to the techniques used for data
storage in the array. The more common levels are:

RAID 0 distributes data over the array by striping: data is split into fixed
size stripes which are distributed in a round-robin fashion over the disks in the
array. RAID 0 can however not handle disk failures, making it the only level
without added redundancy. There are benefits though: thanks to the round-
robin distribution of stripes, both read and write operations can be parallelized
to increase performance; and since RAID 0 looses no storage to redundancy,
each disk is fully utilized to increase storage of the aggregate disk. RAID 0 is
used primarily to improve performance.

RAID 1 uses mirroring to store identical copies of data on two or more
disks: the content of the aggregate disk is duplicated to all underlying disks.
Redundancy is improved by each disk added to the array: an array with n
disks can sustain n — 1 failures, without losing data. Read performance can be
increased by reading in parallel, although write performance is no faster than a
single disk. No storage is gained when adding disks to the array. RAID 1 is used
for redundancy, especially in two disk arrays, or when recovery from multiple
failures is required.

RAID 5 uses parity stripes in addition to the data stripes of RAID 0. Parity
stripes are calculated from groups of data stripes to gain redundancy. An array
of n disks will contain 1 parity stripe for each group of n—1 data stripes. Stripes
are laid out in the array such that no disk contains more than one data or parity
stripe from the same group. On a single disk failure, a missing data stripe can

then be recalculated using the parity stripe. RAID 5 can not recover from more
than one disk failure. By distributing the parity stripes over different disks,
performance increases with the number of disks; although write performance
will suffer from the need to calculate parity stripes. The array also effectively
looses one disk worth of storage due to redundancy. RAID 5 is a compromise
between redundancy and storage size, generally used on three or more disks.

RAID 6 uses two parity stripes per group. This level is very similar to
RAID 5, but allows simultaneous failure of two disks instead of one. Especially
when using a large number of disks, the chance of a simultaneous disk failure can
become large enough to warrant this additional redundancy. Write performance
can be lower than RAID 5, due to the more complex calculation of the two parity
stripes. Two disks worth of storage are lost due to redundancy. RAID 6 is used
when RAID 5 is not deemed secure enough, usually with larger numbers of
disks.

RAID levels can be stacked to achieve an appropriate balance between per-
formance, redundancy and storage. A common example is RAID 10: disks are
first mirrored into aggregate disks for redundancy using RAID 1, after which
these aggregate disks are striped together for performance using RAID 0. Less
common is RAID 01, which is similar but opposite to RAID 10: instead of
striping mirrored disks, it mirrors striped disks. RAID 10 is preferred, because
recovery after a single disk failure requires more data to be resynchronized for
RAID 01, due to it striping before mirroring. Another example is RAID 50,
which stripes RAID 5 arrays together to increase performance. This stacking of
storage techniques is a common practice for storage systems and not limited to
RAID levels.

Mentioned before, is the increased chance of disk failure when an aggregate
disk consists of a larger number of disks. One has to keep in mind that while
multiple disk failures are less probable than single disk failures, single disk fail-
ures are more probable for an aggregate disk than a stand-alone disk. Disks
have to be replaced quickly before the next failure occurs, which could result
in data loss. Failing to do so in a timely manner only increases the chance of
additional failures. RAID gives the user a window of opportunity to restore
redundancy.

Although RAID prevents data loss from disk failure, transient or partial
failures can still corrupt data. When disks become flaky or have bad sectors, it
is up to the user to determine and replace the faulty drive to repair the array.
Parity stripes stored in a bad sector may go unnoticed until a regular disk failure
occurs, resulting in data loss. A similar situation can occur when power is lost
while writing: parity stripes become inconsistent with data stripes. This last
problem is called the write hole and affects both RAID 5 and RAID 6 arrays.
Battery backed controllers and power supplies are used to reduce the risk. RAID
on its own is only designed to handle complete disk failures.

2.2 Logical volume management

Logical volume managers are a more flexible alternative to partitions: they
divide and combine available storage into virtual disks. These virtual disks can
also be easily moved or re-sized. Examples are the Logical Volume Manager
(LVM) for Linux, the Solaris Volume Manager (SVM), the Logical Disk Manager
of Microsoft Windows, and the cross platform Veritas Volume Manager (VVM).
Often RAID techniques are employed to ensure reliability; either by the volume
manager itself, or the underlying virtual disks.

The mapping of storage into virtual disks is divided into steps. First the un-
derlying disks, called physical volumes (PVs), are divided into fixed size chunks,
called physical extents (PEs). These PEs, possibly originating from different
physical volumes, are assigned to a volume group (VG). The VG acts as a pool
of available storage for virtual disks. The physical extents from a volume group
are concatenated to form one or more logical volumes (LVs). Physical extents
are called logical extents (LEs) in the context of the logical volume they belong
to. These steps ensure a flexible mapping of chunks from physical volumes to
logical volumes.

Logical volumes have several advantages over conventional partitions. For
example, logical volumes do not need to be contiguous, and logical extents can
be mapped in arbitrary order onto physical extents of the backing storage. This
greatly simplifies resizing and moving of logical volumes compared to partitions.
Although partitions and logical volume managers have overlapping functional-
ities, they can still be used together. Partitions are often used as a basis for
physical volumes, preventing operating systems from identifying the disk as
empty, when lacking logical volume manager support.

2.3 Storage area networks

A storage area network (SAN) connects computers to remote storage, similar to
how a local area network (LAN) connects computers to remote systems. SANs
typically use fiber channel or Ethernet network infrastructures to provide block
level access to remote storage: the same level as a physical disk. Specialized
protocols run on top of the fiber channel or Ethernet, possibly using intermediate
protocols like IP and TCP. The remote storage can consist of plain physical
disks, but more often consists of virtual disks created from RAID arrays using
an LVM. These levels of indirection give a lot of flexibility; storage can be
consolidated and no longer needs to be directly connected to the machine.

A historically often used direct attached storage (DAS) interface in the enter-
prise market is the Small Computer System Interface (SCSI). Several ways exist
to adapt this protocol to a SAN. The Fiber Channel Protocol (FCP) transports
SCSI commands over fiber channel, while the Internet Small Computer System
Interface (iSCSI) protocol does the same over TCP/IP. The terminology used
by these protocols deviates somewhat due to the SCSI heritage. Storage servers
are called targets, while clients are called initiators; consistent with respectively
the interfaces and controllers on a SCSI bus. A single target can export multiple

disks, each identified by a Logical Unit Number (LUN). While originally a LUN
would refer to a physical drive, in a SAN it more often refers to a virtual drive,
constructed using RAID and or LVM. An important benefit of iSCSI over FCP
is the ability to use existing Ethernet infrastructure.

The ATA over Ethernet (AoE) protocol encapsulates ATA commands in
standard Ethernet frames. Advanced Technology Attachment (ATA) is a com-
peting protocol to SCSI, primarily aimed at desktop systems. The benefit of
directly using Ethernet instead of TCP/IP is a reduced protocol overhead. Cal-
culation of TCP checksums for example puts a significant strain on the system;
enough to try and offload these calculations to dedicated hardware. SANs based
on iSCSI often employ TCP Offload Engines (TOE) or even full iSCSI controllers
to improve performance, hardware not needed when using plain Ethernet. Simi-
lar techniques exist for SCSI based SANSs; either encapsulate Fibre Channel over
Ethernet (FCoE), or transport SCSI commands directly on Ethernet frames us-
ing HyperSCSI. The downside to using Ethernet is the inability to route the
encapsulated protocol, which can be considered a security feature depending on
requirements.

Contrary to AoE or iSCSI protocols, which encapsulate existing DAS proto-
cols, the Linux Network Block Device (NBD) uses a custom protocol for com-
municating with storage. The NBD lives at the block device layer of the lo-
cal operating system, forwarding I/O request over TCP/IP to remote storage
servers. While the client kernel module is meant to run on a Linux system, the
user-space server can run on any Unix based operating system. Alternatives
to NBD are the Enhanced Network Block Device (ENBD) and Global Network
Block Device (GNBD). ENBD introduces additional capabilities to the kernel
module, for example multichannel failover; while GNBD is tuned specifically
for shared disk usage together with the Global File System (GFS). NBD based
storage integrates easily in a Linux environment, although it does not have the
interoperability that AoE and iSCSI offer.

SANs can be used to share storage between multiple computers, possibly
even with concurrent access. Traditional SCSI disks can be shared by attaching
multiple controllers to the same SCSI bus. These shared disk semantics can also
apply to SANs, with the added benefit of larger area networks allowing shared
disks to be placed further away. Backups can be made to remote locations to
prevent data loss in case of fire. Disks can be migrated to a different server
platform when hardware fails, without the need to physically move the disk.
Shared disk file systems can be used concurrently to share data between nodes.
Even commodity hardware can be used to create shared disks.

2.4 Network attached storage

While storage in a SAN is shared at the block level, Network Attached Storage
(NAS) is shared at the file system level. Disks are formatted with a file system of
choice and then exported using a network file system. A SAN typically hides the
remote nature of disk blocks from the operating system, but a NAS explicitly
shares remote files. SAN protocols are implemented as drivers, while NAS

protocols are implemented higher in the operating system storage infrastructure.
An inherent benefit of NAS is file-based access control: access can be granted
on a per file or directory basis, similar to a regular file system. This makes NAS
solutions better suited for simple file sharing than SANs, especially in consumer
systems. SAN and NAS technology are however not mutually exclusive; an
operating system can deliver NAS services based on SAN storage.

Current network file systems can be associated with the platform they were
originally designed for. Server Message Block (SMB) and Common Internet File
System (CIFS) originate from Microsoft Windows, CIFS being an evolution of
the earlier SMB protocol. Network File System (NFS) can be used to export file
systems found on Linux and other Unix based operating systems. The Apple
Filing Protocol (AFP), originally part of the AppleTalk protocol suite, is a
protocol for sharing files in Mac OS. Although different protocols, all belong to
the family of network file systems.

Interoperability between network file systems and different operating systems
is possible. A prime example is the Samba project: an open source implemen-
tation of the SMB/CIFS protocol. A similar effort exists for AFP. Together
they enable Linux and other Unix based operating systems to share files with
both Microsoft Windows and Mac OS. Mac OS in turn is capable of file sharing
through SMB and NFS. To guarantee compatibility, most NAS appliances will
support at least SMB/CIFS, NFS and AFS.

The abstraction of file systems in a Virtual File System (VFS) layer, makes
transparent access to network file systems possible. A VFS allows uniform access
to different concrete underlying file systems. An application can not distinguish
between accessing a local file system or one accessed via NAS protocols. Even
protocols not typically classified as network file systems, can be used to imple-
ment a VFS. In Linux for example, the File Transfer Protocol (FTP) and Secure
Shell (SSH) protocol can be used to access remote files; they are typically im-
plemented as a File system in User-space (FUSE). While the operating system
is fully aware of the remote nature of some file systems, applications need not
be.

2.5 Shared disk file systems

Shared disks require specialized file systems for concurrent access. A conven-
tional file system will cause data corruption when used simultaneously on differ-
ent computers. Uncoordinated instances of a file system can interfere with each
other when updating disk blocks of shared file system data structures. This
problem is often exacerbated by the use of caching. The system needs to pre-
vent such concurrent modifications; often by using a distributed form of locking.
Conventional locking of files, meant to prevent concurrent access by local ap-
plications, is insufficient. Those locks are implemented by the file system and
hence subject to the same limitations.

The Global File System (GFS) is a shared disk file system developed by
Red Hat. It depends on the Distributed Lock Manager (DLM) for managing
concurrent access to shared disks. When shared storage is not yet available,

one can use the Global Network Block Device (GNBD) specifically designed for
this purpose. The Oracle Cluster File System (OCFS) was originally created
to store database files. It has now been extended to a more general purpose
shared disk file system. Like GFS, it uses DLM as part of its cluster software
stack. The Quick File System (QFS) from Sun Microsystems is often used
in conjunction with their Storage Archive Manager (SAM). SAM can move
data between different types of storage based on usage: a form of Hierarchical
Storage Management (HSM). QFS uses a single meta-data server to coordinate
concurrent access.

Shared disk file systems use cluster type software to solve concurrency prob-
lems. GFS and OCFS use the DLM distributed lock manager, which comes as
part of a cluster stack. QFS uses the Sun Cluster system. A common prob-
lem for clusters and subsequently shared disk file systems is detection of failed
nodes. It is important that nodes that appear to have crashed can be prevented
from resuming later on. This is called fencing and requires hardware support.
When no cluster stack is available, the above file systems can still be used as
standalone file systems.

2.6 Distributed file systems

Distributed file systems differ from shared disk file systems in the way data
is shared. In a shared disk file system, data is shared at the block level by
using shared disks; the shared disk file system has a coordinating function. In
a distributed file system, data is shared at a higher level by the distributed file
system itself; block storage or file systems are only used to store data. In short,
a distributed file system shares data stored on disks, while a shared disk file
system stores data on shared disks.

Lustre is a distributed file system maintained by Sun Microsystems. It splits
the file system into meta data and file data. Meta data is stored in a single meta
data target (MDT), while file data is stored in one or more object storage targets
(OSTs). Both types of targets are backed by standalone file systems. A server
providing access to the MDT or OSTs is called a meta data server (MDS) or
object storage server (OSS), respectively. High availability is achieved by using
shared disks, allowing an MDT or OST to be shared between two servers. The
servers are then configured as an active/passive pair: the passive server takes
over when the active server fails. In practice, the MDT is always shared: losing
access to the MDT, means losing access to the complete distributed file system.
An OST is not always shared: losing access to an OST, only means losing access
to the files stored on that OST.

GlusterFS is a distributed file system based on translators, an idea inspired
by the GNU/Herd operating system. Clients access storage on the servers
through a series of translators, which determine the behavior of the system.
Translators are specified in a volume file and can be made to run on both clients
and servers. GlusterFS uses POSIX based file systems as a starting point to
store files: directories can be imported using the posix translator. There are
lots of additional translators available: to serve or access volumes over a net-

work, distribute files over multiple servers, read ahead or write behind, stripe or
mirror volumes, fail over between servers, etc. It is left up to the user to write
interoperable volume files for both clients and servers.

Since distributed file systems share data at a higher level, often above the file
system level, it is possible to use other storage techniques as backing storage. As
mentioned earlier, Lustre uses shared disks to increase availability. GlusterFS
could potentially use shared disk file systems to improve availability of files when
a server goes down. Most distributed file systems will also use RAID or LVM
at some point to increase reliability and flexibility. It really shows how storage
systems can be stacked.

10

3 Use cases of a virtual shared disk

This section presents use cases for a virtual shared disk. Since it can replace
conventional shared disks, we look at some typical applications. A virtual shared
disk should be able to function correctly in these settings. First is simple network
sharing of block storage in section 3.1. Then comes performance improvemens by
using multipath in section 3.2. Finally section 3.3 shows a practical application
of shared disks to improve availability of services.

3.1 Shared disk

A virtual shared disk can replace hardware solutions for shared disk applications:
storing standalone file systems, shared disk file systems, distributed file systems,
etc. Sharing access to storage improves data availability on server failure. For
standalone file systems this means another server can mount the file system,
while for shared and distributed file systems it means other servers can maintain
access to the file system. This is no different for virtual shared disks than it
is for hardware shared disk solutions; virtual shared disk software can act as a
drop-in replacement for shared disk hardware.

The added benefit of virtual shared disks is storage reliability. Single shared
disks can reduce the impact of server failure, but do not protect against storage
failure. Redundant hardware solutions exist but are generally expensive. A vir-
tual shared disk can be constructed using commodity hardware, removing the
need to rely on proprietary implementations. This is also true for underlying
logical volume management and RAID implementations: proprietary implemen-
tations can complicate data recovery. Virtual shared disks protect against both
server and storage failures using commodity hardware and software.

3.2 Multipath

Virtual shared disks have inherent parallelism which can be exploited for per-
formance and reliability. Hardware-based shared disk solutions can have both
internal and external redundancy. Internally there is redundant storage to pre-
vent data loss, while externally there is redundant access to prevent commu-
nication failure. Both reliability and performance are increased by instructing
higher level protocols to use the multiple external access ports. This technique is
called multipath: storage commands are distributed over ports to increase per-
formance, or can fail-over to other ports to increase reliability. Virtual shared
disks can be accessed in the same parallel manner.

A virtual shared disk distributes data over multiple locations. This in a
sense combines the internal and external redundancy of hardware solutions:
each location acts as both redundant storage and access port. SAN and NAS
techniques can exploit this parallelism to increase reliability and performance.
For example, iSCSI can use multipath techniques to access virtual shared disks
at the SAN/block level. Parallel CIFS and NFS solutions in combination with
a shared disk file system or distributed file system can exploit the parallelism

11

at the NAS/file level. The inherent parallelism of virtual shared disks combines
naturally with higher-level protocols.

3.3 High availability cluster

Concurrent access to shared disks needs to be coordinated. Although shared
disks allow multiple servers to access data in parallel, doing so might corrupt
the overall data structure. Stand alone file systems for example are not meant
to be used concurrently, while shared disk and distributed file systems use locks
to prevent concurrent access where it is unsafe. When a server fails, all its locks
need to be released to allow fail-over to another server. There also needs to be
a guarantee that the failed process does not resume operation later on. The
problem becomes one of detecting failed processes.

A high availability cluster provides the necessary infrastructure for fail-over.
In an asynchronous network, like Ethernet, it is impossible to distinguish be-
tween failed and slow processes. To get a form of failure detection, a high
availability cluster uses heartbeat messages: if a server stops responding to
heartbeat messages it is considered to have failed. There is however no guar-
antee of failure: the server could just as well have been slow. To prevent the
server from resuming later on, it is fenced. Fencing means the cluster removes
the presumed faulty server from the system by for example cutting its power,
or instructing the storage system to deny further access. Hardware support is
required for reliable fencing.

Fencing can lead to problems when the cluster splits up. It is possible for
parts of the system to get isolated from one another due to network partitions.
This situation is called a split-brain: the different parts continue to operate
and start to make possibly conflicting decisions. Partitions can for example
start fencing each other, bringing the whole cluster down. A virtual shared disk
implemented using the cluster infrastructure, could receive different writes for
each partition. It is very difficult to decide which version of the disk to use
when the cluster partitions are recombined. To prevent these problems from
happening, a quorum is used: only partitions containing a majority of cluster
nodes can make decisions.

A virtual shared disk can operate independent of the cluster infrastructure.
Applying RAID to shared disks would require special fail-over facilities to pre-
vent concurrent access to RAID members. Virtual shared disks natively in-
corporate quorum and can do without failure detection. This is because the
consensus needed to determine failed nodes is a stronger primitive than the
sequential consistency needed to allow concurrent access. The benefit is that
virtual shared disks can be used concurrently in a high availability cluster.

12

4 Survey of related work

This section explores the theory needed to construct a virtual shared disk. It
also looks at the solutions used by competing implementations. Central to
the construction of a virtual shared disk is the impossibility of deterministic
consensus when processes can fail. Section 4.1 looks at the problem in more
detail. Section 4.2 investigates why this issue does not seem to affect atomic
registers in their ability to provide shared access to a single value. A promising
avenue for construction of a virtual shared disk.

But what kind of behaviour should we expect from a virtual shared disk?
Section 4.3 looks at models for different types of consistent behaviour, followed
by section 4.4 describing the choice of model made for virtual shared disks. This
leaves section 4.5 to investigate competing solutions for shared disk semantics.

4.1 Distributed consensus

Deterministic consensus is impossible in an asynchronous distributed system
with even one faulty process. This important theorem is proved by Fischer
and others [20]. There are however other methods of reaching consensus in a
distributed system, generally by changing the assumptions of the impossibility
proof.

For example partial synchrony [18] assumes some unknown or future upper
bounds exist for message latency and relative speeds of processes. In some
cases failure detectors [1] can be used to distinguish between slow and faulty
processes. Omne can also weaken the property of guaranteed termination to
probabilistic termination [12].

Contrary to atomic registers however, deterministic consensus cannot be
made fault-tolerant in an asynchronous system.

4.1.1 Impossibility of deterministic consensus

A fundamental problem in distributed computing is that of reaching agreement
between asynchronous processes. Take a system of processes, with divergent
input values, and make them decide on a common output value. A consensus
protocol solving this problem must be consistent: all deciding processes agree
on the same value. The protocol must be terminating: all correct processes
must decide. And finally the protocol must be non-trivial: the decision should
depend on the input. The proof of Fischer, Lynch and Paterson [20] shows the
impossibility of such a protocol when confronted with even one faulty process.

Consider a system of processes trying to reach consensus over a boolean
value. Processes can decide 0 or 1. The combined states of the individual pro-
cesses and message channel define the configuration of the system. A transition
from one configuration to the next is achieved by applying events: the reception
of a message by a process and the resulting response. The receiving process
sends a finite number of messages and possibly decides on a value, in either
way ending the transition. Configurations are O-valent when, starting from the

13

configuration, only 0 can eventually be decided; 1-valent when only 1 can be
decided. When both 0 and 1 can still be decided, the configuration is called
bivalent.

Assume a protocol exists for reaching deterministic consensus in an asyn-
chronous system. A proof by induction will show a contradiction when even
one process is allowed to crash. As the base case, it can be shown that there
is a bivalent configuration in the group of initial configurations. For the in-
duction step pick an event, then we can divide reachable configurations in two
groups. One group will be reachable by applying the event at some point, the
other without applying the event. The first of these groups will again contain a
bivalent configuration.

Starting from a bivalent initial configuration, it is possible to only apply
events that transition to another bivalent configuration. Pick an event that will
be delayed indefinitely because of a process crash. According to the induction-
step, there is a sequence of events after which applying event e would yield a
bivalent configuration. Apply the first event of this sequence to reach another
bivalent configuration.

The system can confine itself to bivalent configurations: no decision is ever
made. This contradicts the termination property of the assumed consensus
protocol. There is no deterministic one-crash resilient consensus protocol.

4.1.2 Paxos

Paxos [32, 30] is a protocol for reaching probabilistic distributed consensus using
clocks. To reach agreement, votes are cast in multiple rounds, called ballots.
Each ballot requires a unique number, a quorum that will overlap with other
ballots, and a decree identical to the most recent decree a quorum node previ-
ously voted for. When no previous decree is available a new one can be created.
A decree is accepted when all nodes in a quorum vote for it.

Ballots consist of roughly two phases. During the ballots, nodes keep track
of the last ballot number started, the last ballot number received, and the last
vote cast. A vote consists of a node’s identity, a ballot number and a decree.
Each ballot number can be extended with the identity of the node that created
it. This prevents duplicate ballot numbers when multiple nodes concurrently
start a new round. Majorities are used to ensure quorums of ballots have at
least one node in common.

A round starts with a node choosing a new ballot number, greater than the
one it used last time. Then it sends a message containing this new number
to all or possibly a subset of nodes. Nodes only respond to the message when
the ballot number is larger than the last ballot number they received. If this
is true, the node will also record the ballot number. The response contains the
ballot number and the last vote the node cast in older ballots. Eventually the
initiating node will learn of the previous votes cast for a majority of nodes in
the system.

When a majority has responded, the initiating node can start the actual
ballot. It sends its decree and ballot number to the other nodes, using the same

14

majority as its quorum. The decree must be identical to the last vote cast by
any of the quorum nodes. If no votes have been previously cast, the node can
choose a decree of its own. Nodes only respond to the message when the ballot
number equals the ballot number recorded earlier. If this is true, the node will
also record its vote. The response contains the ballot number and the identity
of the node. Eventually the initiating node can receive votes from a majority of
nodes in the system.

When the quorum has voted for the decree, the initiating node records the
decree and informs all other nodes of its success. There is however no guarantee
that all the nodes in the quorum will respond: nodes might have crashed. The
protocol, as described, ensures safety but not liveness. Ballots have to be started
repeatedly until one succeeds. Too many concurrent ballots can however prevent
progress.

Initiating a ballot with a high ballot number, will prevent nodes from partici-
pating in previous ballots. This can prevent any previous ballot from succeeding.
To prevent this from happening, timers are used to start new ballots when the
previous one did not reach its quorum. Based on maximum message and pro-
cessing delay, they limit the rate at which ballots can be initiated. Additionally
a president can be chosen to initiate ballots, preventing concurrency.

4.2 Atomic registers

Traditionally access to shared data structures is controlled using locks. Locks
prevent concurrent operations that could otherwise interfere with each other:
like reading while writing. This however, gives rise to a problem of mutual
exclusion, where one process blocks access for all other processes. Peterson
[38, 39] shows how concurrent access to large data structures can instead be
made wait-free. Wait-free means that operations take a finite numbers of steps,
independent upon the speed of other processes. This prevents a process from
locking out others.

The simplest of shared data structures is the shared register, which stores
only a single variable. Lamport [31] describes how one can construct such a reg-
ister and what properties it might have. These properties can be strengthened
by implementing new registers on top of weaker ones. The proposed atomic
registers are however single-writer and no atomic multi-reader register is con-
structed.

Atomic registers behave as if there is a sequential order on operations: as if
all concurrent access can be linearized. The problem of an atomic single-writer
multi-reader register is solved in [4] for exponential time and improved upon in
[43] to polynomial time. Other solutions are presented in [38, 7, 36].

A solution for atomic multi-writer multi-reader registers is first proposed in
[45] but found to be incorrect. Later solutions include [39, 34, 15]. An optimal
atomic multi-writer multi-reader register is constructed by Israeli and Shaham
[28] using precedence graphs.

Although atomic registers are wait-free, they are still susceptible to unavail-
ability of underlying registers. Wait-freeness only applies to the relative speed

15

of readers and writers using the constructed register, not to the speed of the
registers it is constructed on. This is especially important when reader and
writer processes also implement the underlying registers; a slow register could
stall other processes, negating the benefits of a wait-free algorithm. Attiya and
others [6] show how an atomic single-writer multi-reader register can be con-
structed, while only communicating with a majority of processes. This enables
wait-free algorithms, based on single-writer multi-reader registers, to run in dis-
tributed systems with faulty processes. For a similar technique using the more
general concept of quorum see Herlihy [24], who uses overlapping process groups
to replicate objects. When a regular quorum is not available, ghost processes
[44] can be temporarily introduced to maintain availability. Since atomic regis-
ters can be made fault-tolerant using majorities or quorum, so can the registers
constructed on top of them.

The performance of atomic single-writer registers can be improved by lim-
iting the number of readers. Dutta and others [17] show how both reads and
writes can be accomplished in one communication round-trip for single-writer
registers, and why this is impossible for multi-writer ones. Atomic registers
where reads and writes only take one round-trip are called fast. So called semi
fast [22] implementations do not limit the number of readers: reads try to use
one round-trip, but can fall back on a second round-trip when unsuccessful. The
resulting trade-off between fault-tolerance and performance is further studied
by Georgiou and others [21].

4.2.1 Single-writer multi-reader register

Wait-free algorithms based on atomic registers in shared memory can be emu-
lated in message passing systems. Attiya, Bar-Noy and Dolev [6] show how to
construct a crash-resilient wait-free single-writer multi-reader register for this
purpose.

Processes implementing this register, communicate by sending a message
to all participating processes, including the sending process itself. They then
wait for acknowledgments from a majority of processes. The communication
procedure uses a ping-pong mechanism to ensure only one message at a time
is in transit between two processes. This ensures received acknowledgments
refer to the last message sent. An acknowledgment may contain additional
information.

To write a new value the process communicates this value to a majority of
processes. Each write is labeled, enabling a process to recognize and store only
the most recent write. For simplicity, a write is identified with its label instead
of its value.

To read from the register, a process requests the labels from a majority of
processes. It returns the most recent write among the results, but not before
communicating this value to another majority of processes. Else it would be
possible for a read to return the label of a concurrent write, and a subsequent
read to return an earlier label.

Both read and write operations terminate if and only if their communications

16

complete. This is the case when a majority of processes acknowledge the com-
munication. Since non-faulty processes always acknowledge incoming messages,
this majority is sufficient to make the algorithm wait-free.

4.2.2 Multi-writer multi-reader register

Using single-writer multi-reader atomic registers, it is possible to construct a
multi-writer multi-reader atomic register. One solution by Israeli and Shaham
[28] builds a precedence graph using information stored in single-writer multi-
reader registers. Such a graph serializes write operations and can subsequently
serialize read operations, modeling the behavior a multi-writer multi-reader reg-
ister.

A precedence graph is a directed in-tree: edges point towards the root of the
tree. The root is a special virtual node; all other nodes are stored in registers.
A directed edge in the graph from node b to node a, indicates that a precedes
b. However, when an edge from node ¢ to node a is added, precedence between
b and ¢ is undefined.

The algorithm stores nodes and edges of the precedence graph using single-
writer multi-reader atomic registers. Besides the inherent identity of the writer,
each node has been assigned an address. A register can then be used to store
a label: a combination of a node and an outgoing edge. The node is defined
by its address. The outgoing edge is defined by the identity and address of the
node it points to. Notice the identity of the node’s writer is stored implicitly; a
consequence of using single-writer registers.

The notion of local precedence is used to determine precedence when two
nodes have the same parent node. When the nodes are created by the same
writer, the older node takes local precedence. For nodes from different writers,
the node with the highest identity has local precedence. A frontal branch can
then be defined by recursively following edges from the root towards the leaves:
always choose the node that is locally preceded by all other child nodes. The
leaf node of the frontal branch is called the last node of the graph.

A precedence graph can be used to construct a simple sequential register.
Only consecutive read and write operations are considered for such a register.
Registers are initialized with labels pointing back to themselves, which results
in a frontal branch that is limited to the virtual root node.

The sequential write protocol starts by collecting the labels from all the
registers, and constructing the precedence graph. A new node is added to the
graph by connecting it to the frontal branch: its edge points to the node with
the largest identity in the branch, smaller than the identity of the writer. Notice
that this creates a new frontal branch.

The sequential read protocol collects the labels from all registers, and con-
structs the precedence graph. Then it simply returns the last node of the frontal
branch.

Using the sequential protocol in a concurrent setting will fail. An unused
address at the start of a write, might have become referenced at the end of
the write. This can result in an incorrect precedence graph: an old node is

17

preceded by the new node. To prevent this violation of the sequential order, the
concurrent write protocol stores two labels per register. A current label equal
to that of the sequential algorithm, and a new label to stage a pending write.

The concurrent write protocol starts by constructing the precedence graph
from the current labels in the registers, similar to the sequential algorithm.
When choosing a free address for the new node, edges of both new and current
labels are considered. This ensures that no current or pending label has an
edge referencing the new node. The new node is first written as a new label.
The write protocol subsequently reads the register of the referenced node, and
checks if it has changed. The node referenced by the new label might have been
overwritten. The current label is then updated: if no changes were detected, it
is updated to the new label, else to the new label modified to reference itself.

The concurrent read protocol is less intuitive. The protocol starts by con-
secutively constructing three precedence graphs. The first and third graphs
are constructed normally: by sequentially reading the registers, starting from
the lowest, going up to the highest. The second graph however, is constructed
backwards: starting from the highest register, going down to the lowest. Due
to concurrency, it is possible none of the three graphs are consistent. The three
graphs are therefore compared to determine a correct response.

4.3 Consistency models

In an asynchronous system there is no global clock to serialize operations on
shared objects. Operations still need to behave in some predictable manner for
the system to be of use, especially in the face of concurrency. Such behavior can
be described using a consistency model: a guarantee that the system behaves
according to certain rules. Different consistency models are available to define
consistent behavior for a distributed system.

Operations in distributed systems are not instant but are executed during
an interval: the time between invocation and response of an operation. Over-
lapping intervals indicate concurrent operations, while non-overlapping intervals
indicate sequential operations. The absolute timing of these operations is how-
ever not available to individual nodes in an asynchronous system; nodes can
adopt competing views due to message delays. Some coordination is required
to ensure consistent behavior.

The behavior of a system can be justified as consistent using a history: a
global order for invocation and response events. Operations should behave in
accordance with a history and maintain object semantics. For example, items
from a stack object can only be popped when they have been pushed earlier.
To simplify reasoning about object semantics, histories are often limited to
sequential operations.

In a sequential history, operations can be considered atomic. Lack of concur-
rency ensures pending operations are invisible: operations seem to take effect
instantaneously. In a sequential history every invocation event is directly fol-
lowed by the corresponding response event. This requires some reordering of
events, relative to their absolute time occurrences.

18

Often multiple histories are available to justify system behavior. For ex-
ample, the value of a shared variable is only important on a read operation;
preceding write operations can be ordered arbitrarily when they are overwrit-
ten before the next read. A consistency model only states which histories are
acceptable. It is not necessary to pick a specific one.

Consistency models can limit the amount of reordering allowed to create a
sequential history; reordering is relative to the original order of events in absolute
time. An example is to not reorder events of originally sequential operations.
The exact limitations depend on the specific consistency model. How a system
manages to comply with the consistency model is of no concern to the model.

There are different consistency models to pick from when designing a system.
Some examples are: strict consistency, sequential consistency, linearizability,
quiescent consistency, serializability and causal consistency. We will look at
these models in more detail:

Strict consistency requires operations to take effect immediately, consistent
with their occurrence in absolute time. A natural fit for synchronous systems,
where operations can be executed in the order they were invoked; but too much
of a constraint for asynchronous systems, where lack of a global clock prohibits
implementation. Strict consistency can reorder response events to remove con-
currency.

Sequential consistency [29] requires operations to be executed in their origi-
nal program order for each separate process. This removes the need for a global
clock, since operations from different processes are never compared using abso-
lute time. As a result, sequential operations from different processes can behave
counter-intuitive when processes partially synchronize. Sequential consistency
can reorder events when they belong to different processes.

Linearizability [25] requires the partial order of originally sequential oper-
ations to be preserved. This is called atomicity for read and write objects.
Linearizability is a stronger property than sequential consistency, which only
preserves this partial order per process. Contrary to sequential consistency,
linearizability is a local [46] property: if operations for each separate object
are linearizable, then all operations are linearizable. Linearizability can reorder
events when they belong to concurrent operations.

Quiescent consistency [5, 42] requires operations separated by quiescence to
remain in their original order. Quiescence is a lack of pending operations on
an object: all invocation events have had a corresponding response event. This
consistency model differs from linearizability and sequential consistency in that
program order is not necessarily preserved. Quiescent consistency can reorder
events belonging to operations not separated by quiescence.

Serializability [37] requires sequential consistency of transactions. When
transactions are also linearizable, this is called strict serializability. Transactions
are atomic combinations of operations, possibly on different objects. Sequential
consistency and linearizability can be seen as special cases of serializability and
strict serializability, when transactions are single operations on single objects.
Serializability can reorder events when they belong to different processes. Strict
serializability can reorder events belonging to concurrent transactions.

19

Causal consistency [3] requires only causally related operations to remain in
their original sequential order. There is no global history: operations that are
not causally related do not have to be consistently ordered. Different processes
can see these operations in different orders. There is no total ordering for events.
Causal consistency can reorder causally unrelated operations differently for each
process.

4.4 Shared disk semantics

Simulating a shared disk in a distributed system requires shared disk semantics.
In other words, the system should behave like a singular shared disk, while actu-
ally being distributed. Linearizability is the preferred consistency model for this
application. It ensures correct behavior when multipath techniques are used:
sequential operations arriving on different paths act consistently. In addition,
the locality of linearizability eases implementation of larger block devices: each
block can be handled individually without breaking consistency. Linearizability
is scalable and supports multipath.

Multipath is important for distributed shared disks, since it exploits the
redundancy of the system. Sequential consistency could break shared disk se-
mantics: a write on one path, can be invisible to a subsequent read on another
path. Similar problems exist for causal consistency: causal relations external
to the system cannot be detected and can cause operations to appear in dif-
ferent orders depending on the chosen path. Quiescent consistency can break
shared disks semantics even without multipath being used: concurrent opera-
tions can prevent sequential operations from taking effect. Multipath needs to
be explicitly supported to maintain shared disk semantics.

Linearizability of a virtual shared disk can also be modeled using strict
serializability. Since an operation on the shared disk is replicated to multiple
locations, these replicated operations can together be seen as a transaction.
Success of such a transaction does not necessarily require the success of all
component operations. Exact requirements depend on the implementation: it
is possible only a majority of operations needs to succeed. In short, external
operations on the shared disk are linearizable, while internal operations are
strictly serializable.

4.5 Distributed storage

There are competing solutions for distributed storage available, solving similar
problems to those of virtual shared disks. The following sections describe these
solutions and compare them to the virtual shared disk implementation.

4.5.1 DRBD

The Distributed Replicated Block Device (DRBD) [40, 19] is used as a replace-
ment for shared disks in high availability clusters. By mirroring writes between
local and remote disks, it ensures reliability in the event of node failure. A

20

typical application is the storage of shared disk file systems, where it assumes a
distributed lock manager will prevent concurrency. While originally developed
for only mirroring two nodes, more nodes can be supported by stacking the
implementation on top of itself.

Special precautions are taken to prevent mirrors from diverging in the event
of concurrent writes. The developers analyzed all possible orderings of messages
in the write protocol. Asymmetric orderings can be detected by the protocol,
and used to determine which write goes first. Symmetric orderings rely on one of
the mirrors being instructed, up front, to discard symmetric concurrent writes.
Shared disk semantics are not guaranteed under concurrency.

Nodes can run either as primary or secondary. Primary nodes accept read
and write requests, while secondary nodes only accept replication requests. This
is a natural fit in high availability frameworks, which on node failure will restart
a service on a backup node. The backing storage can then be switched from
secondary to primary on the backup node. An alternative is to run both nodes as
primary, removing the need to explicitly switch roles. This however prevents the
framework from protecting against concurrency. Isolated nodes, simultaneously
running as primary can cause mirrors to diverge.

The situation where two primary nodes are isolated from each other is called
split-brain. It means each node can process writes independently, causing the
mirrors to diverge. A bitmap is used to store unsynchronized writes. When
the mirrors reconnect, DRBD needs to decide on a synchronization strategy.
It is possible to merge the mirrors when writes do not overlap, or to choose a
mirror based on its age measured in unsynchronized writes. As a last resort the
decision can be left to an administrator.

DRBD does not support concurrent writes to two primary nodes, therefore
multipath can only be used for failover purposes. Concurrently writing over two
paths can have unexpected results and even failover can become problematic
if paths are switched too fast. Virtual shared disks do support concurrency
and guarantee storage integrity. The requirement of a majority of reachable
processes for virtual shared disks also ensures no split-brain situation can ever
occur.

4.5.2 Chubby

Chubby [8] is a lock service for loosely coupled distributed systems. It acts as
a distributed file system and can for example be used to store names, advertise
small results or distribute configuration files. More importantly, it can be used
to acquire locks. Chubby employs Paxos to ensure fault tolerant consensus in
asynchronous networks. The file system interface combined with locks ensure
familiarity to programmers.

In practice, locks are coarse-grained and primarily used to elect a master
node. This application specific master node can in turn handle any fined-grained
locking if needed. Leases are used to eventually revoke locks from slow or crashed
nodes. They take into account a worst case message delay: master lease times
are larger than their client counterparts to ensure mutual expiration. Keepalive

21

messages are used to renew the lease times of locks.

Chubby is a general locking service, which can be shared for use by other
services. Googlefs [23] and Bigtable [10] for example use Chubby to elect a
master. Support for events and caching is available to reduce the load on a
Chubby cell. It is also possible to distribute the name space over multiple cells,
or to proxy and aggregate requests. This allows for improved scaling of the
system.

Coarse-grained locking makes chubby unsuitable for reaching consensus on
each individual read or write operation. It could be used instead to elect a
single master, which decides on a consistent ordering, but there is no guarantee
failing master will be replaced quickly. The whole point of chubby is to use it
as a basis for systems with less restrictive consistency models as demonstrated
by Googlefs and Bigtable.

4.5.3 Petal

Petal [33] is a distributed storage system. It abstracts from distributed physical
storage, to single virtual disks. Three directories are used for this abstraction:
the virtual disk directory, the global map, and the physical map. The virtual
disk directory translates virtual disks to global maps. Global maps translate
virtual offsets to storage servers. Physical maps translate virtual offsets to
physical disks and offsets, for specific global maps. These three abstraction
levels enable a flexible translation from virtual to physical disk addresses.

The virtual disk directory and global map are updated using Paxos, ensur-
ing a consistent state for all involved nodes. Reconfiguration of the system can
therefore proceed as long as a majority of processes is available. The storage
itself is not necessarily fault tolerant; it depends on the chosen redundancy
scheme. Petal currently supports striping and chained declustering [26]. Strip-
ing does not provide any redundancy, while chained declustering allows for single
failures. Redundant reading and writing of data, does not require the use of
Paxos.

An added benefit of chained declustering is load balancing. Chain declus-
tering mirrors data blocks by storing them alternatively on one of two adjacent
nodes. In case of failure, the load is distributed over these two neighboring
nodes, which in turn can do the same with their neighbors. This is contrary
to a standard mirror, where only one node is available to take over the load,
effectively halving system performance. The downside to chained declustering
is a higher risk of data loss. With chained declustering, data is at risk when one
of two adjacent nodes fail. In a standard mirror data is at risk only when one
specific mirror node fails.

To ensure consistency of data, one mirror of the data is designated primary
and the other secondary. Only the node with the primary copy can write data,
and will lock both copies while doing so. This strict order prevents deadlocks:
a secondary node will make sure the primary is down before writing data. Stale
and busy flags, stored on stable storage, are used to recover from node failure
later on. Read requests can be fulfilled by either node. Clients will alternatively

22

try the primary and secondary node until one succeeds or both fail.

Pedal does not support network partitions; it has no way of recovering from
split-brain situations. Split-brain will never occur for virtual shared disks, since
a majority is needed for operations to succeed. Also, failover in Pedal requires
the secondary node to ensure the primary is down. This is a problem in itself,
since one can not distinguish between slow and failed nodes in an asynchronous
network. The inability of detecting failed nodes is what makes implementing a
virtual shared disk difficult.

4.5.4 Federated Array of Bricks

A Federated Array of Bricks (FAB) [41] is a distributed disk array. The system
is designed to deliver reliable storage on primarily commodity based hardware.
It uses quorums to implement strictly linearizable data access. A Paxos based
protocol is used to resolve concurrent reconfiguration. Strict linearizability en-
sures single disk semantics are preserved, even in the face of failing writes. This
opens the possibility for operations to abort.

A few key data structures are used to translate logical to physical disk ad-
dresses. A volume layout maps a logical disk and offset to a segment. The
segment group in turn maps the segment to storage nodes, conform the chosen
storage layout. A disk map finally stores the physical disk and offset for actual
pages of the logical disk. Timestamps, unique to each node, allow for consistent
access to the logical disks. When a node encounters a concurrent update with
a higher timestamp, it will abort.

The volume layout and segment groups are replicated using dynamic voting
[15]. This Paxos like algorithm is used for consensus on reconfiguration transi-
tions. The disk map and timestamps are managed locally. While the volume
layout, segment groups and disk maps are stored on disk, NVRAM is used for
storing timestamps and buffer cache.

FAB supports both replication and erasure encoding, to reliably store data
segments on multiple nodes. A write request to these nodes, is handled in two
phases. In the first phase, the data is queued at the nodes; in the second phase,
the queued data is committed to disk. Timestamps are stored for both the
queued data and the on disk data, allowing the algorithm to detect incomplete
writes. A read request finishes in a single phase when no incomplete writes
present themselves. Otherwise, the request will require an additional two phases
for finishing the incomplete write with a higher timestamp.

The timestamp table requires garbage collection to reduce it size. If a times-
tamp would be stored for each disk block, the table would require too much
NVRAM. Timestamps are used to distinguish concurrent updates and to re-
cover from failures; they can be removed when all replicas of a data segment
respond after an update. Since old timestamps can still arrive with delayed mes-
sages, a node will wait for a short period before actually removing the entry.
This period is chosen conservatively based maximum clock skew and scheduling
delay. Another option is to store timestamps for ranges instead of individual

23

blocks. Writes generally update multiple blocks, which enables a tree like orga-
nization of the timestamp table.

Separate NVRAM as used by FAB is not commonly found in commodity
hardware. Virtual shared disks have no such special requirements. FAB also
requires synchronized clocks, for which the network time protocol (NTP) can
be used. If clocks are not synchronized, a lot of unnecessary aborts will occur.
In comparison, timestamps for virtual shared disks are built into the algorithm
itself. There is no requirement for external synchronization.

4.5.5 TickerTAIP

TickerTAIP [9] is a parallel raid architecture that distributes a traditional RAID
array over multiple worker nodes. Communication of data blocks is minimized
by reading the minimal amount of blocks necessary to calculate parity blocks.
No data blocks need to be read for full stripe writes, where all data is replaced;
but some data blocks will have to be read when stripes are partially modified.
The latter can be achieved by either reading the data blocks that will be modi-
fied, or the data blocks that will not be modified. Both methods can be used to
calculate parity. Choosing the method requiring the least amount of reads will
give the best performance.

Another consideration is where to calculate parity blocks. This can be done
either at the originator of the request or the node containing the parity block.
Partial calculations can be done at the nodes with data blocks, and then results
can be shipped off to the node storing the parity block. Using nodes to calculate
partial results, will ensure the load is balanced over as many nodes as possible.

Write atomicity is ensured using a two phase commit. Writes should either
succeed or fail. Data is replicated to enough nodes to ensure the system can at
least survive a single failure; it should be possible for other nodes to restart and
complete partial writes. Only when replication succeeds, is the write committed,
else it aborts without making any changes.

Some form of serializability is needed to guarantee consistent behavior of the
system, especially in view of concurrency and failures. For this purpose Ticker-
TAIP uses request sequencing. This is based on an directed acyclic dependency
graph. The graph expresses the dependencies between requests, making sure
aborted requests propagate to requests depending on them, which in turn will
also abort. Both explicit dependencies, defined by the user, and implicit de-
pendencies, defined by the system are supported. Implicit dependencies use an
arbitrary serializable schedule.

The sequencer uses a state table to record the status of requests based on
their dependencies. This table can be either managed centrally or distributed.
In the central case a single sequencer stores the state table, while a backup
is used to prevent a single point of failure. The distributed case requires a
distributed consensus protocol to ensure a consistent state table on all nodes.

TickerTAIP shifts the burden of consistency onto a sequencer and requires
a distributed consensus protocol for distributing this sequencer over multiple
nodes. There is however no guarantee such a protocol will reach consensus in

24

an asynchronous network. Virtual shared disks do not depend on consensus to
function.

4.5.6 RAMBO

RAMBO [35] is a reconfigurable atomic memory service for dynamic networks.
For reconfiguration it uses the Paxos protocol: to reach consensus on the se-
quence of configurations. Read and write operations are handled using overlap-
ping read and write quorums. Each node stores a list of configurations active in
the system. A background gossip protocol ensures nodes eventually get informed
about new configurations.

Read and write operations are executed for all known configurations. Only
when a fixed point is reached will the operations finish. Fixed point means that
a quorum is reached for all participating configurations. First a query is sent to a
read quorum of all active configurations. Then the new value is propagated to a
write quorum of all active configurations. Nodes can learn of new configurations
during the query phase, and decide to restart.

Garbage collection is used remove old configurations. A process can start
a garbage collection when it is aware of two consecutive configurations in the
system. First a read and write quorum of the old configurations is informed
of the new configuration. Then a write quorum of the new configuration is
informed of the latest tag. Configurations are collected sequentially, one at a
time, only when all previous configurations have already been collected.

Consensus on new configurations is reached by using a global consensus ser-
vice: one for each new configuration. This service is implemented using Paxos.
New configurations can be suggested by members of the previous configuration.
A separate reconfiguration service initiates requests to the consensus service and
subsequently informs the system of the results.

The focus of RAMBO is on reconfiguring quorum configurations. It does
not solve the problems associated with strict linearizability: handling partial
writes of failed processes. Overlapping read and write quorums are used by
RAMBO for linearizability but not strict linearizability. Virtual shared disks
could however be complemented by the reconfiguration system of RAMBO.

25

5 Asynchronous virtual shared disk algorithm

We start by looking at a preliminary algorithm for virtual shared disks. This
algorithm can cope with asynchronous networks but not failing processes. It is
used as an introduction to modeling algorithms in the Promela language for use
by the Spin model checker; and implementing the algorithm in C for use on the
MINIX operating system.

The algorithm uses two types of nodes: sources and targets. Applications
running on sources create read and write operations for the system to process.
Physical storage on targets is used to store data for the virtual shared disk. The
protocol runs on both the source and target nodes and is outlined as follows:

1. Sources send operations to all targets.

2. Targets place the operations in a queue.

3. Targets acknowledge by sending back the complete queue.

4. Sources place the queues from all targets in a view.

5. Sources use the view to decide, and inform targets of a commit order.
6. Targets commit the operations to disk.

It is very important that all sources reach the same decision; else, operations may
be committed in different order at different targets. Sources do not always have
enough information to reach a decision though. That is why targets will continue
to send queue updates to a source, as long as operations from said source are in
its queue. This way sources will eventually gather enough information to decide
on a consistent commit order.

Imagine a situation where sources 1 and 2 simultaneously send an operation
to targets A and B. Operations from source 1 are labeled with 1, operations
from source 2 with 2. The views created by A and B, directly after the operation
is queued, might look as follows for source 1 and 2 respectively:

(A[B] [A[B]
1] 2 1] 2
1 2

The columns of these views, represent the queues at the targets. To be
more precise: a snapshot of the queue when the operation was acknowledged.
Apparently the operations have overtaken each other in this example. Target A
was reached first by operation 1, while target B was reached first by operation
2.

This situation is however not apparent to the sources: they can not dis-
tinguish between operations being queued or being committed. Source 1 for
example can not determine whether operation 2 has already committed at tar-
get B, or still needs to be queued. The sources will therefore wait for more

26

information. Eventually the targets will send another update of their queue,
after which both sources will see:

| A[B]

2
1

1
2

The group of operations 1 and 2 is called a conflict group, since one of these
operations has overtaken the other. A conflict group can be easily recognized by
imagining lines in the view between identical numbers. Crossing lines indicate
conflicting operations which can be added to the conflict group. In this example
operations 1 and 2 are conflicting.

After determining which writes belong to a conflict group, we can determine
a commit order. For example by choosing that the lowest numbered operation
goes first. In this case operation 1 is committed first, followed by operation 2.
Notice that a conflict group should always have the same operations in each
column. This way all sources will reach the same decision.

An alternative result for the concurrent write, could have been the following
view for source 1:

(A B]
3 [2
1] 1

In this case there are two separate conflict groups, each containing only a
single operation. Source 1 will decide to first commit operation 2, and then
operation 1. Source 2 could have given an immediate commit after queuing its
operation.

There is a problem, skipped over by the previous examples. Using a single
sequence number per source is enough when considering only a single operation
per source. But when a source is capable of subsequent operations, more se-
quence numbers are needed. Even when a single source will never have multiple
outstanding operations.

Take the following view for source 1:

A[B]

2
1

1
2

There is no guarantee that both operations labeled with 2 in this view, are
copies of the same operation. The 2 in column B could be part of an older
operation already committed on target A. Then the 2 in column A would be
part of an operation not yet queued at target B. This confusion could lead to
sources constructing incorrect conflict groups. Sources could reach conflicting

27

decisions and targets could commit the wrong operations. The solution is to
give each source two sequence numbers.

The sequence numbers are not needed for a source to track its own opera-
tions. Sources only have one outstanding operation at a time. When a source
starts a new operation, none of its older operations will show up in the view.
This is due to the FIFO property of the communication channels between sources
and targets. An operation from a source even acts as a kind of barrier, starting
the moment it is queued at a target. As long as its operation is in the queue,
another source can add at most one more operation.

Sequence numbers are needed for a source to track the operations of other
sources. The FIFO property of the communication channels ensure that only
one operation per source is queued at a target. This however does not guarantee
that entries in different columns of the view are all part of a single operation,
simply because they are from the same source. Due to message delays, one
column can contain a more recent operation than another.

There is however a limit on how much columns can be skewed relative to each
other. Sources only maintain a view when they have outstanding operations of
their own. So we can guarantee that each column contains at least this one
barrier operation. Then there are only two options for other operations: they
arrived either before or after this barrier operation. Two sequence numbers are
enough to distinguish them.

28

6 Asynchronous virtual shared disk model

The asynchronous model, described in the previous section, can be verified using
the Spin model checker. For this purpose it needs to be implemented in Promela:
the language used by Spin. First we will look at the Promela language constructs
so we can continue with the implementation of a model for the asynchronous
algorithm.

6.1 Promela

Promela, short for Process Meta Language, is a language for modeling parallel
systems. It models the system as a collection of concurrent processes commu-
nicating through channels. Variables can be defined either globally or locally
for processes. Control flow is handled using selection, repetition and break
statements in combination with guards. Communication channels can be syn-
chronous or asynchronous. Given a Promela model, the Spin model checker can
verify its properties like correctness and liveliness.

Guards are an important part of the Promela language for handling non-
determinism. When a statement is not executable a process will block. This
is true for example when trying to receive a message from an empty channel
or comparing two unequal values. In combination with a selection statement,
guards function as conditional statements:

if
a>b—>c
a<b-—>d
else —> e
fi

The selection statement only chooses from executable statements. In other
words, it chooses guard statements that will not block the execution of the
process. The else guard is a special statement that is only executable when the
other guards are not, which in this example is true when a = b.

A similar construct exists for repetitions, which can be exited from using a
break statement:

do
a>b—>c
a<b-—>d
else —> break
od

The repetition statement again only chooses from executable statements. The
difference is that statements in the repetition construct can be executed repeat-
edly as long as the guards are executable. The break statement can be used to
exit from the loop.

Channels are synchronous or asynchronous depending on their buffer size.
A buffer size of 0 indicates a synchronous channel with rendezvous style com-

29

munication. A buffer size of n > 0 indicates an asynchronous channel which can
store up to n messages:

chan x
chan y

[0] of { short };
[4] of { short };

Channel z is a synchronous channel for communicating values of the short
datatype using rendezvous. Channel y is an asynchronous channel capable of
storing up to four messages of the short datatype.

Values are sent and received on a channel using respectively exclamation
and question marks in combination with the channel names:

x132;

ym;

The first statement sends the value 32 on channel z. The second statement
receives a value from channel y and stores it in variable m. Messages in the
channel are handled in FIFO order.

Promela does not allow the creation of functions; only inline macros are sup-
ported. An inline macro call in the code is directly substituted by its definition.
As a consequence, no local variables can be defined for these inline definitions.
Only global variables, accessible by all processes, and local variables, accessible
by only one process, are available. This can make it hard to manage variables
for larger models.

To reduce the state space searched by the SPIN model checker, it is impor-
tant to clean up variables when they are no longer needed. Unused variables
can differentiate program states that could otherwise be merged. Another way
to reduce state space is to define deterministic steps:

d_step {
/x some deterministic code x/

}

Pieces of code that are not subject to non-determinism, for example from other
processes, can be modeled as a single state transition. This significantly reduces
the state space of the model. Because there are no states internal to the deter-
ministic code, it is impossible to jump in or out of it. Possible non-determinism
like choosing between multiple executable guards, is handled deterministically.
It is an error if the code inside the deterministic step blocks.

6.2 Model

The following is a Promela model for concurrent operations on redundantly
distributed data. Clients accessing the data are called sources: they initiate
read and write operations. Servers storing the shared data are called targets:
they service the read and write operations in some sequential order. The systems
can consist of any number of sources and targets.

30

A source initiates an operation by communicating it to all targets, which
store it in their queue. Due to concurrency, the order in which operations are
placed in the queue can differ between targets. All targets should however
commit, the read and write requests in the same order; a coordinated decision
needs to be made on which operations commit first.

The content of a target’s queue is used as a repsonse to sources queuing an
operation. Sources build up a combined view of all the target queues. This
allows sources to determine the correct order to commit operations in and send
this order to the targets. Since the decision algorithm ensures all sources reach
the same conclusion, the operations will commit in the same order on all targets,
despite possible concurrency.

6.2.1 Source queue

Sources run in a loop, sending out read and write operations. In practice these
operations would be issued by other applications running on the source ma-
chine, but in this model we can simulate a constant stream of requests. The
model checker will verify all possible interleavings of these requests, since mes-
sage delivery can be arbitrarily delayed. Without loss off generality only write
operations are considered: if writes are committed in identical order on all tar-
gets, then so would reads. Operations are first queued and then committed by
the source:

do

s < SEQUENCE NUMBERS —>
/* receive write operation —> x/
source queue(my id + s x SOURCES);
source_commit(my_id + s * SOURCES);
d_step {

util _wipe view(queue view);

s++

}

else —> s =0
od
The acknowledgments from queuing the operation are stored in a queue view.
This view is used by the commit algorithm to decide on a suitable order of
operations. After the commit, when the write has finished, the view is cleaned
for the next iteration.

Sequence numbers are used to distinguish between subsequent requests. It
turns out that two sequence numbers are enough: once a source has queued a
write, the other writes in the view are either from a previous or future commit.
The sequence number combined with the identity of the source forms a unique
id for each operation; ensuring no two different requests using the same id can
be present in the queue view. For simplicity, writes are identified by this id,
instead of the data read or written. Any data fields can be omitted from the
protocol as a consequence.

A new write operation from the source is first queued. A message list is
constructed containing only the id of this new operation:

31

d_step {
assert(c =— 0);

/* queue the writes at the targets x/
message list.el [0] = write;
do
c¢ < TARGETS —>
source send(queue, ¢ + 1, message list);
c++
: else —> ¢ = 0; break
od;
util wipe queue(message list)

}

All targets, numbered from 1 up to TARGETS, are sent a queue request with
the constructed list. After cleaning the message list, the source will move on
and wait for acknowledgments.

6.2.2 Target queue

Targets wait for incoming messages to process. Messages can be either queue or
commit requests: queue message lists contain a single operation id, while commit
message lists contain ids in the order in which they need to be committed:

progress: end: do

target receive(type, id, message list);
d_ step {
Tif
type == queue —> target queue(id, message list)
type =— commit —> target commit(id, message list)
fi;
type = 0; id = 0; util_wipe_queue(message list)

od

The message list, type variable and id variable, are cleaned after the request
has been finished.

Queuing of operations on the target is relatively simple. All sources with
requests already in the queue need to be informed of the new operation. They
might need this new information to reach a decision. Since no source can have
more than one operation in the queue, we can iterate through the queue list and
send the source of each request a queue list update:

assert(q = 0);
do
q < QUEUE_SIZE && queue list.el[g] !'= 0 —>
target send(queue ack, ID(queue list.el[q]), message list);
q++
:: else —> g = 0; break
od;
util add queue(message list, queue list);
target send(queue ack, id, queue list)

32

The source of the new requests expects the complete queue in the acknowledg-
ment, so it is important to add the new request after updates have been sent
out. Only after the new request has been queued, is the acknowledgment sent
back to the source.

6.2.3 Source commit

The source is waiting for queue acknowledgments of its operation. It expects to
receive at least one acknowledgment from each target:

do
¢ < TARGETS —>
source receive(type, id, message list);
d_step {
if
type = commit_ack —>
util _rem queue(message list, queue view[id — 1]);
type = queue ack —>
do
q < QUEUE_SIZE —>
if
message list.el[q] == write —> q = 0; c++; break
else —> g++
fi
else —> q = 0; break
od;
util_add queue(message list, queue view[id — 1]);
fi;
type = 0; id = 0; util wipe queue(message list)
}
else —> ¢ = 0; break
od

Waiting for acknowledgments, it is possible to receive messages of other concur-
rent updates to the queue. These can be either commit acknowledgments, when
another source is committing operations, or additional queue acknowledgments,
when another source is also queuing operations.

Commit acknowledgments are directly processed by updating the queue
view. Queue acknowledgments are not, since they can either be acknowledg-
ments of the initial queue request or concurrent updates of the queue. We can
distinguish between the two, because only the acknowledgments contain the
id of the queue request in their message list. To ensure all targets acknowl-
edged the initial queue request, the counter is only updated on queue request
acknowledgments.

After all targets have acknowledged the queue request, the source will try
to immediately commit the queued operations. This might fail when there is
insufficient information for a decision. The source will then wait for additional
messages, committing when possible and stopping only when its own operation
has been committed on all targets:

do

33

source receive(type, id, message list);

if
type = commit_ack —>
d_step {
update base(message list);
util _rem queue(message list, queue view[id — 1]);
type = 0; id = 0; util_wipe queue(message list);
break _when done(write , 0);
d_step {
try commit(write, base)
}
type == queue ack —>
d_step {
util _add queue(message list, queue view[id — 1]);
type = 0; id = 0; util_wipe queue(message list);
try _commit(write , base)
}
fi

od

The messages can be either commit or queue acknowledgments. Queue acknowl-
edgments add ids to the queue view, while commit acknowledgments remove ids
from the queue view. Both cases change the information in the queue view and
give the source a new opportunity to try and commit.

The base variable indicates which rows of the queue view have already been
committed. It prevents a source from repeatedly committing the same opera-
tions and is automatically incremented when the source successfully commits.
The base variable is decremented when the first acknowledgment of a commit
arrives.

6.2.4 Target commit

When commit requests are processed by the target, it is first checked if the
operations are still in the queue. It is possible another source has concurrently
committed the same operations and its request arrived earlier. The variable ¢
is used to indicate success when set to QUEUE _SIZFE and failure when set to
0:

do
q < QUEUE SIZE && message list.el[q] != 0 —>
if
count list.el[message list.el[q] — 1] > 0 —> g++
else —> q = 0; break
fi
else —> q = QUEUE_SIZE; break
od

A count list is used to check if an operation is in the queue. It has been
created earlier using a utility function and contains the number of occurrences
of operation id n at position n — 1. The commit request is processed only when
all operations in the message list are present in the queue, at which point the
sources of all writes in the queue are informed about the commit:

34

do
¢ < COUNT_SIZE && count_list.el[c] '= 0 —>
target send(commit _ack, ¢ + 1, message list);
c+H
¢ < COUNT SIZE && count list.el[c] == 0 —>
c+H

;. else —> ¢ = 0; break

od;

util_rem queue(message list, queue list)

This includes the original source of the commit request.

6.2.5 Commit algorithm

The heart of the model is formed by the commit algorithm, which tries to
commit operations stored in the queue view. Whether this succeeds depends
on the amount of information available and the progress of concurrent sources.
First a conflict group needs to be found: a minimal number of consecutive rows
in the queue view, containing exactly 0 or TARGETS occurrences of operations.
It indicates a queue state where all targets have received the same operations,
but possibly in a different order. The following code is repeated by an outer
loop to find a conflict group, and will add a new row to the count list at each
iteration:

util_count_row(q + base, queue view, count_ list);
do
¢ < COUNT_SIZE && count_list.el[c] = 0 —> c++
¢ < COUNT SIZE && count list.el[c] == TARGETS —> c++
else —>
if
¢ < COUNT SIZE —> q++; ¢ = 0; break
else —> q++; break
fi
od

The variable ¢ is incremented each iteration and indicates the highest of the
consecutive rows. The variable ¢ is used to iterate over the different target
queues in the the queue view. After the inner loop ends it doubles as an indicator
for failure or success: failure when ¢ = 0 and success when ¢ = COUNT _SIZE.
On success a message list is created by concatenating the operations in the count
list. The message list will be automatically ordered by operation id and can be
sent to all targets:

util create message(message list, count list);
do
t < TARGETS —>
source send(commit, t 4+ 1, message list);
t++
else —> t = 0; break
od

35

This algorithm in combination with the alternating sequence numbers, ensure
that all sources decide on an identical commit order.

36

7 Asynchronous virtual shared disk implementa-
tion

7.1 MINIX

Contrary to monolithic operating systems like Windows and Linux, MINIX is
designed to be modular. The MINIX kernel is kept small, while drivers and other
services run as separate user-mode processes. Isolating these processes from the
kernel improves reliability, since user-mode processes are less likely to take down
the entire system. Services are implemented using server processes, like the file
server, process server and reincarnation server. Drivers are implemented using
device processes like the disk driver, network driver and audio driver. MINIX
ensures these usermode processes can not execute any privileged or otherwise
unsafe instructions: they have to use kernel calls.

The asynchronous implementation presented here is a normal user process.
Implementing the algorithm as device process would have been preferable, but
causes a layering violation. In MINIX the block and network drivers are accessed
through the file system. An application accessing a virtual shared disk driver
will also use the file server, blocking it in the process. This leaves the virtual
shared disk driver unable to access either block or network driver. Even if we
somehow bypass the blocked file server, these drivers will not be accessible by
default. The network driver for example will only respond to requests from the
file server. Without modifying MINIX internals, the only option is to run the
algorithm as a user process.

Still, in preparation for more invasive changes to MINIX, the network is
accessed by the implementation using native MINIX system calls. Using POSIX
calls would not be appropriate for an operating system process.

7.2 Implementation

The following is a MINIX implementation of the Promela model in C. It mirrors
the Promela model closely, except for some implementation specific adaptations.
Contrary to the explanation of the Promela model, which follows the sequence
of events leading to a successful write, this section will look at the separate
implementations of the source and target code.

7.2.1 Source

The source is started on the command line using a parameter list of addresses.
The list contains the addresses of all targets used by the protocol: each target
identified using an ip and port pair. Targets can run on the same machine using
different ports. The source starts by allocating memory:

queue = malloc(sizeof(action t) = CONC CONN * target count);
if (queue = NULL) error ("MALLOC");

queue _count = malloc(sizeof(int) x target count);

37

if (queue count == NULL) error ("MALLOC");

for (i = 0; i < target_count; i++) {
queue count[i] = 0;

}
The queue array is used to store the queue view; each queue contains an ar-
ray of CONC _CONN actions. The amount of queues needed is indicated by
target _count: the number of target addresses passed when starting the source
code. The queue count stores the size of each queue.

A write operation is queued by sending it to all targets. Each message
containing a single action comprised of the source address, a sequence number
and the data to be written:

msg.type = QUEUE_ REQ;
msg.size = 1;
msg.act = &act;

act.addr.ip = 0;
act.addr.port =
act.seq = seq;

act.data = data;

0;

for (i = 0; i < target_count; i++) {
send(&target[i], &msg);
}

for (i = 0; i < target_count; i++) {
doConfirm(&act);
}

The source waits for confirmation of the write action from all targets. The
address and port number 0 have a special meaning: they are automatically
replaced with the real ip and port of the source by the communication layer.
This way, only the communication layer needs to know the ip and port numbers.

Care needs to be taken when counting confirmations. Additional update
messages can be sent from a previously confirmed target. Such messages should
be processed, but only messages containing the pending write should be counted:

do {
recv(&src, &msg);

pos = targetPosition(&src);
if (pos < 0) error("POSITION");

switch (msg.type) {

case QUEUE ACK :
addQueue(msg.act, msg.size, queue[pos], &queue count[pos]);
confirmed = inQueue(pending, 1, msg.act, msg.size);
break ;

case COMMIT ACK :
remQueue(msg.act, msg.size , queue[pos], &queue count[pos]);
confirmed = 0;
break ;

38

} while (!confirmed);

Since the loop only exits on initial queue acknowledgments, only the correct
acknowledgments are counted.

When the write action has been confirmed by all targets, the source moves
on and tries to commit:

do {
recv(&src, &msg);

pos = targetPosition(&src);
if (pos < 0) error("POSITION");

switch (msg.type) {
case QUEUE ACK :
addQueue(msg.act, msg.size , queue[pos], &queue count[pos]);
finished = 0;
if (!pending) pending = tryCommit ();
break ;
case COMMIT_ACK :
remQueue(msg.act, msg.size, queue[pos], &queue count[pos]);

finished = !needCommit(seq, data);
if (!finished && !pending) pending = tryCommit ();
break ;

}
} while (!finished);

The pending variable indicates a previous commit is in progress; this prevents
duplicate attempts to commit the same writes. The finished variable is set when
no queue contains the initial write request anymore: all targets have committed
the request and the source is done.

Determining whether a commit can be made is a lot easier in C than it is
in Promela. A conflict group is found by comparing queue contents for increas-
ing row numbers. When all queues contain the same actions, the row number
indicates the last row of the conflict group:

for (i = 0; i < CONC CONN; i++) {
for (j = 0; j < target_count; j++4) {
n=(j+ 1) % target count;
match = inQueue(queue[j], queue count[j], queue[n], queue count[n]);
if (!match) break;

}

if (match) {
sendCommit(i);
return 1;

}
}

Variable i iterates over the rows, while variable j iterates over the target queues.
The first i actions in queue j are compared to the next queue n. There is
a conflict group when all actions in the first ¢ position of all the queues are
identical.

39

7.2.2 Target

The target is waiting in an endless loop for incoming messages to process:

while (1) {
recv(&src, &msg);

switch (msg.type) {
case QUEUE REQ
doQueue(&src, &msg);
break ;
case COMMIT REQ :
doCommit(&src, &msg);
break ;
default
error ("TYPE");
ks

}

Depending on the message type, the actions in the request are either queued or
committed.

When the message is a request to queue, the incoming message can be easily
transformed into an acknowledgment:

msg—>type = QUEUE ACK;

for (i = 0; i < queue_count; i++) {
send(&queue[i].addr, msg);

addQueue(msg—>act , msg—>size , queue, &queue count);

msg—>size = queue count;
msg—>act = queue;

send(src, msg);

All other sources present in the queue are informed of the new action. The source
of the original request is sent an acknowledgment containing the complete queue.

When the message is a request to commit, a check needs to be made for
previous concurrent commits. Only when all actions are still present in the
queue, is the commit executed:

queued = inQueue(msg—>act, msg—>size , queue, queue_ count);
if (!lqueued) return;

for (i = 0; i < msg—>size; i++) {
value = msg—>act[i].data;

}

msg—>type = COMMIT ACK;

for (i = 0; i < queue count; i++) {
send(&queue[i].addr, msg);

40

remQueue(msg—>act , msg—>size , queue, &queue count);

The original message is reused for the acknowledgment. The sources of all
actions in the queue need to be informed, including the source of the request.

41

8 Redundant virtual shared disk algorithm

The algorithm used in the previous sections has an important drawback: it does
not allow for faulty processes. The asynchronous algorithm requires up-to-date
information from all processes to decide on a correct ordering of operations.
Therefore, a single crashing or otherwise unresponsive process can prevent read
and write operations from completing.

This limitation does not exist for atomic registers. Atomic registers linearize
read and write operations and can be constructed while only communicating
with a majority of processes. Since only a majority of processes is needed, no
minority of faulty processes can prevent the system from making progress. The
system is wait-free when a majority of processes is correct. It might be possible
to simulate a shared disk based on algorithms for atomic registers. There is
however an issue with crash consistency.

8.1 Strict linearizability

Atomic register algorithms in message passing systems generally work on the
basis of broadcasting messages to all processes in the system and waiting for
responses from a majority of them. Writing to and reading from a majority of
processes, ensures a newly written value is received by subsequent reads. The
use of timestamps then enables the reader to select the most recent value from
the responses. What happens however when a new value is written to only a
minority of processes, because the writer crashes?

Partially written values can take effect at an arbitrary time in the future.
Since the value has only been written to a minority of processes, there is no
guarantee it will be received by subsequent reads. Assuming no new writes take
place, this value can then surface in the system long after the original writer
has crashed. One would prefer that subsequent reads are indicative of whether
a preceding write failed or succeeded: similar to a shared disk.

The crash consistency problem described above, does not break the lineariz-
ability property of atomic registers. As far as atomic registers are concerned,
partial writes never end. It is therefore correct, in terms of linearizability, for the
written value to take effect at an arbitrary time in the future. To prevent this
from happening, a new consistency model which includes crashing operations is
required: strict linearizability [2].

A successful operation should take effect between its invocation and response,
while a partial operation should take effect between its invocation and crash,
or never take effect at all. These requirements for strict linearizability turn out
to be impossible to implement in a wait-free manner for even simple atomic
registers|2].

8.2 Probabilistic Consensus

Some form of consensus is needed to determine whether an operation will take
effect or not. This ensures writes either take effect before a potential crash

42

or never at all. However, since partial operations can not be distinguished
from slow operations there is a possibility for otherwise successful operations
to be invalidated by consensus. Processes can no longer guarantee that every
operation succeeds. Atomic registers for example would need to be extended
with the ability for operations to abort.

Since deterministic consensus is impossible in asynchronous message passing
systems, probabilistic consensus can be used instead [13, 11, 14]. A processes
will try to reach consensus before finishing its operation. Because probabilistic
consensus is not guaranteed, the operation will abort if consensus is not reached
within a limited number of rounds. It is up to the user to determine what is
an acceptable number of rounds. This maximum ensures the algorithm stays
wait-free.

8.3 Timestamps

Atomic registers can use timestamps to distinguish between writes and deter-
mine which is the most recent value. However, using a probabilistic consensus
algorithm based on rounds does not require explicit timestamps. Values can
instead be identified with their respective round numbers: there can only be
consensus on a single value in any particular round. The rounds of the consen-
sus algorithm are in effect the timestamps.

Although not optimal, the round numbers used by the consensus algorithm
will be unbounded. It is assumed that the set of numbers can be made large
enough to never run out in any particular use case. Another option would be
to use round numbers based on bounded timestamps [27, 16], but these exhibit
a similar problem to the one we are trying to solve.

New bounded timestamps are calculated based on currently active times-
tamps. This ensures new timestamps are higher then any timestamps in the
system. Active timestamps will therefore have to be recorded at a majority
of processes. Recording timestamps however, is remarkably similar to writing
values in atomic registers. Partially recorded timestamps can resurface at inop-
portune moments, potentially blocking the bounded timestamp algorithm.

8.4 Redundant algorithm

The redundant algorithm uses probabilistic consensus to strictly linearize virtual
shared disk operations. Since consensus can not be guaranteed, operations
have a chance to abort. Notice however that a consensus algorithm will always
succeed if only a single new value is proposed. In other words: aborts can be
ruled out when the virtual shared disk encounters no writes concurrent with
other read or write operations. This is not an unreasonable assumption to make
when the shared disk will be used to store a filesystem.

Deviating from this concurrency restriction does not compromise the in-
tegrity of the storage system. Though it is no longer guaranteed that the sys-
tem will successfully complete the operation, it will not leave the system in an
inconsistent state. Chances of an abort occurring can be reduced by increasing

43

the number of rounds allowed to reach consensus. This is a trade off between
concurrency and responsiveness of the system.

Similar to the asynchronous version, the redundant algorithm uses multi-
ple servers to store values and metadata. The metadata consists of the most
current round and the last concurrent round encountered by the server. This
information is needed to reach consensus: we can decide on a value when it is
two rounds ahead of the last concurrent round. Other sequential or concurrent
processes are guaranteed to detect such a value.

The algorithm behaves very similar for both reads and writes. The basic
difference being that writes can introduce new values, while reads can only
propagate existing values. Both operations start by the client requesting infor-
mation on the current round from each server. When a majority of servers have
responded, both operations proceed by rewriting the value of the highest round
received. If multiple values are present in the highest round, the operations
can choose any one of them. The rewrite ensures all subsequent operations will
detect at least this highest round.

The subsequent round is started by either writing an existing value to the
next round in case of a read operation or writing a new value in case of a
write operation. The servers respond to each write by returning the value and
metadata of the highest rounds they encountered. Read operations will adopt
a new value if they detect one in a higher round. Write operations will retry if
the value in a higher round is not their own. Both operations will abort if no
consensus is reached within a predetermined number of rounds.

Consensus is reached when a value is two rounds ahead of the last concurrent
round recorded by a majority of processes. This ensures that other concurrent
operations will detect the new value and either adopt it or abort. One round
is not sufficient, because a concurrent operation could still write to the current
round. A two round lead can be reduced to a one round lead because of con-
currency, but this is still sufficient for any concurrent process to detect the new
value.

Servers store the value and metadata of the highest rounds they encountered.
The value and current round number on the server is updated when receiving a
value with a higher round number. The concurrent round number on the server
is updated when receiving a value, different from the one currently stored. It is
updated to the current round number of either the received value or the stored
value, whichever is higher. In a sense the concurrent round number stores the
last round where the current value was not the only value left. This makes it
possible for clients to detect the lead of stored values for reaching consensus.

44

9 Redundant virtual shared disk model and im-
plementation

In this section we will look at a combined model and implementation of a re-
dundant agorithm for virtual shared disks. Contrary to chapters 6 and 7, code
is shared between the Promela model and MINIX implementation. This allows
for more flexibility in the Promela model, since C-code supports more language
constructs; functions with local variables for example. The MINIX implemena-
tion has the added benefit of being code pieces being model checked, ruling out
any conceptual mistakes in those parts.

9.1 Server code

The server runs in a simple loop, receiving incoming request, processing them
and sending out a response. Receiving and sending of messages is implemented
in either Promela or C. The Spin model checker requires the use of Promela
channels, while the MINIX implementation requires operating system specific
C-code for communicating over ethernet. Both however share the use of the
merge function, which can be seen in the following code snippet:

inline process() {
receive _msg();

¢ _code { merge(&Pserver—>in, &Pserver—>out); };

send msg()

}

The process macro function runs in an endless loop for each server process
in the Promela model. Every time a message is received, the state of the server
is updated by merging the new information (in) with the information already
stored on the server (out). As a response, the updated information in out is
sent to the client originating the initial request.

The merge C-code ensures stored data is correctly updated with new infor-
mation. The data stored on the server consists of <walue, current, concurrent>
tuples. The value of the highest round encountered is stored by the server in
value. The round this value was encountered in, is stored in current, while the
last round where multiple values where active is stored in concurrent. These
three values allow a client to determine when a value is two rounds ahead. They
are updated as follows:

void merge(store t xin, store t xout) {
if (in—>value != out—>value) {
if (in—>current > out—>current) {
out—>concurrent = MAX(in—>concurrent , out—>current);

} else {

out—>concurrent = MAX(in—>current s out—>concurrent);

}
} else {

45

out—>concurrent = MAX(in—>concurrent, out—>concurrent);

if (in—>current > out—>current) {
out—>value = in—>value;
out—>current = in—>current;

First we look at the value of the incoming and stored tuples. Tuples storing
values that are not equal can indicate concurrency: when adopting the tuple
with the highest round, we need to ensure its concurrent round is at least as
high as the current round of the other tuple. Tuples carrying equal values will
never cause concurrency in their current voting rounds: the highest concurrent
round can be determined solely by comparing earlier recorded concurrency. The
last step is to adopt the value and current round of the tuple with the highest
round.

9.2 Client code

Clients attempt to read and writes values in a limited number of steps. Op-
erations can fail if probabilistic consensus is not reached within those steps:
operations can abort. Similar to how tuples from clients are used to update tu-
ples stored on servers, tuples from servers are used to update tuples on clients.
Clients scatter tuples to every possible server and gather response tuples from
at least a majority. The tuples are constructed by the client specifically to reach
consensus for a desired operation. Take for example a read operation:

inline read () {
assert(count steps == 0);

do
;1 count_steps < MAX_STEPS —>
scatter _msg();

gather _msg();
count_steps++;

if
c_expr { read done(&Pclient—>store, &Pclient—>out) } —> break
else —> ¢ _code { read step(&Pclient—>store, &Pclient—>out); }

fi
:: else —> break
od;
count steps = 0

}

The algorithm updates its local tuple by scattering and gathering messages.
Shared C-code is used each step to determine if consensus has been reached, or
to construct a new outgoing tuple if this is not the case. The goal is to have a
value two rounds ahead of the competition: this guarantees concurrent processes

46

will detect the winning value when it is at least one round ahead. There are
however restrictions to introducing a value into a new round.

Processes start with a tuple that is zeroed out. Such a tuple will have no
influence on the servers, except for when the virtual shared disk has just been
initialized. One could think of a freshly started virtual shared disk as being
zeroed out; but even then, there is no consensus yet because of the zeroes in the
concurrent fields. Responses to this tuple give the client a starting point for its
operation.

Before a new round can be initiated, it needs to be certain the previous
round has reached a majority of servers. This prevents processes from repeatedly
advancing a round and crashing; would this be the case, then consensus would
no longer be guaranteed for values two rounds ahead. Therefore the algorithm
will first rewrite the highest round it encountered to a majority of servers. Only
then will it advance to a higher round.

The algorithm keeps track of these different states by separately storing the
outgoing tuple from the merged tuple. After scattering and gathering, these
tuples can be compared. New rounds can be started when the merged tuple has
the same current round as the outgoing tuple. If the merged tuple has a higher
current round, then a rewrite is needed for this round. The actual comparison
is done in C-code:

void read step(store t xstore, store t xout) {

out—>value = store—>value;
out—>concurrent = store—>concurrent;
if (store—>current = out—>current) {
out—>current = store—>current + 1;
} else {
out—>current = store—>current;
}

The merged tuple in store is guaranteed to incorporate the tuple in out after
a scatter and gather operation; the value and concurrent round can be safely
copied. Depending on the current rounds of both tuples we either start a new
round when they are equal, or rewrite the most recent round when they are not.
This still leaves detecting consensus when a value is two rounds ahead of the
competion. For this another piece of C-code is used:

int read done(store t =xstore, store t xout) {
if (store—>current = store—>concurrent + 2) {
return store—>current = out—>current;

return store—>current > store—>concurrent + 2;

It uses the same reasoning as the previous function to determine consensus.
It is not enough to detect a value that is two rounds ahead, we need to be sure
this information has reached a majority. Separately storing the last outgoing

47

tuple can help guarantee a majority has been informed. Detecting a value more
then two rounds ahead, guarantees a majority will have it stored at least two
rounds ahead.

A write operation functions not much different than the read operation used
as an example above. The only difference is that a write operation will stick to
its own value. Compare the following C-code for taking a write step, with that
of taking a read step:

void write step(store t xstore, store_t xout) {

out—>concurrent = store—>concurrent;
if (store—>current = out—>current) {
out—>current = store—>current + 1;
} else {
out—>current = store—>current;

}

The only difference is in the missing first line compared to the read step.
Read operations will adopt other values, if that will increase their chances to
reach consensus. Write operations on the other hand will only want to force their
value onto the system. A more explicit example can be seen in the following
listing. It shows how a write operation will only finish when its own value has
reached consensus:

int write_done(store t xstore, store t xout) {
if (store—>value != out—>value) {
return FALSE;

} else {

return read done(store, out);
}

}

48

10 Conclusion

The promising ability of atomic registers to reach consistency without consensus,
can not be directly translated to a virtual shared disk algorithm. Some form of
consensus is still needed to prevent failing processes from breaking consistency
when crashes are externally observable. While using probabilistic consensus
does not guarantee termination in a limited number of steps, this risk can be
mitigated.

It is not unreasonable to expect the primary application of a virtual shared
disk to be the storage of filesystems. A shared disk file system will prevent
unwanted concurrency on the underlying storage system, limiting it to at most
concurrent reads. This paper shows how a reliable virtual shared disk can be
implemented when adhering to these constraints. If concurrency is limited to
concurrent reads, all operations are guaranteed to succeed.

Still, operations that break the concurrency constraints are not sure to fail.
Neither do they endanger the integrity of the storage system. The inherit ben-
efit of using probabilistic consensus is the chance to successfully complete any
concurrent operation. Increasing the number of rounds allowed for operations
in the virtual shared disk algorithm, will increase the chance of concurrent op-
erations to succeed. It is up to the user to balance system responsiveness with
concurrency requirements.

49

References

[1]

2]

3]

4]

[5]

6]

7]

8]

[9]

[10]

[11]

[12]

Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure detection
and consensus in the crash-recovery model. Distrib. Comput., 13(2):99-125,
2000.

M.K. Aguilera and S Frolund. Strict linearizability and the power of abort-
ing. Technical Report HPL-2003-241, HP Laboratories Palo Alto, 2003.

Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and P.W.
Hutto. Causal memory: Definitions, implementation and programming.
Technical Report GIT-CC-93-55, Georgia Institute of Technology, 1993.

James H. Anderson, Ambuj K. Singh, and Mohamed G. Gouda. The elusive
atomic register. Technical report, Austin, TX, USA, 1986.

James Aspnes, Maurice Herlihy, and Nir Shavit. Counting networks and
multi-processor coordination. In STOC ’91: Proceedings of the twenty-
third annual ACM Symposium on Theory of Computing, pages 348-358,
New York, NY, USA, 1991. ACM.

Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly
in message-passing systems. Journal of the ACM, 42(1):124-142, January
1995.

James E. Burns and Gary L. Peterson. Constructing multi-reader atomic
values from non-atomic values. In PODC ’87: Proceedings of the sixth
annual ACM Symposium on Principles of distributed computing, pages 222—
231, New York, NY, USA, 1987. ACM.

Mike Burrows. The chubby lock service for loosely-coupled distributed
systems. In OSDI ’06: Proceedings of the 7th symposium on Operating
systems design and implementation, pages 335-350, Berkeley, CA, USA,
2006. USENIX Association.

Pei Cao, Swee Boon Lin, Shivakumar Venkataraman, and John Wilkes. The
tickertaip parallel raid architecture. ACM Trans. Comput. Syst., 12(3):236-
269, 1994.

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):1-26, 2008.

Ling Cheung. Randomized wait-free consensus using an atomicity assump-
tion. In Proceedings OPODIS 2005, pages 36-45, 2005.

Benny Chor, Amos Israeli, and Ming Li. On processor coordination using
asynchronous hardware. In PODC ’87: Proceedings of the sizth annual
ACM Symposium on Principles of distributed computing, pages 86-97, New
York, NY, USA, 1987. ACM.

a0

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Benny Chor, Amos Israeli, and Ming Li. Wait-free consensus using asyn-
chronous hardware. STAM J. Comput., 23(4):701-712, 1994.

Carole Delporte-Gallet and Hugues Fauconnier. Two consensus algorithms
with atomic registers and failure detector omega. In 10th International
Conference on Distributed Computing and Networking, pages 251-262,
Berlin, Heidelberg, 2009. Springer-Verlag.

Danny Dolev, Idit Keidar, and Esti Yeger Lotem. Dynamic voting for
consistent primary components. In PODC' °97: Proceedings of the sizteenth
annual ACM symposium on Principles of distributed computing, pages 63—
71, New York, NY, USA, 1997. ACM.

Danny Dolev and Nir Shavit. Bounded concurrent time-stamping. SITAM
J. Comput., 26(2):418-455, 1997.

Partha Dutta, Rachid Guerraoui, Ron R. Levy, and Arindam Chakraborty.
How fast can a distributed atomic read be? In PODC ’04: Proceedings
of the twenty-third annual ACM symposium on Principles of distributed
computing, pages 236—245, New York, NY, USA, 2004. ACM.

Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the
presence of partial synchrony. J. ACM, 35(2):288-323, 1988.

Lars Ellenberg. Drbd 9 & device-mapper. In Proceedings of Linuz-Kongress
2008 October 7-10, Hamburg, Germany, 2008.

Michael J. Fischer, Nancy A. Lynch, and M. S. Paterson. Impossibility
of distributed consensus with one faulty processor. Journal of the ACM,
32(2):374-382, April 1985.

Chryssis Georgiou, Nicolas Nicolaou, and Alexander A. Shvartsman. On the
robustness of (semi) fast quorum-based implementations of atomic shared
memory. In PODC ’08: Proceedings of the twenty-seventh ACM sympo-
stum on Principles of distributed computing, pages 425-425, New York,
NY, USA, 2008. ACM.

Chryssis Georgiou, Nicolas C. Nicolaou, and Alexander A. Shvartsman.
Fault-tolerant semifast implementations of atomic read/write registers. In
SPAA °06: Proceedings of the eighteenth annual ACM symposium on Par-
allelism in algorithms and architectures, pages 281-290, New York, NY,
USA, 2006. ACM.

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file
system. SIGOPS Oper. Syst. Rev., 37(5):29-43, 2003.

Maurice Herlihy. A quorum-consensus replication method for abstract data
types. ACM Trans. Comput. Syst., 4(1):32-53, 1986.

o1

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]

[36]

137]

138]

[39]

Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correct-
ness condition for concurrent objects. ACM Trans. Program. Lang. Syst.,
12(3):463-492, 1990.

Hui i Hsiao and David J. Dewitt. Chained declustering: A new availability
strategy for multiprocssor database machines. In in Proceedings of 6th
International Data Engineering Conference, pages 456-465, 1990.

Amos Israeli and Ming Li. Bounded time-stamps. Distrib. Comput.,
6(4):205-209, 1993.

Amos Israeli and Amnon Shaham. Optimal multi-writer multi-reader
atomic register. In Proceedings of the 11th ACM Symposium on Princi-
ples of Distributed Computing, pages 71-82. ACM Press, 1992.

L. Lamport. How to make a multiprocessor computer that correctly exe-
cutes multiprocess progranm. IEEE Trans. Comput., 28(9):690-691, 1979.

L. Lamport. Paxos made simple. ACM SIGACT News, 32(4):18-25, 2001.

Leslie Lamport. On interprocess communication. Distributed Computing,
1(2):77-101, 1986.

Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133-169, 1998.

Edward K. Lee and Chandramohan A. Thekkath. Petal: distributed virtual
disks. In ASPLOS-VII: Proceedings of the seventh international conference
on Architectural support for programming languages and operating systems,
pages 84-92, New York, NY, USA, 1996. ACM.

Ming Li, John Tromp, and Paul M. B. Vitanyi. How to share concurrent
wait-free variables. J. ACM, 43(4):723-746, 1996.

Nancy Lynch and Alex A. Shvartsman. Rambo: A reconfigurable atomic
memory service for dynamic networks. In In DISC, pages 173-190, 2002.

Richard Newman-Wolfe. A protocol for wait-free, atomic, multi-reader
shared variables. In PODC ’87: Proceedings of the sizth annual ACM
Symposium on Principles of distributed computing, pages 232—248, New
York, NY, USA, 1987. ACM.

Christos H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26(4):631-653, 1979.

Gary L. Peterson. Concurrent reading while writing. ACM Trans. Program.
Lang. Syst., 5(1):46-55, 1983.

Gary L. Peterson and James E. Burns. Concurrent reading while writing II:
The multi-writer case. In SFCS ’87: Proceedings of the 28th Annual Sym-
posium on Foundations of Computer Science, pages 383-392, Washington,
DC, USA, 1987. IEEE Computer Society.

92

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Philipp Reisner. Drbd v8: Replicated storage with shared disk semantics.
In Proceedings of the 12th International Linux System Technology Confer-
ence October 11-14, University of Hamburg, Germany, 2005.

Yasushi Saito, Svend Frolund, Alistair Veitch, Arif Merchant, and Susan
Spence. Fab: building distributed enterprise disk arrays from commodity
components. In ASPLOS-XI: Proceedings of the 11th international con-
ference on Architectural support for programming languages and operating
systems, pages 48-58, New York, NY, USA, 2004. ACM.

Nir Shavit and Asaph Zemach. Diffracting trees. ACM Trans. Comput.
Syst., 14(4):385-428, 1996.

Ambuj K. Singh, James H. Anderson, and Mohamed G. Gouda. The elusive
atomic register revisited. In PODC ’87: Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing, pages 206-221,
New York, NY, USA, 1987. ACM.

Robbert van Renesse and Andrew S. Tanenbaum. Voting with ghosts.
In Proc. 8th International Conference on Distributed Computing Systems,
pages 456—462, 1988.

Paul M. B. Vitanyi and Baruch Awerbuch. Atomic shared register access by
asynchronous hardware. Symposium on Foundations of Computer Science,
pages 233243, 1986.

W. E. Weihl. Local atomicity properties: modular concurrency control for
abstract data types. ACM Trans. Program. Lang. Syst., 11(2):249-282,
1989.

33

A Promela code of the asynchronous algorithm

#define TARGETS 2

#define SOURCES 2

#define CHAN SIZE 10
#define SEQUENCE NUMBERS 2

#define CHANNELS 8 /+ TARGETS SOURCES * 2 x/
#define QUEUE SIZE 2 /x SOURCES */
#define COUNT_SIZE 4 /x SOURCES x SEQUENCE NUMBERS x/

#define ID(write)
(((write — 1) % SOURCES) + 1)
#define INDEX(direction , source, target) \
(direction — forward —> \
(source — 1) = TARGETS + (target — 1) :
(source — 1) * TARGETS + (target — 1) + TARGETS * SOURCES)
#define CHANNEL(direction , source, target) \
channels[INDEX(direction , source, target)]

typedef queue array {
byte el [QUEUE_ SIZE] 0}
typedef count array {
byte el [COUNT_SIZE] = 0}

queue array disk [TARGETS];

mtype = {forward, backward}
mtype = {queue, commit, queue ack, commit_ack};
chan channels [CHANNELS] = [CHAN SIZE] of {mtype, queue array};

inline util_add queue(a, b) { d_step {
/+ append elements from queue a to queue b x/

assert(i =— 0);
assert(j = 0);
do

i < QUEUE_SIZE && b.el[i] I=0 —>
i++
else —> break

od;

do
j < QUEUE SIZE && a.el[j] '= 0 —>
b.el[i] =a.el[j];
i+
else —> i = 0; j = 0; break

od;

skip

I

inline util_rem_queue(a, b) { d_step {
/+* remove elements in queue a from queue b x/
assert(i = 0);
assert(j = 0);

o4

/* set elements in b equal to 0 if they are in a x/

do
i < QUEUE_SIZE && a.el[i] = 0 —>
do
j < QUEUE_SIZE —>
if
a.el[i] = b.el[j] > b.el[j] =0
else —> skip
fi;
i+
else —> j = 0; break
od;
i++
:: else —> i = 0; break
od;

/* compact b by removing holes caused by above x/
do
i i < QUEUE_SIZE && j < QUEUE_SIZE —>

if
boel[i] '= 0 = i++ j++
b.el[i] =08&& b.el[j] = 0 > j++
else —>
b.el[i] =b.el[j]:
b.el[j] = 0;
i++; j++
fi
:: else —> i = 0; j = 0; break
od;
skip

P}

inline util_count(w, n, a, b) { d_step {
/* count the ids or writes in the n queues of array a by
increasing the corresponding values in count array b %/

assert(i =— 0);
assert(j = 0);
do
i< n-—>
do
j < QUEUE SIZE && a[i].el[j] '= 0 —>
if
w=0 —> b.el[ID(a[i].el[]j]) — 1]++
tw=1—> b.el[a[i].el[j] — 1]4++
fi;
j+H
else —> j = 0; break
od;
i++
: else —> i = 0; break
od;
skip
P

inline util count ids(a, b) {
/* count the ids in queue a by increasing
the corresponding values in count_array b x/
util_count(0, 1, a, b)

}

inline util_count_list(a, b) {
/* count the writes in queue a by increasing
the corresponding values in count_array b x/
util_count(1l, 1, a, b)

}

inline util count view(a, b) {
/* count the writes in view a by increasing
the corresponding values in count array b x/
util_count (1, TARGETS, a, b)

}

inline util_wipe_list(n, a) { d_step {
/* reset the list of length n to all zeros x/

assert(i =— 0);
do
i< n—>
a.el[i] = 0;
i++
else —> i = 0; break
od;
skip
1

inline util_wipe queue(a) {
util wipe list (QUEUE_ SIZE, a)
}

inline util_wipe count(a) {
util wipe list (COUNT_ SIZE, a)

ks

inline util_wipe_view(v) { d_step {
assert(i =— 0);
assert(j = 0);
do

i < TARGETS —>
do
j < QUEUE SIZE —>
vii].el[j] = 0;
j+H
:: else —> j = 0; break
od;
i++
:: else —> i = 0; break
od;

skip

96

P}

inline util_count_row(n, v, b) { d_step {
/* count the writes at position n in the arrays of
view v and add those to count_array b x/

assert(i = 0);
do
i < TARGETS —>
if
vii].el[n] = 0 —> b.el[v[i].el[n] — 1]++;
else —> skip
fi;
i++
:: else —> i = 0; break
od;
skip

P}

inline util_rem_row(v) { d_step {
/+* remove row 0 from view v %/

assert(i = 0);
assert(j = 0);
do

i < TARGETS —>

do
j < QUEUE SIZE — 1 —>
v[iil.el[j] = v[i].-el[j + 1];

j+H
else —>
vii].el[j] = 0;
j = 0; break
od;
i++
:: else —> i = 0; break
od;
skip

)

inline util_create_message(m, b) { d_step {
/* create message m adding all writes counted in b x/

assert(i = 0);
assert(j = 0);
do
i < COUNT_SIZE —>
if
b.el[i] = 0 —>
m.el[j] =i + 1;
it i
else —> i++;
fi
else —> i = 0; j = 0; break

od;

37

skip

P}

inline disk_write(writes) {
util _add queue(writes, disk[my id — 1]);

assert(t = 0);
do
t < TARGETS —>
if
:0 disk[t]. el[0] =0 —>
assert(disk [0].el[0] = disk[t].el[0]);
t++
. else —> t = 0; break
fi
else —>
util_rem row(disk);
t =20

od
ks

inline target send(type, id, message list) {
CHANNEL (backward , id, my id)!type(message list)

}
inline target receive(type, id, message list) {
if
d_step {
CHANNEL (forward , 1, my id)?type(message list) —>
id =1
iy
d_step {
SOURCES > 1 && nempty(CHANNEL(forward , 2, my id)) —>
CHANNEL (forward , 2, my id)?type(message list);
id = 2
}
fi
}
inline target queue(id, message list) {
assert(q — 0);
do
:: g < QUEUE_SIZE && queue list.el[q] = 0 —>
target send(queue ack, ID(queue list.el[q]), message list);
aqt++
.. else —> q = 0; break
od;
util_add queue(message list, queue list);
target send(queue ack, id, queue list)
}

inline target commit(id, message list) {
util_count_list(queue_list, count_list);

assert(q = 0);

98

do /+ check if writes are still in queue x/
q < QUEUE SIZE && message list.el[q] != 0 —>
if
count list.el[message list.el[q] — 1] > 0 —> a++
else —> g = 0; break
fi
:: else —> g = QUEUE_SIZE; break
od;
util _wipe count(count_list);
util count ids(queue list, count list);

if /«x id and writes have not already been commited x/
qg > 0 && count_list.el[id — 1] I= 0 —>

/* commit writes to disk x/
disk _write(message list);

assert(c = 0);

do /x inform ids in queue about the commit x/
¢ < COUNT_SIZE && count_list.el[c] '= 0 —>
target send(commit _ack, ¢ + 1, message list);

c+
c < COUNT SIZE && count list.el[c] == 0 —>
c+

:: else —> ¢ = 0; break

od;

q = 0; util rem queue(message list, queue list)

i else —> q = 0; skip
fi;

util _wipe count(count_list)

}

proctype Target(byte my id) {
queue array queue list, message list;
mtype type;
count array count list;
byte id, q, c, t;

byte i, j;

progress: end: do
target receive(type, id, message list);

d_step {
if
type == queue —> target queue(id, message list)
type = commit —> target commit(id, message list)
fi;
type = 0; id = 0; util_wipe queue(message list)
}

od
}

inline source send(type, id, message list) {
CHANNEL (forward , my id, id)!type(message list)

99

}

inline source receive(type, id, message list) {

if
d_step {
CHANNEL (backward , my id, 1)?type(message list) —>
id =1
¥
d_step {
TARGETS > 1 && nempty(CHANNEL(backward, my id, 2)) —>
CHANNEL (backward , my id, 2)?type(message list);
id = 2
}
fi
}
inline source queue(write) {
d_step {
assert(c =— 0);

/* queue the writes at the targets x/
message list.el[0] = write;
do
¢ < TARGETS —>
source send(queue, ¢ + 1, message list);
c+
. else —> ¢ = 0; break
od;

util wipe queue(message list)
}
do
i1 ¢ < TARGETS —>
source receive(type, id, message list);
d_step {
if
i type == commit_ack —>
util_rem queue(message list, queue view[id — 1]);
type = queue ack —>
do
q < QUEUE SIZE —>
if
message list.el[q] == write —> q = 0; c++; break
else —> q++
fi
else —> g = 0; break
od;
util add queue(message list, queue view[id — 1]);
fi;
type = 0; id = 0; util wipe queue(message list)
}
else —> ¢ = 0; break
od

}

inline update base(message list) {
assert(q = 0);

60

assert(t = 0);
util_count_list(message_list, count_list);
do
:: q < QUEUE SIZE && t == 0 —>
do
t < TARGETS && queue view[t].el[q] = 0 —>
if
count _list.el[queue view[t].el[q] — 1] I= 0 > t++
else —> t++4; break
fi
t < TARGETS && queue view|[t].el[q] == 0 —> t++; break
:: else —> base——; gq++; t = 0; break
od
:: else —> q = 0; t = 0; break
od;
util _wipe count(count_list)

}

inline break when done(write, base) {
d_step {

assert(q

assert(t

0);
0);

q = base;

do
q < QUEUE_SIZE && t — 0 —>
do
t < TARGETS —>
if
queue view[t].el[q] = write —> t++; break
else —> t++
fi
else —> q++; t = 0; break
od
else —> g = 0; break
od;

skip

t!1=0-—>t=0
:: else —> break

fi

¥

inline try commit(write, base) {

assert(q = 0);
assert(c = 0);

do
q + base < QUEUE SIZE && ¢ — 0 —>
/* search for conflict group x/

61

util count row(q + base, queue view, count list);
do
¢ < COUNT SIZE && count list.el[c] == 0 —> c++
¢ < COUNT_SIZE && count_list.el[c] == TARGETS —> c++
else —>
if
¢ < COUNT _SIZE —> q++; ¢ = 0; break
else —> q++; break
fi
od

¢ == COUNT SIZE —>
/* commit conflict group x/

c = 0;
util _create message(message list, count_list);
util _wipe count(count list);
if
message list.el [0] = 0 —> q = 0; break
else —> base = base + q; q =0
fi;
assert(t = 0);
do
t < TARGETS —>
source _send(commit, t + 1, message list);
t++
:: else —> t = 0; break
od;

util_wipe queue(message list);
break _when done(write , base)

else —>
/* stop searching x/

qa=0;
util _wipe count(count list);
break
od;
skip
}
inline source commit(write) {
d_step {
assert (base = 0);
try _commit(write , base)
}
do
source receive(type, id, message list);
if
type == commit_ack —>

62

d_step {
update base(message list);

util_rem queue(message list, queue view[id — 1]);
type = 0; id = 0; util wipe queue(message list);
}
break when done(write, 0);
d_step {
try commit(write, base)
3
type = queue ack —>
d_step {
util_add queue(message list, queue view[id — 1]);
type = 0; id = 0; util wipe queue(message list);
try _commit{write , base)
}
fi
od;
base = 0

}

proctype Source(byte my id) {
queue array queue_view [TARGETS], message list;
mtype type;
count array count list;
byte id, base;
byte s, t, c, q;

byte i, j;
do
i s < SEQUENCE NUMBERS —>

/* receive write operation —> x/

source queue(my id + s x SOURCES);
source_commit(my_id + s = SOURCES);

d_step {
util _wipe view(queue view);
s++
}
i else —> s =0
od
}
init {
byte t, s;
atomic {
do
t < TARGETS —>
run Target(t + 1);
t++
s < SOURCES —>
run Source(s + 1);
s++
:: else —> break
od
}

63

¥
B MINIX code of the asynchronous algorithm
B.1 channel.h

void send(address t xdst, message t xmsg);
void recv(address t *src, message t xmsg);
void print(message t smsg);

void error(char xmsg);

address t xmyAddress(void);

B.2 channel.c

#include "default.h"
#include "channel.h"

#define DEFAULT DEVICE "/dev/tcp"
#define LISTEN_MSG "Listeninguono%s:%u.\n"
address t my address;

int listen fd;
int listen count = 0;

int open_fd[CONC_CONN];
int open_ count = 0;

void report(int fd)

int err;
nwio tcpconf t nwio tcpconf;

err = ioctl (fd, NWIOGTCPCONF, &nwio tcpconf);
if (err) error ("NWIOGTCPCONF");

printf (LISTEN MSG,
inet _ntoa(nwio_tcpconf.nwtc_locaddr),
ntohs(nwio tcpconf.nwtc locport));

}

int listenChannel(void)
{
int fd, err;
char xtcp device;
int backlog = CONC CONN;

nwio tcpconf t nwio tcpconf;
if ((tcp device = getenv("TCP_ DEVICE")) == NULL)
tcp device = DEFAULT DEVICE;

fd = open(tcp_device, O RDWR);
if (fd < 0) error("TCP_DEVICE");

64

nwio tcpconf.nwtc flags = NWTC COPY | NWTC LP_ SEL;
nwio tcpconf.nwtc flags |= NWTC UNSET RA | NWTC UNSET RP;

err = ioctl (fd, NWIOSTCPCONF, &nwio tcpconf);
if (err) error ("NWIOSTCPCONF");

err = ioctl (fd, NWIOTCPLISTENQ, &backlog);

if (err) error ("NWIOTCPLISTENQ");

err = iOCtl(fd, NVV|OGTCPCONF, &nWio_thCOnf);
if (err) error ("NWIOGTCPCONF");

my address.ip = nwio_tcpconf.nwtc locaddr;
my address.port = nwio tcpconf.nwtc locport;

report(fd);
return fd;

}

int acceptChannel(int listen)
{
int fd, err;
char xtcp device;
tcp_cookie t cookie;

if ((tcp device = getenv("TCP_ DEVICE")) == NULL)
tcp device = DEFAULT DEVICE;

fd = open(tcp device, O RDWR);

if (fd < 0) error("TCP_DEVICE");

err = ioctl (fd, NWIOGTCPCOOKIE, &cookie);

if (err) error ("NWIOGTCPCOOKIE");

err = ioctl(listen , NWIOTCPACCEPTTO, &cookie);
if (err) error ("NWIOTCPACCEPTTO");

return fd;

}

int openChannel(address t =dst)

int fd, err;
char xtcp device;

nwio tcpconf t nwio tcpconf;
nwio tcpcl _t nwio tcpcl;

if ((tcp_device = getenv("TCP_DEVICE")) = NULL)
tcp device = DEFAULT DEVICE;

fd = open(tcp device, O RDWR);

if (fd < 0) error("TCP_DEVICE");

if (my_ address.ip == 0) {
nwio tcpconf.nwtc flags = NWTC LP SEL;

} else {
nwio tcpconf.nwtc locport = my address.port;
nwio tcpconf.nwtc flags = NWTC LP SET;

}

nwio tcpconf.nwtc remaddr dst—>ip;
nwio tcpconf.nwtc remport dst—>port;
nwio_ tcpconf.nwtc flags |= NWTC_COPY | NWTC SET RA | NWTC SET RP;

nwio tcpcl.nwtcl flags = 0;

err = ioctl(fd, NWIOSTCPCONF, &nwio tcpconf);
if (err) error ("NWIOSTCPCONF");

err = ioctl(fd, NWIOTCPCONN, &nwio tcpcl);

if (err) error ("NWIOTCPCONN");

err = ioctl (fd, NWIOGTCPCONF, &nwio tcpconf);
if (err) error ("NWIOGTCPCONF");

my address.ip = nwio tcpconf.nwtc locaddr;
my address.port = nwio_tcpconf.nwtc locport;

return fd;

}
void closeChannel(int fd)
{
int i, err;
int shift = 0;
for (i = 0; i < open_count; i++) {
if (open fd[i] == fd) {
err = ioctl(fd, NWIOTCPSHUTDOWN, NULL);
if (err) error("NWIOTCPSHUTDOWN");
close (fd);
open_count——;
shift++;
}
if (shift > 0) {
open_ fd[i] = open_fd[i 4+ shift];
}
}
int selectFd(void)
fd_set rfds;
int i, count, max_ fd;

if (listen count <= 0 && open_ count <= 0) {

listen fd = listenChannel();
listen count = 1;

}

FD ZERO(& rfds);

max_fd = 0;

if (listen_count > 0) {
FD _SET(listen fd , &rfds);
if (listen fd > max fd) max fd = listen fd;

66

}

for (i = 0; i < open_count; i++) {
FD SET(open fd[i], &rfds);
if (open fd[i] > max_fd) max_fd = open_ fd[i];

count = select(max fd + 1, &rfds, NULL, NULL, NULL);
if (count <= 0) error("SELECT");

if (FD _ISSET(listen fd , &rfds)) {
open_ fd[open_ count++4] = acceptChannel(listen fd);

return open fd[open count — 1];
}
for (i = 0; i < open_count; i++) {

if (FD_ISSET(open fd[i], &rfds)) return open_ fd[i];
}

error ("SELECT");
}

int getFd(address _t =dst)

int i, err;
nwio tcpconf t nwio tcpconf;

for (i = 0; i < open_count; i++) {
err = ioctl(open fd[i], NWIOGTCPCONF, &nwio tcpconf);
if (err) error("NWIOGTCPCONF");

if (dst—>ip = nwio_tcpconf.nwtc_remaddr &&
dst—>port == nwio_tcpconf.nwtc_remport) {
return open fd[i];
3
}
return open fd[open count++] = openChannel(dst);
}
ssize t recvAction(int fd, action t =xact)
{
ssize t ssize = 0, done = 0;
do {
ssize = read(fd, (char x)act + done, sizeof(action_t) — done);
if (ssize <= 0) return ssize;
done 4= ssize;
} while (done < sizeof(action_t));
if (act—>addr.ip == my address.ip && act—>addr.port =— my_address.port) {
act—>addr.ip = 0;
act—>addr.port = 0;
}
return 1;
}

67

ssize t recvMessage(int fd, message t xmsg)

{
int i;
ssize t ssize,;
ssize = read(fd, &msg—>type, sizeof(msg—>type));
if (ssize <= 0) return ssize;
ssize = read(fd, &msg—>size , sizeof(msg—>size));
if (ssize <= 0) return ssize;
for (i = 0; i < msg—>size; i++) {
ssize = recvAction(fd, &msg—>act[i]);
if (ssize <= 0) return ssize;
}
return 1;
}
ssize _t sendAction(int fd, action_t =xact)
{
ssize_t ssize = 0, done = 0;
if (act—>addr.ip == 0 && act—>addr.port = 0) {
act—>addr.ip = my_ address.ip;
act—>addr.port = my address.port;
}
do {
ssize = write(fd, (char x)act + done, sizeof(action t) — done);
if (ssize <= 0) return ssize;
done 4= ssize;
} while (done < sizeof(action t));
if (act—>addr.ip == my address.ip && act—>addr.port = my address.port) {
act—>addr.ip = 0;
act—>addr.port = 0;
}
return 1;
}
ssize _t sendMessage(int fd, message t xmsg)
{
int i;
ssize t ssize;
ssize = write(fd, &msg—>type, sizeof(msg—>type));
if (ssize <= 0) return ssize;
ssize = write(fd, &msg—>size , sizeof(msg—>size));
if (ssize <= 0) return ssize;
for (i = 0; i < msg—>size; i++) {

ssize = sendAction(fd, &msg—>act[i]);
if (ssize <= 0) return ssize;

68

}

return 1;
}
void recv(address t *src, message t xmsg)
{
int fd;
ssize t ssize;
nwio tcpconf t nwio tcpconf;
do {
fd = selectFd ();
ssize = recvMessage(fd, msg);
if (ssize = 0) closeChannel(fd);
} while (ssize = 0);
ioctl (fd, NWIOGTCPCONF, &nwio tcpconf);
src—>ip = nwio_tcpconf.nwtc remaddr;
src—>port = nwio tcpconf.nwtc remport;
}

void send(address t *dst, message t xmsg)

int fd;
ssize t ssize;

fd = getFd(dst);
ssize = sendMessage(fd, msg);
if (ssize < 1) error("SEND");

}
address_t xmyAddress(void)
{
return &my address;
}

B.3 default.h

#tdefine MINIX SOURCE 1

#include <unistd .h>
#include <stdlib.h>
#include <stdio .h>
#include <stdarg.h>
#include <stddef.h>
#include <fcntl .h>
#include <string.h>
#include <errno .h>
#include <sys/types.h>
#include <sys/ioctl .h>
#include <sys/select.h>
#include <net/hton.h>
#include <net/gen/in . h>
#include <net/gen/inet.h>
#include <net/gen/tcp.h>
#include <net/gen/tcp io.h>

69

#define QUEUE REQ 1
#define COMMIT _REQ 2
#define QUEUE ACK 3
#define COMMIT ACK 4

#define CONC CONN 32

typedef struct {
ipaddr_t ip;
tcpport _t port;
} address _t;

typedef struct {
address t addr;
ud _t seq;
u8 t data;

} action t;

typedef struct {
ud _t type;
u8 t size;
action _t =xact;
} message t;

void error(char xmsg);

B.4 default.c

#include "default.h"
void error(char xmsg)

printf("%s: %s\n", msg, strerror(errno));
exit(—1);

B.5 source.c

#include "default.h"
#include "channel.h"
#include "util .h"

#define IP_STRING SIZE 16
#define MAX OCTET NUMBER 255
#define MAX_PORT NUMBER 65535

address _t target [CONC CONN];
int target count = 0;

action _t (xqueue)[CONC_CONNJ;
int squeue count;

int readAddress(char =xarg, address t sxaddr)

{

int count;
int octet[4], port;

70

char ip[IP_STRING SIZE];

count = sscanf(arg, "%d.%d.%d.%d:%d",
&octet [0], &octet[1], &octet[2], &octet[3], &port);
if (count != 5) return —1;

if (octet[0] > MAX OCTET NUMBER ||
octet [1] > MAX OCTET NUMBER ||
octet [2] > MAX_OCTET NUMBER ||
octet [3] > MAX_OCTET NUMBER ||
port > MAX PORT NUMBER) return -—1;

sprintf(ip, "%d.%d.%d.%d", octet[0], octet[l], octet[2], octet[3]);

addr—>ip = inet addr(ip);
addr—>port = htons(port);

return 0;

}

int targetPosition (address_t sxaddr)

{

int i;

for (i = 0; i < target count; i++) {
if (target[i].ip = addr—>ip &&
target[i].port = addr—>port) return i;
}

return —1;

}

void doConfirm(action_t xpending)
{

address _t src;

message t msg;

action_t act[CONC CONNJ;

int confirmed, pos;

msg.act = act;

do {
recv(&src, &msg);

pos = targetPosition(&src);
if (pos < 0) error("POSITION");

switch (msg.type) {

case QUEUE_ ACK
addQueue(msg.act, msg.size , queue[pos], &queue count[pos]);
confirmed = inQueue(pending, 1, msg.act, msg.size);
break ;

case COMMIT_ACK :
remQueue(msg.act, msg.size , queue[pos], &queue count[pos]);
confirmed = 0;
break ;

}

71

} while (!confirmed);

void doQueue(u8 t seq, u8 t data)

message t msg;
action _t act;

int i;
msg.type = QUEUE_ REQ;
msg.size = 1;

msg.act = &act;
act.addr.ip = 0;
act.addr.port = 0;
act.seq = seq;
act.data = data;

for (i = 0; i < target count; i++) {
send(&target[i], &msg);
}

for (i = 0; i < target count; i++) {
doConfirm(&act);
¥

}

int needCommit(u8 t seq, u8 t data)
action t act;
int i, present;

act.addr.ip = 0;
act.addr.port = 0;
act.seq = seq;
act.data = data;

for (i = 0; i < target_count; i++4) {
present = inQueue(&act, 1, queue[i], queue count[i]);
if (present) return 1;

return 0;

}

void sendCommit(int size)

{

message t msg;
action t act[CONC CONNJ;

int i;

msg.type = COMMIT_ REQ;
msg.size = size;
msg.act = act;

copyQueue(queue[0], act, size);
sortQueue(act, size);

72

for (i = 0; i < target count; i++) {
send(&target[i], &msg);

}
}
int tryCommit(void)
{
int i, j, n, match;
for (i = 0; i < CONC_CONN; i++4) {
for (j = 0; j < target count; j++4) {
n={(j+ 1) % target_count;
match = inQueue(queue[j], queue count[j], queue[n], queue count[n]);
if (!match) break;
3
if (match) {
sendCommit (i);
return 1;
3
}
return 0;
}
void doCommit(u8 t seq, u8 t data)
{

address t src;

message t msg;

action t act[CONC CONNJ;

int i, confirmed, pos;

int finished = 0, pending = 0;

msg.act = act;

do {
printf("incoming ... ");
recv(&src, &msg);
printf("check!\n");

pos = targetPosition(&src);
if (pos < 0) error("POSITION");

switch (msg.type) {
case QUEUE_ ACK
addQueue(msg.act, msg.size , queue[pos], &queue count[pos]);
finished = 0;
if (!pending) pending = tryCommit();
break ;
case COMMIT_ACK :
remQueue(msg.act, msg.size , queue[pos], &queue count[pos]);

finished = !needCommit(seq, data);
if (!finished && !pending) pending = tryCommit();
break ;

3
} while (!finished);

printf("passed");

73

for (i = 0; i < target count; i++) {

queue_count[i] = 0;
}
}
int main(int argc, char =xargv([])
{ » .
nt 1, err;

message _t msg;
action t act[2];
u8_t seq, data;

if (arge <=1) {
printf("usage: Yosu<ip>:<port>,...\n", argv[0]);
exit(—1);

if (argc > CONC_CONN + 1) {
printf("error: tooumany,target addresses,yspecified\n");

exit(—1);
for (i = 1; i < argc; i++) {

err = readAddress(argv[i], &target[i — 1]);

if (err) {
printf("error:umalformedytarget,address\n");
exit(—1);

3

target _count++;

}

queue = malloc(sizeof(action_t) % CONC_CONN x target count);
if (queue = NULL) error ("MALLOC");

queue count = malloc(sizeof(int) * target count);
if (queue count = NULL) error ("MALLOC");

for (i = 0; i < target_count; i++4) {
queue count[i] = 0;

}

seq = 2;

data = 222;

doQueue(seq, data);
doCommit(seq, data);

return 0;

}
B.6 target.c

#include "default.h"
#include "channel.h"
#include "util .h"

74

action t queue[CONC CONN];
int queue count = 0;

int value = 0;
void doQueue(address t *src, message t smsg)
int i;

msg—>type = QUEUE_ACK;

for (i = 0; i < queue_count; i++) {
send(&queue[i].addr, msg);

ks

addQueue(msg—>act , msg—>size , queue, &queue count);

msg—>size = queue count;

msg—>act = queue;

send(src, msg);

}
void doCommit(address t *src, message t s*msg)
{
int queued, i;
queued = inQueue(msg—>act, msg—>size , queue, queue_ count);
if (!queued) return;
for (i = 0; i < msg—>size; i++) {
value = msg—>act[i].data;
}
msg—>type = COMMIT ACK;
for (i = 0; i < queue count; i++) {
send(&queue[i].addr, msg);
}

remQueue (msg—>act , msg—>size , queue, &queue count);

}

int main(int argc, char xargv|[])

{

address t src;
message t msg;
action t act[CONC CONNJ;

msg.act = act;

while (1) {
recv(&src, &msg);

switch (msg.type) {
case QUEUE REQ
doQueue(&src, &msg);
break ;

75

case COMMIT REQ
doCommit(&src, &msg);
break ;
default
error ("TYPE");
}

}

return 0;

}
B.7 util.h

void copyQueue(action t *queue a, action t *queue b, int size);
void addQueue(action_t =xa, int size a, action_t xb, int xsize b);
void remQueue(action _t =xa, int size a, action_t b, int xsize b);
void sortQueue(action t *xqueue, int size);

int inQueue(action t =xqueue a, int size a, action t *queue b, int size b);

void printAction (action t *act);
void printQueue(action_t =xact, int size);
void printMessage(message t *msg);

B.8 util.c

#include "default.h"
#include "util .h"

int equalAddresses(address_t xa, address t xb)

{

return (a—>ip = b—>ip) && (a—>port == b—>port);

}

int equalActions(action_t %a, action_t xb)

{
return equalAddresses(&a—>addr, &b—>addr) &&

(a—>seq =— b—>seq) && (a—>data = b—>data);
}
void copyAction(action t *a, action t xb)

memcpy (b, a, sizeof(action t));

}

void swapAction(action t *a, action t xb)
{

action t act;

copyAction(a, &act);

copyAction(b, a);

copyAction(&act, b);

void copyQueue(action t *queue a, action t *queue b, int size)

int i;

76

for (i = 0; i < size; i++) {
copyAction(&queue a[i], &queue b[i]);

}
void addQueue(action t =xqueue a, int size a, action_t xqueue b, int xsize b)
{
int i;
if (size _a + xsize_b > CONC CONN) error("ADD QUEUE");
for (i = 0; i < size _a; i++) {
copyAction(&queue _a[i], &queue b[xsize b]);
xsize b = xsize b + 1;
}
}
void remQueue(action t xqueue a, int size a, action_t sxqueue b, int xsize b)
{
int i, j, shift;
for (i = 0; i < size_a; i++) {
shift = 0;
for (j = 0; j < xsize_b; j++) {
if (equalActions(&queue ali], &queue b[j])) {
shift++;
} else {
copyAction(&queue b[j], &queue b[j — shift]);
3
*size b = xsize b — shift;
}
}
void sortQueue(action t xqueue, int size)
{
action t act;
int i, j;
for (i = 0; i < size; i++) {
for (j = i; j < size; j++) {
if (queue[i].addr.ip < queue[j].addr.ip) {
break ;

}

if (queue[i].addr.ip > queue[j].addr.ip) {
swapAction(&queue[i], &queue[j])
break ;

}
if (queue[i].addr.port > queue[j].addr.port) {
swapAction(&queue[i], &queue[j])

7

int inQueue(action t =xqueue a, int size a, action t xqueue b, int size b)

{
int i, j, found;
for (i = 0; i < size _a; i++) {
found = 0;
for (j = 0; j < size_b; j++) {
if (equalActions(&queue_a[i], &queue b[j])) {
found = 1;
break ;
}
3
if (!found) return 0;
}
return 1;
}
void printAction(action t sxact)
{
printf("act ip:.%s\n", inet ntoa(act—>addr.ip));
printf("act port:.%u\n", ntohs(act—>addr.port));
printf("act_seq:_%u\n", act—>seq);
printf("act data: %u\n", act—>data);
}
void printQueue(action _t xact, int size)
{
int i;
for (i = 0; i < size; i++) {
printf("act_ pos: %d\n", i);
printAction(&act[i]);
}
}
void printMessage(message t *msg)
{
int i;
printf("act_ type: %u\n", msg—>type);
printf("act size: %u\n", msg—>size);
for (i = 0; i < msg—>size; i++) {
printf("act pos:.%d\n", i);
printAction(&msg—>act[i]);
}
}

C Promela code of the redundant algorithm

#define SERVERS 3
#define CLIENTS 2
#define CONCURRENT 1

78

#define CHAN COUNT 25
#define CHAN SIZE 1
#define MAX OPERATIONS 2
#define MAX STEPS 3
#define MAX_IDS 2

#define CHANNEL(from, to) \
channels[(from — 1) + (to — 1) * (SERVERS + CLIENTS)]

c_code {
#include "types.h"
#include "minix.c"

}

int readers;
int writers;

typedef store t {
int value;
int current;
int concurrent;

}
chan channels [CHAN COUNT] = [CHAN SIZE] of {store t};

inline clean(store) {
store .value = 0;
store.current = 0;
store.concurrent = 0

}

inline send msg() {
CHANNEL(my_id, node id)!out
}

inline receive msg() {
assert (CLIENTS — 2);

end: if

:: CHANNEL(SERVERS + 1, my id)?in —>
node id = SERVERS + 1
CHANNEL (SERVERS + 2, my id)?in —>
node id = SERVERS + 2

fi;

c¢_code { merge(&Pserver—>in, &Pserver—>out); };
clean(in);

}

inline scatter msg()
assert (MAX IDS <= SERVERS);
assert (MAX IDS >= SERVERS / 2 + 1);

assert(count ids = 0);
assert(skip_ids == 0);
do

79

od;

count ids — skip ids < MAX IDS —>
CHANNEL(my id, count ids + 1)!out;
count ids++

skip ids + MAX IDS < SERVERS —>
count ids++;

skip ids++;

else —> break

count ids = 0;

ski
ks

inline

p_ids =0

gather _msg ()

assert (SERVERS = 3);

assert(count_ids = 0);

do

od
}

inline

count ids < MAX IDS —>
if
CHANNEL(1, my id)?in
CHANNEL(2, my _id)7in
CHANNEL(3, my id)?in
fi;
count _ids++;

c¢_code { merge(&Pclient—>in, &Pclient—>store); };
clean(in);

else —> count ids = 0; break

process () {

receive _msg();

c_code { merge(&Pserver—>in, &Pserver—>out); };

send msg ()

}

inline
ass

do

read () {

ert(count steps — 0);

count steps < MAX STEPS —>
scatter _msg();

gather _msg();

count steps++;

if
c_expr { read done(&Pclient —>store , &Pclient—>out) } —> break
else —> c code { read step(&Pclient—>store, &Pclient—>out); }
fi

else —> break

80

od;

count steps =0

}

inline write() {
assert(count steps = 0);

do

i1 count_steps < MAX_STEPS —>
scatter _msg();
gather _msg();
count steps++;

if
c_expr { write_done(&Pclient —>store , &Pclient—>out) } —> break

else —> ¢ _code { write step(&Pclient—>store, &Pclient—>out); }
fi

.. else —> break
od;
count steps = 0

}

proctype server(int my id) {
store t in, out;
int node id;

restart: do
process ()
od

}

proctype client(int my id) {
store t in, store, out;
int count ids, skip_ids;
int count ops;
int count_steps;

restart: do
count _ops < MAX OPERATIONS —>

if
:: atomic { CONCURRENT || writers =— 0 —>
readers++ };
read ();
readers ——;
atomic { CONCURRENT || readers + writers == 0 —>
writers++ };
if
out.value = 0; write()
out.value = 1; write()
fi;
writers —
fi;

count _ops++
else —> break

81

od;
}

init {
int n;

atomic {
do
n < SERVERS —>
run server(n + 1);
n++
:: else —> break
od;
do
i n < CLIENTS 4+ SERVERS —>
run client(n + 1);
n++
:: else —> break
od
}
D MINIX code of the redundant algorithm

D.1 channel.h

#include "types.h"

#ifndef CHANNEL
#define CHANNEL

int open_ ether(void);
void read ether(int fd, ether addr_t xsrc, store t xstore);
void write ether(int fd, ether addr t *dst, store t xstore);

#endif
D.2 channel.c

#include "default.h"
#include "types.h"

#define DEFAULT DEVICE "/dev/eth"
#define ETH TYPE 0x2222

int open_ether(void)

{

int fd, err;
char xeth device;

nwio ethopt t nwio ethopt;
if ((eth_device = getenv("ETH_DEVICE")) == NULL)

eth device = DEFAULT DEVICE;
fd = open(eth_device, O RDWR);

82

if (fd < 0) error("ETH_DEVICE");

nwio ethopt.nweo type = ETH_ TYPE;

nwio ethopt.nweo flags = NWEO EXCL | NWEO EN LOC | NWEO DI_BROAD;

nwio ethopt.nweo flags |= NWEO DI MULTI | NWEO DI PROMISC | NWEO REMANY;
nwio ethopt.nweo flags |= NWEO TYPESPEC | NWEO RWDATALL;

err = ioctl(fd, NWIOSETHOPT, &nwio ethopt);
if (err) error("NWIOSETHOPT");

return fd;
}
void read ether(int fd, ether addr t xsrc, store t xstore)
{
int count;
char buffer [ETH MAX PACK SIZE];
message t #message;
count = read (fd, &buffer , ETH_MAX_PACK_SIZE);
if (count != ETH MIN PACK SIZE) error ("READ ETHER");
message = (message tx*)buffer;
memcpy(src, &message—>eth hdr.eh src, sizeof(ether addr_t));
memcpy(store , &message—>store , sizeof(store t));
}

void write ether(int fd, ether addr_t xdst, store t xstore)
{ .

int err, count;

char buffer [ETH_MIN_PACK_SIZE];

message t kmessage;

nwio ethstat t nwio ethstat;

err = ioctl(fd, NWIOGETHSTAT, &nwio ethstat);

if (err) error ("NWIOGETHSTAT");

message = (message tx)buffer;

message—>eth _hdr.eh_src = nwio_ethstat.nwes_addr;

message—>eth hdr.eh dst = xdst;
message—>eth _hdr.eh_proto = ETH_TYPE;

message—>store = xstore;

count = write(fd, message, ETH MIN PACK SIZE);
if (count != ETH_I\/IIN_PACK_SIZE) error("WRITE_ETHER");

}
D.3 default.h

#define MINIX SOURCE 1

#include <unistd .h>
#include <stdlib.h>

83

#include <stdio .h>

#include <stdarg.h>
#include <stddef.h>
#include <fcntl .h>

#include <string.h>
#include <errno .h>

#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/select.h>
#include <net/hton.h>
#include <net/gen/ether.h>
#include <net/gen/eth io.h>
#include <net/gen/eth hdr.h>
#include <net/gen/if ether . h>

#define CONC_CONN 32
#include "types.h"

void error(char xmsg);
void print_store(store t =xstore);

D.4 default.c

#include "default.h"

void error(char xmsg)
printf("%s: %s\n", msg, strerror(errno));
exit(—1);

void print store(store t xstore)

{

}

D.5 client.c

printf("store:uval=%d, cur=%d, conc=%d\n", store—>value, store—>current, store—>concurre

#include "default.h"
#include "channel.h"
#include "types.h"
#include "minix.h"

#define MAX STEPS 4
store_t store, out;
void scatter ether(int fd, ether addr_t sxdst, int dst_ size, store t =xout)
{
int i;

for (i = 0; i < dst_size; i++4) {
write ether(fd, &dst[i], out);
}

84

void gather ether(int fd, int dst size, store t xstore)

{
int i;
ether addr t src;
store t in;

for (i = 0; i < dst_size; i++) {
read ether(fd, &src, &in);
merge(&in, store);

}

int read value(int fd, ether addr t xdst, int dst size)

{
int i;
for (i = 0; i < MAX_STEPS; i++) {

scatter ether(fd, dst, dst size, &out);
gather ether(fd, dst_size, &store);

if (read done(&store, &out)) return store.value;
read step(&store, &out);

}

return —1;

}

int write value(int fd, ether addr_t xdst, int dst_ size)

{

int i;

for (i = 0; i < MAX_STEPS; i++) {
scatter ether(fd, dst, dst_size, &out);
gather ether(fd, dst size, &store);

if (write done(&store, &out)) return 0;
write step(&store, &out);

}

return —1;
}
int main(int argc, char xargv[])
{

int i, fd, err, retval;
ether _addr_t src, dst[CONC CONN], sxaddr;

if (argc < 3) error("ARGC");

for (i = 2; i < argec; i++) {
addr = ether aton(argv[il]);
if (addr = NULL) error ("ETHER_ATON");
dst[i — 2] = *addr;

¥

fd = open_ether();

store .value = 0;
store.current = 0;
store.concurrent = 0;

out.value = 0;
out.current = 0;
out.concurrent = 0;

if (argv[1][0] = "r") {
retval = read value(fd, dst, argc — 2);

} else {
out.value = atoi(argv[1l]);
retval = write value(fd, dst, argc — 2);

¥
close(fd);

return retval;

}
D.6 minix.h

#ifndef MINIX
#define MINIX

void merge(store t *in, store t xout);

void read step(store t *store, store t sout);
int read done(store t xstore, store_ t xout);

void write step(store t =xstore, store t xout);
int write done(store t xstore, store t xout);

#endif

D.7 minix.c

#include "default.h"
#include "types.h"
#include "minix.h"

#define MAX(a, b) (a > b ? a : b)
#define TRUE 1
#define FALSE 0

void merge(store t =*in, store t xout) {
if (in—>value != out—>value) {
if (in—>current > out—>current) {
out—>concurrent = MAX(in—>concurrent , out—>current);

} else {

out—>concurrent = MAX(in—>current , out—>concurrent);
ks
} else {
out—>concurrent = MAX(in—>concurrent , out—>concurrent);
}

if (in—>current > out—>current) {

86

out—>value = in—>value;

out—>current = in—>current;
void read step(store t *store, store t xout) {
out—>value = store—>value;
out—>concurrent = store—>concurrent;
if (store—>current = out—>current) {
out—>current = store—>current + 1;
} else {
out—>current = store—>current;
int read done(store t xstore, store_ t xout) {
if (store—>current = store—>concurrent + 2) {
return store—>current = out—>current;
return store—>current > store—>concurrent + 2;
void write step(store t xstore, store t xout) {
out—>concurrent = store—>concurrent;
if (store—>current = out—>current) {
out—>current = store—>current + 1;
} else {
out—>current = store—>current;
int write _done(store t xstore, store t xout) {
if (store—>value != out—>value) {
return FALSE;
} else {
return read done(store, out);

D.8 server.c

#include "default.h"
#include "channel.h"
#include "types.h"
#include "minix.h"

int main(int argc, char =xargv[])

{
int fd;
ether addr t src;
store _t in, out;

out.value = 0;
out.current = 0;

87

out.concurrent = 0;
fd = open_ether();

for (;;) {

read ether(fd, &src,

merge(&in, &out);

write ether(fd, &src,

}
close(fd);

return 0;

}
D.9 types.h

#ifndef TYPES
#define TYPES

typedef struct {
int value;
int current;
int concurrent;
} store t;

typedef struct {
eth _hdr t eth hdr;
store _t store;

} message t;

#endif

&in);

&out);

88

