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Abstract. This paper contributes to the study of the equational theory
of the semantics in van Glabbeek’s linear time - branching time spectrum
over the language BCCSP, a basic process algebra for the description of fi-
nite synchronization trees. It offers an algorithm for producing a complete
(respectively, ground-complete) equational axiomatization of any behav-
ioral congruence lying between ready simulation equivalence and partial
traces equivalence from a complete (respectively, ground-complete) in-
equational axiomatization of its underlying precongruence—that is, of
the precongruence whose kernel is the equivalence. The algorithm pre-
serves finiteness of the axiomatization when the set of actions is finite.

1 Introduction

The lack of consensus on what constitutes an appropriate notion of observ-
able behaviour for reactive systems has led to a large number of proposals for
behavioural equivalences and preorders for concurrent processes. In his by now
classic paper [13], van Glabbeek presented the linear time - branching time spec-
trum of behavioural preorders and equivalences for finitely branching, concrete,
sequential processes. The semantics in this spectrum are based on simulation
notions and on decorated traces.

Van Glabbeek [13] studied the semantics in his spectrum in the setting of
the process algebra BCCSP, which contains only the basic process algebraic
operators from CCS [18] and CSP [17], but is sufficiently powerful to express
all finite synchronization trees. In the aforementioned reference, van Glabbeek
gave, amongst a wealth of other results, (in)equational axiomatizations for the
preorders and equivalences in the spectrum, such that two closed BCCSP terms
can be equated by the axioms if, and only if, they are related by the preorder or
equivalence in question. Groote [14] obtained ω-completeness results for most of
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the axiomatizations, in case the alphabet of actions is infinite. (An axiomatiza-
tion E is ω-complete when an equation can be derived from E if, and only if, all
of its closed instantiations can be derived from E.) The papers [2, 6, 8–10] offer
positive and negative results on the existence of finite (in)equational axiomati-
zations for several behavioural equivalences and preorders in the spectrum over
the language BCCSP, both in the setting of finite and infinite sets of actions.

The work we present in this paper stems from the observation that all of the
extant axiomatization results presented in the aforementioned studies are based
on separate, and often rather similar, developments for preorders and equiv-
alences. For the semantics in the spectrum lying between 2-nested simulation
semantics and partial traces semantics, the equivalences are the kernels of the
preorders—meaning that two processes are considered equivalent if, and only
if, each is a refinement of the other with respect to the preorder—, which are
therefore more basic than the equivalences. Since the equivalences are defined in
terms of the preorders in a canonical fashion, it would be very satisfying, in order
to achieve a higher degree of generality and to highlight the commonalities in the
technical developments pertaining to axiomatization results for the semantics in
the spectrum, to develop a general strategy for obtaining complete axiomatiza-
tions of the equivalences in the spectrum from complete axiomatizations of the
preorders. This is the aim of this paper.

Our contribution We offer an algorithm for producing an ω-complete (respec-
tively, ground-complete) equational axiomatization of any behavioral congruence
lying between ready simulation equivalence and partial traces equivalence from
an ω-complete (respectively, ground-complete) inequational axiomatization of
its underlying precongruence—that is, of the precongruence whose kernel is the
equivalence. The algorithm we give in this paper preserves finiteness of the ax-
iomatization when the set of actions is finite. It follows that each equivalence
in the spectrum whose discriminating power lies in between that of ready simu-
lation and partial traces equivalence is finitely axiomatizable over the language
BCCSP if so is its defining preorder.

Our algorithm may be seen as isolating and axiomatizing the ingredients
that all of the extant proofs of completeness results for the class of behavioural
equivalences we study have in common. It also eliminates the need to reprove,
essentially from scratch, completeness results for a large fragment of behavioural
equivalences in the spectrum once a completeness result has been obtained for
their underlying preorders. The axiomatizations that are automatically gener-
ated by our algorithm are very similar, when not identical, to those presented
in the literature. (See, for instance, the two specific examples of applications of
our algorithm that are provided in Section 6.)

Our algorithm takes as input a sound and ω-complete (respectively, ground-
complete) inequational axiomatization E for BCCSP modulo a preorder in the
linear time - branching time spectrum that includes the ready simulation pre-
order. Without loss of generality, we assume that the four classic equations
from [16] that completely axiomatize bisimulation equivalence [18] are contained
in E, and that so do the defining inequational axioms for ready simulation for
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each action a:

ax 4 ax+ ay .

The axiomatization A(E) generated by our algorithm from E contains the ax-
ioms for bisimulation equivalence together with the following equations, for each
inequational axiom t 4 u in E:

– t+ u ≈ u; and
– b(t + x) + b(u + x) ≈ b(u + x) (for each action b, and some variable x that

does not occur in t+ u).

The main technical result in the paper is a theorem to the effect that the axiom-
atization A(E) is ω-complete (respectively, ground-complete) for the equivalence
if E is ω-complete (respectively, ground-complete) for the preorder (Theorem 1).
The proof of this statement is non-trivial, and relies on a careful analysis of the
so-called cover equations [10] for the semantics in the linear time - branching
time spectrum we consider in this study. Cover equations give us an explicit de-
scription of the equational theory for a particular semantics in terms of equations
having a rather simple, and canonical, form.

Roadmap of the paper The paper is organized as follows. Section 2 reviews the
syntax and the operational semantics for the language BCCSP, introduces the
linear time time - branching time spectrum, and discusses the very basic notions
of (in)equational logic used in this study. We present our algorithm in Section 3,
where we also state the main theorem in the paper (Theorem 1) to the effect
that the algorithm is guaranteed to produce an ω-complete (respectively, ground-
complete) equational axiomatization of any behavioral congruence lying between
ready simulation equivalence and partial traces equivalence from an ω-complete
(respectively, ground-complete) inequational axiomatization of its underlying
precongruence. The bulk of the rest of the paper (Sections 4–5) is devoted to
a proof of our main result. Section 6 presents applications of our algorithm in
the setting of simulation and failures semantics. We end the paper with some
concluding remarks, and a detailed comparison with related work (Section 7).

2 Preliminaries

Syntax of BCCSP BCCSP(A) is a basic process algebra for expressing finite
process behaviour. Its syntax consists of closed (process) terms p, q that are con-
structed from a constant 0, a binary operator + called alternative composition,
and unary prefix operators a , where a ranges over some nonempty set A of ac-
tions (with typical elements a, b, c, d). (We write |A| for the cardinality of the set
A.) Open terms p, q, r, s, t, u can moreover contain occurrences of variables from
a countably infinite set V (with typical elements w, x, y, z).

A (closed) substitution maps variables in V to (closed) terms. For every term
t and (closed) substitution σ, the (closed) term σ(t) is obtained by replacing
every occurrence of a variable x in t by σ(x). We often write tσ in lieu of σ(t).
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A context C[] is a BCCSP(A) term with exactly one occurrence of a hole []
in it. For every context C[] and term p, we write C[p] for the term that results
by placing p in the hole in C[].

Transition rules Intuitively, closed BCCSP(A) terms represent finite process
behaviours, where 0 does not exhibit any behaviour, p+q is the nondeterministic
choice between the behaviours of p and q, and ap executes action a to transform
into p. This intuition is captured, in the style of Plotkin, by the transition rules
below, which give rise to A-labelled transitions between closed terms.

ax
a→ x

x
a→ x′

x+ y
a→ x′

y
a→ y′

x+ y
a→ y′

The operational semantics is extended to open terms by assuming that variables
do not exhibit any behaviour.

Linear time - branching time spectrum Van Glabbeek [13] presented the linear
time - branching time spectrum of behavioural preorders and equivalences; see
Figure 1. The semantics in this spectrum are based on simulation notions and
on decorated traces. In what follows, we use - to denote a preorder in this
spectrum, and ' to denote the corresponding equivalence (i.e., - ∩ -−1). The
equivalence induced by a preorder is also known as its kernel. When we want
to refer to a specific preorder in the spectrum, we shall subscribe the symbol
- with the initials of the intended semantics. For instance, we shall use -RS to
denote the ready simulation preorder, -S for the simulation preorder, -F for
the failures preorder, -CT for the completed traces preorder, and -PT for the
partial traces preorder. A similar notational convention applies to the kernels of
the preorders.

Each preorder in the linear time - branching time spectrum is a precongruence
over the algebra of closed BCCSP(A) terms. That is, p1 - q1 and p2 - q2 imply
ap1 - aq1, for each a ∈ A, and p1 + p2 - q1 + q2. Likewise, the equivalences in
the spectrum constitute a congruence over closed BCCSP(A) terms.

Given a preorder - over closed terms, for open terms t and u, we define t - u
if ρ(t) - ρ(u) for each closed substitution ρ; the corresponding equivalence ' is
lifted to open terms likewise.

Equations and inequations An (in)equational axiomatization (often abbreviated
to axiomatization) E is a collection of either inequations t 4 u or equations t ≈ u,
where t and u are BCCSP(A) terms. We write E ` t 4 u or E ` t ≈ u if this
(in)equation can be derived from the (in)equations in E using the standard rules
of (in)equational logic, where the rule for symmetry can be applied for equational
derivations but not for inequational ones. An axiomatization E is sound modulo
- (or ') if, for all open terms t, u, from E ` t 4 u (or E ` t ≈ u) it follows that
t - u (or t ' u). An axiomatization E is ground-complete modulo - (or ') if
p - q (or p ' q) implies E ` p 4 q (or E ` p ≈ q), for all closed terms p and q.
We say that E is ω-complete if for all open terms t, u with E ` ρ(t) 4 ρ(u) (or
E ` ρ(t) ≈ ρ(u)) for all closed substitutions ρ, we have E ` t 4 u (or E ` t ≈ u).
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Fig. 1. The linear time - branching time spectrum

The core axioms A1–4 for BCCSP(A) given below are ω-complete [19], and
sound and ground-complete [16, 18] modulo bisimulation equivalence, which is
the finest semantics in the linear time - branching time spectrum.

A1 x+ y ≈ y + x
A2 (x+ y) + z ≈ x+ (y + z)
A3 x+ x ≈ x
A4 x+ 0 ≈ x

In the remainder of this paper, process terms are considered modulo A1–4. A
term x or at is a summand of each term x + u or at + u, respectively. We use
summation

∑n
i=1 ti (with n ≥ 0) to denote t1 + · · · + tn, where the empty sum

denotes 0. As binding convention, alternative composition and summation bind
more weakly than prefixing. Modulo the equations A1–4 each BCCSP(A) term
t can be written in the form

∑n
i=1 ti, where each ti is either a variable or is of

the form at′ for some action a and term t′.
In his paper [13], van Glabbeek offered, amongst a host of other results,

(in)equational axiomatizations for the preorders and equivalences in the spec-
trum. The proofs of the completeness results in that reference mostly employ the
method of graph transformations. Groote [14] obtained ω-completeness results
for most of the axiomatizations, in case the alphabet of actions is infinite.



6

In the remainder of this paper, in case of an infinite alphabet, occurrences of
action names in axioms should be interpreted as action variables.

3 Producing an Axiomatization

Consider a preorder - in the linear time - branching time spectrum that includes
the ready simulation preorder. Let E be a sound and ground-complete inequa-
tional axiomatization for BCCSP(A) modulo -. We give an algorithm to produce
an axiomatization A(E) that is sound and ground-complete for BCCSP(A) mod-
ulo ', namely the kernel of the preorder -. Moreover, if E is ω-complete, then
so is A(E).

Without loss of generality, we assume that the axioms A1–4 are present in E,
together with the defining inequational axioms for ready simulation equivalence
for each a ∈ A:

ax 4 ax+ ay .

The axiomatization A(E) is constructed as follows. The axioms A1–4 are by
default included in A(E). Furthermore, for each inequational axiom t 4 u in E,
we add to A(E):

A. t+ u ≈ u; and
B. b(t+ x) + b(u+ x) ≈ b(u+ x) (for all b ∈ A, and some x that does not occur

in t+ u).

Note that A(E) is finite whenever A and E are finite. Moreover, using an action
variable in step B in lieu of a concrete action b ∈ A, the axiomatization A(E)
contains only finitely many axiom schemas when E does, even in the presence
of an infinite collection of actions.

Remark 1. Since ax 4 ax + ay is assumed to be present in E for each a ∈ A,
by step B of the algorithm, the defining axioms for ready simulation from [6],
namely

b(ax+ z) + b(ax+ ay + z) ≈ b(ax+ ay + z) ,

are present in A(E), for all a, b ∈ A.

We are now ready to present the main result of the paper to the effect that the
algorithm defined above delivers axiomatizations for the kernels of the preorders
that are sound, and ground- or ω-complete.

Theorem 1. Let - be a preorder in the linear time - branching time spectrum
with -RS⊆-. Let E be a sound and ground-complete inequational axiomati-
zation for BCCSP(A) modulo -. Then the equational axiomatization A(E) is
sound and ground-complete for BCCSP(A) modulo '. Moreover, if E is ω-
complete, then so is A(E).

Since the algorithm presented above preserves finiteness of the axiomatization
when the set of actions A is finite, it follows that each equivalence in the spectrum
whose discriminating power lies in between that of ready simulation and partial
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traces equivalence is finitely axiomatizable over the language BCCSP(A) if so is
its defining preorder.

The remainder of the paper will be essentially devoted to a proof of the
above theorem. Our proof of Theorem 1 relies on the isolation of a collection of
equations, the so-called cover equations, that have a simple form and completely
characterize the equational theory of BCCSP(A) modulo any of the behavioural
equivalences whose discriminating power lies in between that of ready simulation
and partial traces equivalence. Restricting ourselves to cover equations will help
us overcome the technical complications in the proof-theoretic argument we shall
use in Section 5 to complete the proof of Theorem 1.

In light of the key role cover equations play in the proof of Theorem 1, we
now proceed to introduce them and to analyze the properties that make them a
crucial ingredient in our proof of that result.

4 Cover Equations

For bisimulation semantics, and thus for all process semantics in the linear time
- branching time spectrum, axiom A3 is sound. So if an equation t ≈ u is sound,
then u + t ≈ t and t + u ≈ u are sound too; and from the last two equations
one can derive t ≈ u. Furthermore, for all process semantics in the linear time -
branching time spectrum, if t1+t2+u ≈ u is sound, then t1+u ≈ u and t2+u ≈ u
are sound; and from the last two equations one can derive t1 + t2 +u ≈ u. Hence,
from the point of view of provability, it suffices only to consider sound equations
of the form at + u ≈ u and x + u ≈ u. We call these the cover equations. We
present three lemmas that limit the form that cover equations can have for the
semantics in the spectrum we study in this paper. (In the statements of the
lemmas below, t and u range over the collection of open BCCSP(A) terms.)

Lemma 1. If t+ x - u, and either -⊆-CT, or -⊆-PT and |A| > 1, then x
is a summand of u.

If |A| = 1, then the partial traces preorder and the simulation preorder coincide—
see, e.g., [3]. For this special case, Lemma 1 fails. Namely, let A = {a}. Then
x - ax is sound for the partial traces (and simulation) preorder.

Lemma 2. Let ' be an equivalence in the linear time - branching time spectrum.
If at+ u+ bv ' u+ bv with a 6= b, then at+ u ' u.

This lemma is trivial to check for each of the equivalences in the linear time
- branching time spectrum. The key idea is that since a 6= b, the non-empty
(decorated) traces of at and bu are disjoint, and bu cannot (ready/completed)
simulate at.

The following lemma states a kind of cancellation result for the preorders in
the spectrum.

Lemma 3. Let - be a preorder in the linear time - branching time spectrum. If
t+ x - u+ x, and x is not a summand of t+ u, then t - u.
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The condition in Lemma 3 that x is not a summand of t + u is essential. For
instance, x+ x -PT 0 + x, but x 6-PT 0. And 0 + x -CT x+ x, but 0 6-CT x.

Lemma 3 needs to be proved separately for each preorder in the linear time
- branching time spectrum. Despite the naturalness of its statement, which ap-
pears obvious, these proofs are not trivial, and quite technical. Fokkink and
Nain [10] proved such a lemma for failures semantics, with the aim to obtain an
ω-completeness result for this semantics, and their proof is rather delicate. The
details of the proof of Lemma 3 can be found in the full version of this paper [4].

From the three lemmas above, one can conclude that in order to prove ω-
completeness (or ground-completeness) of an equational axiomatization, it suf-
fices to derive all sound equations (or all sound closed equations) of the form

at+

n∑

i=1

aui ≈
n∑

i=1

aui (n ≥ 1)

and, only for the case of partial traces semantics with |A| = 1, all sound equations
of the form

x+ u ≈ u .

In our proof of Theorem 1, we shall therefore focus on showing that the equa-
tional axiomatization A(E) generated by our algorithm is powerful enough to
prove all of the sound equations of the above two forms.

5 Proof of Theorem 1

Proof. Let - be a preorder in the linear time - branching time spectrum, with
-RS⊆-. Let E be a sound and ground-complete inequational axiomatization for
BCCSP(A) modulo -.

It is not hard, albeit tedious, to see that the equational axiomatization A(E)
is sound for BCCSP(A) modulo '. We prove that ω-completeness of E implies
ω-completeness of A(E). The proof that A(E) is ground-complete is identical,
but assumes that all terms that occur in the proof below are closed. (It is well
known that if an axiomatization proves a closed (in)equation, then there is a
closed proof for that (in)equation.)

We note that, for each of the preorders in the linear time - branching time
spectrum, ar + as + t - u if, and only if, both ar + t - u and as + t - u.
This, together with the presence of the axiom A3, implies that the inequational
axiomatization E that we start with can be pre-processed so that there are no
multiple a-summands on the left-hand sides of the inequational axioms in E.

Moreover, in view of Lemmas 1 and 3, if -⊆-CT or |A| > 1, then variable
summands on the left-hand sides of inequational axioms can be omitted. Con-
cluding, in this case we can assume that the inequational axiomatization E that
we start with only contains inequational axioms of the form ap 4

∑n
i=1 aqi (with

n ≥ 1) or 0 4 q.
For the case of partial traces semantics with |A| = 1, Lemma 1 does not apply.

Note, however, that r + s -PT u if, and only if, both r -PT u and s -PT u.
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Hence, for this special case it suffices to allow also for inequational axioms of the
form x 4 q.

We start with showing that all cover equations of the form at+u ≈ u can be
derived from A(E). (Cover equations of the form x + u ≈ u will be considered
later.) In view of Lemmas 2 and 3, it suffices to only consider those equations
where u is of the form

∑n
i=1 aui with n ≥ 1. Let

at+

n∑

i=1

aui '
n∑

i=1

aui .

We show that the corresponding cover equation can be derived from A(E). It
is not hard to see that, for the semantics in the linear time - branching time
spectrum, the above equivalence implies

at -
n∑

i=1

aui .

So by ω-completeness of E,

E ` at 4
n∑

i=1

aui .

We prove, using induction on the length of such a derivation, not counting ap-
plications of axioms A1–4, that

A(E) ` at+

n∑

i=1

aui ≈
n∑

i=1

aui .

Base case: t = ui for some i. Trivial using A1–3.

Inductive case: We distinguish two cases, which deal with instantiations of in-
equational axioms in context.

Case 1: The first step of the derivation is

E ` aC[pσ] 4 aC[qσ] .

That is, t = C[pσ] for some context C[], substitution σ, and inequational axiom
p 4 q. Then clearly aC[pσ] is of the form D[b(pσ + r)] and aC[qσ] is of the form
D[b(qσ + r)] for some context D[], action b, and term r.

Since E ` aC[qσ] 4
∑n
i=1 aui by a shorter derivation, by induction,

A(E) ` aC[qσ] +

n∑

i=1

aui ≈
n∑

i=1

aui .

Furthermore,
A(E) ` aC[pσ] + aC[qσ] ≈ aC[qσ] .
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This equation can indeed be derived from the axiom b(p+x)+b(q+x) ≈ b(q+x),
which is present in A(E) for each b ∈ A according to step B in the algorithm,
together with the defining axiom for ready simulation, b(cx+z)+b(cx+cy+z) ≈
b(cx + cy + z), which by assumption is present in A(E) for all b, c ∈ A (see
Remark 1). The derivation of the above equation is by induction on the depth
of the occurrence of the context symbol [] within C[].

– Let [] occur at depth zero in C[], i.e., C[] = [] + r for some term r. Let the
substitution ρ coincide with σ on variables in p and q, and let ρ(x) = r.
(Recall that an assumption in step B of the algorithm was that x does not
occur in p+ q.) The derivation simply consists of applying the substitution
ρ to the axiom a(p+ x) + a(q + x) ≈ a(q + x).

– Let C[] = dC ′[] + s. By induction on the depth of the occurrence of [],
A(E) ` dC ′[pσ] + dC ′[qσ] ≈ dC ′[qσ]. So

A(E) ` aC[pσ] + aC[qσ] = a(dC ′[pσ] + s) + a(dC ′[qσ] + s)

≈ a(dC ′[pσ] + s) + a(dC ′[pσ] + dC ′[qσ] + s)

≈ a(dC ′[pσ] + dC ′[qσ] + s)

≈ a(dC ′[qσ] + s) = aC[qσ] .

Hence,

A(E) ` aC[pσ] +

n∑

i=1

aui ≈ aC[pσ] + aC[qσ] +

n∑

i=1

aui

≈ aC[qσ] +
n∑

i=1

aui ≈
n∑

i=1

aui ,

which was to be shown.

Case 2: The first step of the derivation is

E ` apσ 4
m∑

j=1

aqσj (m ≥ 1) .

That is, t = pσ for some substitution σ and inequational axiom ap 4
∑m
j=1 aqj .

By the soundness of E, clearly aqσj -
∑n
i=1 aui for j = 1, . . . ,m. So by ω-

completeness, E ` aqσj 4
∑n
i=1 aui for j = 1, . . . ,m. By one of our assumptions,

the inequational axioms in E do not contain multiple occurrences of a-summands
on their left-hand sides. This implies that each of these derivations is not longer
than the derivation of E `∑m

j=1 aq
σ
j 4

∑n
i=1 aui. So by induction,

A(E) ` aqσj +

n∑

i=1

aui ≈
n∑

i=1

aui
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for j = 1, . . . ,m. Furthermore, according to step A of the algorithm, the axiom
p+

∑m
j=1 aqj ≈

∑m
j=1 aqj is present in A(E). Hence,

A(E) ` apσ +

n∑

i=1

aui ≈ apσ +

m∑

j=1

aqσj +

n∑

i=1

aui

≈
m∑

j=1

aqσj +
n∑

i=1

aui ≈
n∑

i=1

aui .

This completes the proof for the case of cover equations of the form at +∑n
i=1 aui '

∑n
i=1 aui.

It remains to prove that cover equations of the form x+u ≈ u can be derived
fromA(E). If -⊆-CT or |A| > 1, then in view of Lemma 1, such cover equations
can be derived using A3. So we are left to consider the special case that -=-PT

and |A| = 1. Let

x+ u 'PT u .

Clearly, this implies

x -PT u .

So, by ω-completeness of E,

E ` x 4 u .

We prove, using induction on the length of such a derivation, not counting ap-
plications of A1–4, that

A(E) ` x+ u ≈ u .

Base case: x is a summand of u. Trivial.

Inductive case: The first step of the derivation is

E ` yσ 4 qσ .

That is, σ(y) = x for some substitution σ and inequational axiom y 4 q in E.
By the soundness of E, clearly r -PT u for each summand r of qσ. So by

ω-completeness, E ` r 4 u. By assumption, the inequational axioms in E are
all of the form as 4

∑n
i=1 asi (with n ≥ 1) or 0 4 s or z 4 s, for some variable

z. This implies that each of these derivations is not longer than the derivation
of E ` qσ 4 u. So by induction and A3,

A(E) ` qσ + u ≈ u .

Furthermore, according to step A of the algorithm, the axiom y+q ≈ q is present
in A(E). Hence,

A(E) ` yσ + u ≈ yσ + qσ + u ≈ qσ + u ≈ u .

The proof of the theorem is now complete. 2
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6 Examples

We show how our algorithm produces equational axiomatizations for two equiv-
alences in the linear time - branching time spectrum—namely simulation and
failures—from the inequational axiomatizations for the corresponding preorders.
For the simulation preorder, we leave out the pre-supposed inequational axiom
ax 4 ax+ ay, since it can be derived from the defining inequational axioms for
that preorder.

6.1 Simulation

Let |A| > 1. Then A1–4 plus one inequational axiom

0 4 x

is a sound and ground-complete axiomatization for BCCSP(A) modulo the sim-
ulation preorder [13].

Step A of the algorithm produces the already present axiom A4:

0 + x ≈ x .

Step B of the algorithm produces the defining axioms for simulation equivalence
for each b ∈ B:

b(0 + y) + b(x+ y) ≈ b(x+ y) .

6.2 Failures

Let |A| ≥ 1. The axiomatization consisting of A1–4 plus one inequational axiom

a(x+ y) 4 ax+ a(y + z)

for each a ∈ A is sound and ground-complete for BCCSP(A) modulo the failures
preorder [13].

Step A of the algorithm produces, for all a ∈ A:

a(x+ y) + ax+ a(y + z) ≈ ax+ a(y + z) .

This axiom is one of the two defining axioms for failures equivalence. (The second
defining axiom for failures equivalence is the ready simulation axiom, which is
assumed to be present from the start.)

Step B of the algorithm produces, for all a, b ∈ A:

b(a(x+ y) + w) + b(ax+ a(y + z) + w) ≈ b(ax+ a(y + z) + w) .
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This axiom is redundant; it can be derived from the other axioms as follows.
(The subterm to which an axiom is applied is underlined.)

b(ax+ a(y + z) + w)

≈ b(a(x+ y) + ax+ a(y + z) + w)

≈ b(a(x+ y) + a(y + z) + w) + b(a(x+ y) + ax+ a(y + z) + w)

≈ b(a(x+ y) + w) + b(a(x+ y) + a(y + z) + w) + b(a(x+ y) + ax+ a(y + z) + w)

≈ b(a(x+ y) + w) + b(a(x+ y) + ax+ a(y + z) + w)

≈ b(a(x+ y) + w) + b(ax+ a(y + z) + w)

7 Conclusions and Comparison with Related Work

In this paper, we have offered an algorithm for generating a ground-complete
(respectively, ω-complete) axiomatization for behavioural equivalences in the
linear time - branching time spectrum starting from a ground-complete (respec-
tively, ω-complete) axiomatization for their underlying preorders—that is, of the
preorders that have the equivalences as their kernels. Our algorithm applies to
all of the process semantics in the spectrum whose discriminating power lies
in between that of ready simulation semantics and of partial traces semantics.
Moreover, in the presence of a finite set of actions, our procedure preserves finite-
ness of axiomatizations, and thus can be used to obtain automatically finite basis
results for behavioural equivalences in the spectrum from similar results for their
underlying preorders. In fact, our results apply to any behavioural precongru-
ence whose discriminating power lies in between that of the ready simulation
preorder and of the partial traces preorder, provided that Lemmas 1–3 hold for
the precongruence in question.

Our algorithm may thus be considered as isolating and axiomatizing the in-
gredients that all of the extant proofs of completeness results for the class of
behavioural equivalences we study have in common. (See, for example, the ref-
erences [5, 6, 8–10, 13, 14] for a sample of such results.) It also eliminates the
need to reprove, essentially from scratch, completeness results for a large frag-
ment of behavioural equivalences in the spectrum once a completeness result
has been obtained for their underlying preorders. As witnessed by the examples
we provided in Section 6, the axiomatizations that are automatically generated
by our algorithm are very similar, when not identical, to those presented in the
literature. In this respect, this study may be seen as a companion to [1]. That
paper offered an algorithm that generates a finite, ground-complete axiomatiza-
tion for bisimulation equivalence from an operational specification of a language
in GSOS format [7]. That procedure relies on the axiomatization of bisimulation
equivalence over the language BCCSP. Here we have focused on the algorithmic
generation of complete axiomatizations for other equivalences in the spectrum
over the language BCCSP.
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The spirit of our study is also very similar to the one in [12]. In that reference,
independent of our work and building on their previous paper [11], de Frutos-
Escrig and Gregorio-Rodŕıguez show, amongst other things, how to generate
an inequational axiomatization for preorders in the spectrum from equational
axiomatizations for the corresponding equivalence. They generate this inequa-
tional axiomatization by simply adding the defining inequational axioms for the
ready simulation preorder to the axiomatization for the equivalence—see Theo-
rem 5.1 in [12]. That result applies to behavioural equivalences in the linear time
- branching time spectrum that (1) include ready simulation equivalence, and (2)
whose underlying preorders only equate processes having the same set of initial
actions. That second condition is not met by completed simulation, simulation,
completed traces and partial traces semantics. Furthermore, the result from [12]
only applies to ground-complete axiomatizations.

There are some interesting general connections between the technical devel-
opments in this paper and those in [12]. For instance, Lemma 3.11 in [12] gives
a soundness proof for the equations generated by step A in our algorithm for
the preorders in the spectrum that satisfy condition 2 above. However, the equa-
tions generated by step A are sound also for completed simulation, simulation,
completed traces and partial traces semantics. So Lemma 3.11 in [12] is not as
general as it could be.

It would also be interesting to investigate the possible relation between the
cover equations approach, used in this paper to reduce the class of equations to be
considered in the proof of completeness, and the condition of action factorization
mentioned in the statement of Theorem 2.6 of [12]. (Action factorization means
that if p - q, then, for each action a, the sum of the a-summands of p is also
dominated by the sum of the a-summands of q with respect to -.)

In summary, our work differs from [12] in the following fundamental ways.

– We show how to produce an equational axiomatization for an equivalence
from an inequational axiomatization of its underlying preorder. Since the
equivalences in the linear time - branching time spectrum that include ready
simulation equivalence are the kernels of their underlying preorders, to our
mind, the preorders are a more basic notion to build on in this setting.

– Unlike Theorem 5.1 of [12], our main result applies to all of the semantics
in the spectrum whose discriminating power lies in between that of ready
simulation semantics and partial traces semantics.

– Unlike Theorem 5.1 of [12], our results apply to ω-complete as well as to
ground-complete axiomatizations.

It would be interesting to extend our algorithm so that it applies also to
nested simulation semantics [15] and to possible futures semantics [20]. However,
as shown in [2], unlike the semantics we have considered in this study, nested
simulation and possible futures semantics afford no finite ground-complete ax-
iomatization over BCCSP even in the presence of a single action. This indicates
that such a generalization of our results will not be easy to achieve without re-
course to conditional equations. We leave such generalizations of our results and
proof techniques as a topic for future investigations.



15

References

1. L. Aceto, B. Bloom and F.W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111(1):1–52, 1994.

2. L. Aceto, W. Fokkink, R.J. van Glabbeek, and A. Ingolfsdottir. Nested semantics
over finite trees are equationally hard. Information and Computation, 191(2):203–
232, 2004.

3. L. Aceto, W. Fokkink, and A. Ingolfsdottir. A menagerie of non-finitely based
process semantics over BPA*—from ready simulation to completed traces. Math-
ematical Structures in Computer Science, 8(3):193–230, 1998.

4. L. Aceto, W. Fokkink, and A. Ingolfsdottir. Ready to preorder: Get your BCCSP
axiomatization for free! Report RS-07-3, BRICS Research Series, 2007.

5. L. Aceto, W. Fokkink, A. Ingolfsdottir, and B. Luttik. Finite equational bases
in process algebra: Results and open questions. In Processes, Terms and Cycles:
Steps on the Road to Infinity, LNCS 3838, pp. 338–367. Springer, 2005.

6. S. Blom, W. Fokkink, and S. Nain. On the axiomatizability of ready traces,
ready simulation and failure traces. In Proc. ICALP’03, LNCS 2719, pp. 109–118.
Springer, 2003.

7. B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42:232–268, 1995.

8. T. Chen and W. Fokkink. On finite alphabets and infinite bases III: Simulation.
Proc. CONCUR’06, LNCS 4137, pp. 421–434. Springer, 2006.

9. T. Chen, W. Fokkink and S. Nain. On finite alphabets and infinite bases II:
Completed and ready simulation. In Proc. FOSSACS’06, LNCS 3921, pp. 1–15.
Springer, 2006.

10. W. Fokkink and S. Nain. A finite basis for failure semantics. In Proc. ICALP’05,
LNCS 3580, pp. 755–765. Springer, 2005.

11. D. de Frutos-Escrig and C. Gregorio-Rodŕıguez. Bisimulations up-to for the linear
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